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Spinal hypersurfaces in complex hyperbolic space

Shigeyasu Kamiya

神谷 茂保 (岡山理大)

The purpose of this article is to introduce spinal hypersuraces in $H_{C}^{n}$ , which are studied
and developed by Goldman and Mostow.

In Section 1 we state the properties of elements of U(1, n;C). Section 2 is devoted to
discussing spinal hypersurfaces on which results are due to Goldman and Mostow (cf. [3],
[5]). In Section 3 we show Phillips’ theorem on the Dirichlet polyhedra (cf. [6], [7]).

0. First we recall definitions and notation. Let $C$ be the field of complex numbers. Let
$V=V^{1,n}(C)(n\geq 1)$ denote the vector space $C^{n+1}$ , together with the unitary structure
defined by the Hermitian form

$\Phi(Z, W)=-\overline{Z_{0}}W_{0}+\ovalbox{\tt\small REJECT}\overline{Z}_{k}W_{k}$ ,
$k=1$

for $Z=(Z_{0}, Z_{1}, \ldots, Z_{n}),$ $W=(W_{0}, W_{1}, \ldots, W_{n})$ in $V$ .
An automorphism $g$ of $V$ , that is a linear bijection such that $\Phi(g(Z), g(W))=\Phi(Z, W)$

for $Z,$ $W$ in $V$, will be called a unitary transformation. We denote the group of all unitary
transformations by $U(1, n;C)$ .

Let $V_{0}=\{Z\in V|\Phi(Z, Z)=0\}$ and $V_{-}=\{Z\in V|\Phi(Z, Z)<0\}$ . It is clear that $V_{0}$

and $V$-are invariant under $U(1, n;C)$ .
Set $V^{*}=V_{-}\cup V_{0}-\{0\}$ . Let $\pi$ : $V^{*}arrow\pi(V^{*})$ be the projection map defined by

$\pi(Z_{0}, \ldots, Z_{n})=(\frac{Z_{1}}{Z_{0}}, \ldots, \frac{Z_{n}}{Z_{0}})=(z_{1}, \ldots, z_{n})$ .

Set $H_{C}^{n}=\pi(V_{-})$ .
An element $g$ of $U(1, n;C)$ operates in $\pi(V^{*})$ , leaving $\overline{H}_{C}^{n}$ (the closure of $H_{C}^{n}$ in $\pi(V^{*})$ )

invariant. Since $H_{C}^{n}$ is identified with the complex unit ball

$B^{n}= \{z\in C^{n}|\Vert z\Vert^{2}=\sum_{k=1}^{n}|z_{k}|^{2}<1\}$ ,

we can regard a unitary transformation as a transformation operating on $B^{n}$ . Hence
discrete subgroups of $U(1, n;C)$ is the generalizations of Fuchsian groups.

We can introduce the Bergman metric in $B^{n}$ . This hyperbolic distance $d(z, w)$ for
$z,$ $w\in B^{n}$ is expressed by the use of the Hermitian form $\Phi$ as follows.

$d(z, w)=2 \cosh^{-1}\frac{|\Phi(Z,W)|}{[\Phi(Z,Z)\Phi(W,W)]^{1/2}}$ ,

where $Z\in\pi^{-1}(z),$ $W\in\pi^{-1}(w)$ . This does not depend on the choice of $Z,$ $W$
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To discuss some properties of unitary transformations, it may be more convenient to
use another matrix representation for $U(1, n;C)$ . By changing the basis of $V$ , we introduce
the group $\tilde{U}(1, n;C)$ as follows. Let

$D=($ $-1/\sqrt{2}1/_{0}\sqrt{2}$ $11/_{0^{\sqrt{2}}}\sqrt{2}$
$I_{n-1}00$ ).

Define $\tilde{U}(1, n;C)$ by $D^{-1}U(1, n;C)D$ . We see that $\tilde{U}(1, n;C)$ is the automorphism group
of the Hermitian form

$\overline{\Phi}(Z, W)=-(\overline{Z_{0}}W_{1}+\overline{Z_{1}}W_{0})+\sum^{n}\overline{Z_{k}}W_{k}$.
$k=2$

We can regard $D^{-1}$ as a mapping of complex unit ball $B^{n}$ to

$\overline{H^{n}}=\{z\in C^{n}| Re(z_{1})>\frac{1}{2}\sum^{n}|z_{k}|^{2}\}$ ,
$k=2$

which is called the Siegel domain.

1. The nontrivial elements $faU$ into three general conjugacy types, depending on the
number and location of their fixed points. Since each element acts on the closure of $B^{n}$ ,
the Brouwer fixed point theorem implies that it has a fixed point. Let $g\neq id$ . We call $g$

elliptic if it has a fixed point in $B^{n}$ and $g$ parabolic if it has exactly one fixed point and
this lies on the boundary. An element $g$ will be called loxodromic if it has exactly two fixed
points and they lie on the boundary. If $g$ is conjugate to an element (different from the
identity) in the identity component $U_{0}(1,1;R)$ , it will be called hyperbolic. Hyperbolic
elements are special kinds of loxodromic elements.

Now we state properties of each kind of elements. Let

$U(1;C)\cross U(n;C)=\{(\begin{array}{ll}\alpha 00 A\end{array})| |\alpha|=1, AA^{*}=I_{n}\}$.

Proposition 1.
(1) Let $g$ be an elliptic element. Then:
1) $g$ is conjugate to an element of $U(1;C)\cross U(n;C)$ .
2) $g$ is semisimple with eigenvalues of absolute value 1.

(2) Let $g$ be a loxodromic element. Then:
1) $g$ is semisimple with $n-1$ eigenvalues of absolute value 1.
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2) $g$ leaves the geodesic joining the two fixed points, invariant. This is called the axis
of $g$ and denoted by $A_{g}$ .

3) $g$ moves every point $z$ in $A_{g}$ the same distance $T(g)=d(z,g(z))$ . This $T(g)$ is
called the translation length of $g$ .

4) $T(g)= \min_{z\in B^{n}}d(z,g(z))$ .

(3) Let $g$ be a parabolic element. Then:
1) $g$ is not semisimple.
2) All absolute values of eigenvalues are 1.

If a parabolic element $g$ is unipotent (that is, all eigenvalues are 1), then $g$ is called
strictly parabolic. A standard form of strictly parabolic element of $\tilde{U}(1, n;C)$ is as follows.

$\tilde{g}=(\begin{array}{lll}l 0 0s 1 \overline{a}^{T}a 0 I_{n-1}\end{array})$ ,

where $Re(s)= \frac{1}{2}\Vert a\Vert^{2}$ .
In particular, a conjugate element to

$(\begin{array}{lll}1 0 0s l 00 0 I_{n-1}\end{array})$

$(s\neq 0, Re(s)=0)$ is called translation. We note that strictly parabolic elements are not
necessarily conjugate to translations, because their minimal polynomials are different.

2. Before defining a spinal hypersurface we recall the following important proposition.

Proposition 2 ([2, Proposition 2.5.1]). A totally geodesic submanifold in $H_{C}^{n}$ is equiv-
alent to $H_{C}^{m}$ or $H_{R}^{m}(m\leq n)$ under $U(1, n;C)$ .

Given two points $z_{1},$ $z_{2}\in H_{C}^{n}$ , the equidistant surface $E\{z_{1}, z_{2}\}$ of $z_{1},$ $z_{2}$ is by definition

$E\{z_{1}, z_{2}\}=\{z\in H_{C}^{n}|d(z, z_{1})=d(z, z_{2})\}$ .

We call this $E\{z_{1}, z_{2}\}$ a spinal hypersurface of $\{z_{1}, z_{2}\}$ . By Proposition 2, a spinal hyper-
surface is not a totally geodesic submanifold in $H_{C}^{n}$ , but a real analytic hypersurface in $H_{C}^{n}$

diffeomorphic to $R^{2n-1}$ Two points $z_{1},$ $z_{2}$ in $H_{C}^{n}$ determine a unique complex geodesic
$\Sigma$ . Set $\sigma\{z_{1}, z_{2}\}=E\{z_{1}, z_{2}\}\cap\Sigma$ , which is called a spine of $E$ . It follows that the spine
$\sigma\{z_{1}, z_{2}\}$ is a (real) geodesic in $\Sigma$ .

Theorem 3.
$E= \Pi_{\Sigma}^{-1}(\sigma)=\bigcup_{s\in\sigma}\Pi_{\Sigma}^{-1}(s)$

,
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where $\Pi_{\Sigma}$ : $H_{C}^{n}arrow\Sigma$ is orthogonal projection onto $\Sigma$ .

For our proof we need a lemma.

Lemma 4 ([3, Lemma III.2.3.1]). Let $L\subset H_{C}^{n}$ be a complex linear subspace with
orthogonal projection $\Pi$ . Then for all $u\in H_{C}^{n}$ and $s\in L$ , then the geodesic for $\Pi(u)$ to $u$

and to $s$ are orthogonal and span a totally real 2-space. Futhermore

$\cosh(\frac{d(u,s)}{2})=\cosh(\frac{d(u,\Pi(u))}{2})\cosh(\frac{d(\Pi(u),s)}{2})$ .

Proof of Theorem 3. It follows from Lemma 4 that for $i=1,2$

$\cosh(\frac{d(z,z_{i})}{2})=\cosh(\frac{d(z,\Pi_{\Sigma}(z))}{2})\cosh(\frac{d(\Pi_{\Sigma}(z),z_{i})}{2})$ .

It is seen that
$z\in E\{z_{1}, z_{2}\}\Leftrightarrow d(z, z_{1})=d(z, z_{2})$

$\Leftrightarrow d(z_{1}, \Pi_{\Sigma}(z))=d(z_{2}, \Pi_{\Sigma}(z))$

$\Leftrightarrow\Pi_{\Sigma}(z)\in\sigma\{z_{1}, z_{2}\}$ .

The complex hyperplanes $\Pi_{\Sigma}^{-1}(s)$ for $s\in\sigma$ are called the slices of $E$ . The slice of $E$ is
a maximal holomorphic submanifold of $E$ .

Theorem 5. There is a bijective correspondence between spinal hypersurfaces in $H_{C}^{n}$

and (real) geodesics in $H_{C}^{n}$ .

Proof. Let $E\{z_{1}, z_{2}\}$ be a spinal hypersurface. Then there is a unique complex
geodesic $\Sigma$ which is orthogonal to slices of $E$ . By setting $\sigma=E\{z_{1}, z_{2}\}\cap\Sigma$ we have a
unique geodesic $\sigma$ corresponding to $E\{z_{1}, z_{2}\}$ . Conversely, if a geodesic $\sigma$ is given, then
there is a unique complex geodesic $\Sigma$ and a reflection $P_{\sigma}$ of $\Sigma$ with $P_{\sigma}(\sigma)=\sigma$ . For any
point $z_{1}$ set $z_{2}=P_{\sigma}(z_{1})$ . Then it is easy to show that $E\{z_{1}, z_{2}\}=\Pi_{\Sigma}^{-1}(\sigma)$ .

Two end points in $\partial H_{C}^{n}$ of the spine $\sigma$ are called vertices of $E$ .
Next we shall chracterize slices of spinal hypersurfaces. Let $S$ be a complex hypersur-

face and let $\iota_{S}$ be an inversion of $S$ .

Theorem 6. Let $u_{1},$ $u_{2}$ be two points in $\partial H_{C}^{n}$ . Then the complex hypersurface $S$ is a
slice of $E$ with ends points $u_{1},$ $u_{2}$ if and only if $\iota_{S}$ interchanges $u_{1}$ and $u_{2}$ .

Let $z_{1},$ $z_{2}$ be two points in $H_{C}^{n}$ . Then the inversion $\iota_{S}$ interchanges $z_{1}$ and $z_{2}$ if and
only if $S$ is the slice of $E\{z_{1}, z_{2}\}$ .

Theorem 7. Let $H_{1},$ $H_{2}$ be two ultrapamllel complex hyperplanes in $H_{C}^{n}$ . Then there
exists a unique spinal hypersurface $E$ having $H_{1},$ $H_{2}$ as slices.
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Proof. Let $U_{1},$ $U_{2}\in C^{n+1}$ be polar vectors to complex hyperplanes $H_{1}$ and $H_{2}$ ,
respectively. Set

$U_{\pm}=U_{1}-(\Phi(U_{1}, U_{2})\pm\sqrt{\Phi(U_{1},U_{2})^{2}-1})U_{2}$ .
Let $E$ be a spinal hypersurface with the vertices $\pi(U_{1}),$ $\pi(U_{2})$ . It is not difficult to show
that $E$ is a spinal hypersurface with slices $H_{1}$ and $H_{2}$ .

Definition 8. Two spinal hypersurfaces $E_{1},$ $E_{2}$ in $H_{C}^{n}$ are coequidistant if $\Sigma_{1}\cap\Sigma_{2}\neq\emptyset$ ,
where $\Sigma_{i}$ denotes the complex spine of $E$; $(i=1,2)$ . We say that $E_{1}$ and $E_{2}$ are covertical
if $\Sigma_{1}$ and $\Sigma_{2}$ are parallel. When $E_{1}$ and $E_{2}$ have a common slice, these are said to be
cotranchal.

Theorem 9. If two spinal hypersurfaces $E_{1},$ $E_{2}$ are coequidistant or covertical, then
they are not cotranchal.

We prepare a lemma.

Lemma 10 ([1, Theorem 7.16.2]). Let $\theta_{1},$ $\theta_{2},$

$\ldots,$

$\theta_{n}$ be any ordered n-tuple with $0\leq\theta_{j}<$

$\pi,$ $j=l,$ $2,$
$\ldots,$

$n$ . Then there exists a polygon $P$ with interior angles $\theta_{1},$ $\theta_{2},$ $\ldots,\theta_{n}$ occurrzng
in this order around $\partial P$, if and only if $\theta_{1}+\theta_{2}+\ldots+\theta_{n}<(n-2)\pi$ .

Proof of Proposition 9. As both $\Sigma_{1}$ and $\Sigma_{2}$ are orthogonal to $S$ , the triangle formed
by $\Sigma_{1},$ $\Sigma_{2},$ $S$ has two right angles. This contradicts Lemma 10.

Theorem 11. If two spinal hypersurfaces $E_{1}$ and $E_{2}$ contain a common point $x$ , then
either $S_{1}$ and $S_{2}$ transversely intersect at $x$ or there exists a unique common slice $S$ in-
cluding $x$ .

Proof. The tangent spaces $T_{x}E_{1}$ and $T_{x}E_{2}$ at $x$ are real hyperplanes in the tangent
space $T_{x}H_{C}^{n}$ of $H_{C}^{n}$ at $x$ . Suppose that $E_{1}$ and $E_{2}$ do not transversely meet at $x$ . Then
$T_{x}E_{1}=T_{x}E_{2}$ . Noting that $T_{x}S_{1}$ and $T_{x}S_{2}$ are maximal complex submanifolds of $T_{x}E_{1}$

and $T_{x}E_{2}$ , respectively, we see that $T_{x}S_{1}=T_{x}S_{2}$ . Since $S_{1}$ and $S_{2}$ are totally geodesic and
$S_{1}\cap S_{2}$ contains $x,$ $S_{1}=S_{2}$ .

Corollary 12. If two spinal hypersurfaces $E_{1}$ and $E_{2}$ are coequidistant or covertical,
then they meet transversely.

Proof. Suppose that $E_{1}$ and $E_{2}$ do not meet transversely. Theoremll implies that
there exists a common slice $S$ , which is orthogonal to complex spines $\Sigma_{1}$ and $\Sigma_{2}$ . It follows
from Lemma 10 that $\Sigma_{1}$ and $\Sigma_{2}$ are ultraparallel. This is a contradiction.

Theorem 13. If two spinal hypersurfaces $E_{1}$ and $E_{2}$ have two common slices, then
$E_{1}=E_{2}$ .

Proof. Let $\sigma$ ; denote the spine of $E_{i}(i=1,2)$ and let $l_{1}$ and $l_{2}$ be distinct geodesics
orthogonal to both $\sigma_{1}$ and $\sigma_{2}$ . Then the quadrilateral formed by $l_{1},$ $\sigma_{1},$

$l_{2},$ $\sigma_{2}$ has four right
angles. Lemma 10 implies that $E_{1}=E_{2}$ .
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Let $q_{1},$ $q_{2}$ be points in $\partial H_{C}^{n}$ and let $c$ be a complex hyperplane. Let $Q_{1},$ $Q_{2}$ be null
vectors representing $q_{1},$ $q_{2}$ and $C$ a positive vector polar to $c$ . Then the complex number

$\eta(q_{1}, q_{2}; c)=\frac{\Phi(Q_{1},\check{C})\Phi(C,Q_{2})}{\Phi(Q_{1},Q_{2})\Phi(C,C)}$ ,

is independent of the choices of representative vectors. It is easy to prove that $\eta(q_{1}, q_{2};c)$

is $U(1, n;C)$-invariant.
Using the invariant $\eta(q_{1}, q_{2};c)$ , we can quantitatively discuss the intersection of a

spinal hypersurface with a complex geodesic $c$ .

Theorem 14. Let $E$ be a spinal hypersurface with vertices $q_{1},$ $q_{2}$ . Let $c$ be a complex
hypersurface. Assume that $c$ is not a slice of $E$ and $q_{1},$ $q_{2}\not\in\partial c$ . Then

$E\cap c\neq\emptyset\Leftrightarrow Im(\eta)^{2}+2Re(\eta)<1$.

Theorem 15. The number of components of $E_{1}\cap E_{2}$ is at most 2.

Proof. Let $E_{1}$ and $E_{2}$ be spinal hypersurfaces with vertices $q_{1}^{+},$
$q_{1}^{-}$ and $q_{2}^{+},$

$q_{2}^{-}$ , respec-
tively. Take $Q_{2}^{+}\in\pi^{-1}(q_{2}^{+}),$ $Q_{2}^{-}\in\pi^{-1}(q_{2}^{-})$ such that $\Phi(Q_{2}^{-}, Q_{2}^{+})=2$ . Then vectors polar
to the slices of $E_{2}$ are given by

$Q_{2}(t)= \frac{1}{2}(tQ_{2}^{+}+t^{-1}Q_{2}^{-})$

for $0<t<\infty$ , and these vectors satisfy $\Phi(Q_{2}(t), Q_{2}(t))=1$ . Set

$\eta(t)=\eta(q_{1}^{-}, q_{1}^{+};q_{2}(t))=\frac{\Phi(Q_{1}^{-},Q_{2}(t))\Phi(Q_{2}(t),Q_{1}^{+})}{\Phi(Q_{2}(t),Q_{2}(t))\Phi(Q_{1}^{-},Q_{1}^{+})}$ .

The connected components of $E_{1}\cap E_{2}$ correspond to the connected components of the
set of all $t>0$ such that $\eta(t)\in D$ , where $D=\{\eta|Im(\eta)^{2}+2Re(\eta)<1\}$ . It follows that
$\eta(t)\in D$ if and only if $t^{-4}f(t)<0$ , where $t^{-4}f(t^{2})=2Re(\eta(t))+Im(\eta(t))^{2}-1$ and $f(s)$

is a quartic polynomial with positive leading term. Thus $\eta^{-1}(D)=\{t>0|f(t^{2})<0\}$ has
at most two components.

Theorem 16. If two spinal hypersurfaces $E_{1}$ and $E_{2}$ are coequidistant or covertical,
then $E_{1}\cap E_{2}$ is connected.

3. Let $w$ be a point in $H_{C}^{n}$ . We may assume that $w$ is not a fixed point of any element
$g$ except the identity. Let $H_{g}(w)=\{z\in H_{C}^{n}|d(z, w)<d(z, g(w))\}$ . It is easy to see that
$H_{g}(w)=\{z\in H_{C}^{n}|d(z,w)<d(z,g^{-1}(w))\}$ .

Definition 17. The Dirichlet polyhedron $D(w)$ for $G$ with the center $w$ is defined by

$D(w)=$ $\cap$ $H_{g}(w)$ ,
$g\in G-\{id\}$
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where $H_{g}(w)=\{z\in H_{C}^{n}|d(z, w)<d(z, g(w))\}$ .

It follows from Proposition 2 that $D(w)$ is not necessarily convex. In the same manner
as in [1] we have

Proposition 18.
(1) The Dirichlet polyhedron $D(w)$ is locally finite.
(2) The Dirichlet polyhedron $D(w)$ is star-shaped about $w$ .

Theorem 19. Let $w$ be a point in $H_{C}^{n}$ . Let $G=<g>be$ a cyclic group generated by $g$ ,
where $g$ is strictly parabolic or hyperbolic. Then the Dirichlet polyhedron $D(w)$ for $G$ with
the center $w$ has exactly two disjoint faces.

Proof. Set $H_{k}=H(w, g^{k})=\{z\in H_{C}^{n}|d(z, w)<d(z, g^{k}(w))\}$ . It follows that

$z\in H_{k}\Leftrightarrow d(z, w)<d(z, g^{k}(w))$

$\Leftrightarrow\cosh^{2}(\frac{d(z,w)}{2})<\cosh^{2}(\frac{d(z,g^{k}(w))}{2})$ .

Let $f_{z}(k)= \cosh^{2}(\frac{d(z,g^{k}(w))}{2})$ . We regard $f_{z}(k)$ as a function of $k$ . Therefore $H_{k}=$

$\{z\in H_{C}^{n}|f_{z}(0)<f_{z}(k)\}$ . We can complete our proof by using the following two lemmas.

Lemma 20. If $f_{z}(k)$ is a convex function with respect to $k$ for any $z\in H_{C}^{n}$ , then
$D(w)=H_{1}\cap H_{-1}$ and $\partial H_{1}\cap\partial H_{-1}=\emptyset$ .

Proof. If $z\in H_{1}$ , then $f_{z}(0)<f_{z}(1)$ . Let $k>1$ . Since $f_{z}(k)$ is a convex function with
respect to $k$ ,

$kf_{z}(1)<(k-1)f_{z}(0)+1f_{z}(k)=kf_{z}(0)-f_{z}(0)+f_{z}(k)$ .
Hence $f_{z}(0)<k\{f_{z}(0)-f_{z}(1)\}+f_{z}(k)$ . Noting that $f_{z}(0)-f_{z}(1)<0$ , we see that $z\in H_{k}$ ,
that is $H_{1}\subset H_{k}$ . Similarily we have $H_{1}\subset H_{k}$ for $k<-1$ . Thus

$D(w)= \bigcap_{k=-\infty,k\neq 0}^{\infty}H_{k}=H_{1}\cap H_{-1}$

Next we shall show that $\overline{H}_{1}\cap\overline{H}_{-1}=\emptyset$ . Suppose that $z\in\overline{H}_{1}\cap\overline{H}_{-1}$ . Then $f_{z}(0)\geq f_{z}(1)$

and $f_{z}(0)\geq f_{z}(-1)$ . Therefore we have

$0<\{f_{z}(1)-f_{z}(0)\}+\{f_{z}(-1)-f_{z}(0)\}$ .

This is a contradiction. Thus $\overline{H}_{1}\cap\overline{H}_{-1}=\emptyset$ .

Lemma 21. If $g$ is strictly parabolic or hyperbolic, then $f_{z}(k)$ is a convex function with
respect to $k$ for any $z\in H_{C}^{n}$ .
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