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On the Teichm\"uller spaces of Fuchsian groups of Schottky type
and the Schwarzian derivatives of univalent functions
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Department of Mathematics, Faculty of Science, Kyoto University

\S 1. The main result.
Let $\Gamma$ be a Fuchsian group acting on the upper half plane $\mathbb{H}$ . We denote by

$B_{2}(\Gamma)$ the Banach space of all the holomorphic function $\varphi$ on $\mathbb{H}$ which satisfies
the functional equation $(\varphi 0\gamma)(\gamma’)^{2}=\varphi$ for all $\gamma\in\Gamma$, with finite norm $\Vert\varphi\Vert=$

$\sup_{z\in \mathbb{H}}$ I $\varphi(z)|({\rm Im} z)^{2}$ . We shall consider the following subsets of $B_{2}(\Gamma)$ :

$S(\Gamma)=$ { $\varphi\in B_{2}(\Gamma)$ : $\exists univalent$ function $f$ on $\mathbb{H}$ with $S_{f}=\varphi$},

$T(\Gamma)=$ { $S_{f}\in S(\Gamma):f$ extends to a $(\Gamma$-compatible) qc-map of $\hat{C}$ },

where $S_{f}$ denotes the Schwarzian derivative of $f$ difined as follows: $S_{f}=(f’’/f’)’-$

$\frac{1}{2}(f’’/f’)^{2}$ .
It is known that $S(\Gamma)$ is closed and $T(\Gamma)$ is open in $B_{2}(\Gamma)$ . $T(\Gamma)$ is called (the

Bers model of) the Teichm\"uller space of $\Gamma$. It is an interesting problem how near
$T(\Gamma)$ is to $S(\Gamma)$ . For a cofinite Fuchsian group (i.e., finitely generated Fuchsian
group of the first kind) $\Gamma$, the statement $\overline{T(\Gamma)}=S(\Gamma)$ is equivalent to the Bers
conjecture: every B-group is obtained as a boundary group of Teichm\"uller space.
(This conjecture is still now unsolved.)

On the other hand, for any Fuchsian group $\Gamma$ of the second kind, it is known
that $\overline{T(\Gamma)}\subsetneqq S(\Gamma)$ (cf. [G2], [Sug]).

But a weaker statement that $T(\Gamma)=IntS(\Gamma)$ is proved for some cases ([Gl:
$\Gamma=1]$ , [Shiga: cofinite $\Gamma$ ]). The main result of this article is the validity of the
above statement for all Fuchsian groups of Schottky type, where a Fuchsian group
$\Gamma$ is called Schottky type in this article, if $\Gamma$ is a Schottky group simultaneously, in
other words, $\Gamma$ uniformizes a topologically finite Riemann surface of genus $g$ with $m$

holes, where $m\geq 1$ . Also, the Schottky type Fuchsian group can be characterized
as the finitely generated, purely hyperbolic Fuchsian group of the second kind.

MAIN THEOREM. Int $S(\Gamma)=T(\Gamma)$ for any Fuchsian group $\Gamma$ of Schottky type.

\S 2. Sketch of proof.
Let $\Gamma$ be a Fuchsian group of Schottky type. Then, the quotient surface $S_{0}=$

$\mathbb{H}/\Gamma$ is a topologically finite Riemann surface of genus $g$ with $m$ holes and its
double $S=\Omega(\Gamma)/\Gamma$ is a compact Riemann surface of genus $N=2g+m-1$ ,
where $\Omega(\Omega)\subset\hat{C}$ denotes the region of discontinuity of $\Gamma$. Let $\varphi\in$ Int $S(\Gamma)$ and
$F$ : $\mathbb{H}arrow\hat{C}$ be a holomorphic map such that $S_{F}=\varphi$ . By the $\Gamma$-automorphy of
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$\varphi,$
$G=F\Gamma F^{-1}$ is a subgroup of Mob which acts on $D=f(\mathbb{H})$ . Since $\varphi$ is an

interior point of $S(\Gamma)$ , it turns out that $G$ is purely loxodromic. Since $G(\cong\Gamma)$ is a
free group of finite rank, Maskit’s characterization theorem tells us that $G$ is also
a Schottky group of rank $N=2g+m-1$ . So, the quotient surface $R=\Omega(G)/G$

is a compact genus $N$ surface. Let $p_{0}$ : $\Omega(\Gamma)arrow S$ and $p$ : $\Omega(G)arrow R$ be the
natural projections. Set $R_{0}=p(D)=D/G$ , which is isomorphic to $S_{0}=\mathbb{H}/\Gamma$

by the conformal map $f$ induced by $F$ : $\mathbb{H}arrow D$ . We $shaU$ investigate the way of
embedding $R_{0}arrow R$ . Now, the proof of Main Theorem devides into several steps.

STEP 1. $\partial R_{0}$ consists of mutually disjoint $m$ simple closed curves.

This step needs a localization of Gehring’s method [G1]. In this step, essential
is the fact that $\varphi$ is an interior point of $S(\Gamma)$ .

STEP 2. There exists a self-homeomorphism $h$ of $R$ with the following properties:
(i) $hoh=id_{R}$ ,
(ii) $h|_{\partial R_{0}}=id_{\partial R_{0}}$ ,
(iii) $h(R_{0})\cap R_{0}=\emptyset$ ,
(i) there exits a $hom$eomorphism $H$ : $\Omega(G)arrow\Omega(G)$ such that $poH=hop$

on $\Omega(G)$ .

This step is covered by rathar algebraic arguments. For example, the following
$lem$ma is utilized.

LEMMA (GENERAL PROPERTY OF THE NORMAL COVERINGS).
Suppose that $p$ : $(\Omega, z_{0})arrow(R, a_{0})$ is a normal coverin$g$ between (connected)

poin $ted$ manifolds. Let $R_{0}$ be a $su$ bdomain of $R$ such that $a_{0}\in R_{0}$ and $\iota$ :
$R_{0}arrow R$ denote the inclusion map. Then $\iota$ naturally induces the homomorphism $*$

$\iota_{*}$ : $\pi_{1}(R_{0}, a_{0})arrow\pi_{1}(R, a_{0})$ . Let $\lambda$ : $\pi(R, a_{0})arrow G$ be the lifting $hom$omorphism
with respect to $z_{0}$ , where $G$ is a covering transformation group of $p$ : $\Omegaarrow R$ .
Namely, $g=\lambda[\alpha]$ for $g\in G$ and $[\alpha]\in\pi_{1}(R, a_{0})$ iff the final point of the lift $\overline{\alpha}$ of $\alpha$

with initial point $z_{0}$ coincides with $g(z_{0})$ . Then, the followings hold.
(i) Each $com$ponent of $p^{-1}(R_{0})$ is simply conn$ected\Leftrightarrow\lambda 0\iota_{*}$ is injective.
(ii) $p^{-1}(R_{0})$ is conn$ected\Leftrightarrow\lambda 0\iota_{*}is$ surjective.
In particular, if $p^{-1}(R_{0})$ is a simply connected domain, then $\iota_{*}$ : $\pi_{1}(R_{0}, a_{0})arrow$

$\pi_{1}(R, a_{0})$ is an $em$ beddin$g$ and $\pi_{1}(R, a_{0})=ker\lambda*\pi_{1}(R_{0}, a_{0})$ ($semi$-direct product).

First of all, we can naturally extend $f$ to a homeomorphism $f$ : $\overline{S_{0}}arrow\overline{R_{0}}$ by
Step 1. Further, by use of Step 2, we can extend $f$ to a homeomorphism $\overline{f}$ : $Sarrow R$
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in the following way.
$\overline{f}=\{\begin{array}{l}fon\overline{S_{0}}hofojon\cdot S\backslash \overline{S_{0}}\end{array}$

where $j$ denotes the involution map $Sarrow S$ induced by conjugation $J(z)=\overline{z}$ . By
constraction, $\overline{f}$ can be lifted, that is, there exists a homeomorphism $\tilde{F}$ : $\Omega(\Gamma)arrow$

$\Omega(G)$ such that $po\tilde{F}=\overline{f}op_{0}$ . By purely topological arguments, it turns out that
$\tilde{F}$ can be naturally extended to a homeomorphism $\overline{F}$ : $\hat{C}arrow\hat{C}$ . In particular, it is
known that $D$ is an image of $\mathbb{H}$ under the self-homeomorphism $\overline{F}$ of $\hat{C}$ , so $D$ is a
Jordan domain.

STEP 3. $\partial R_{0}$ is a disjoint union of quasi-analytic $cur\gamma es$ .

Here, the “quasi-analytic curve” means the quasiconformal image of a circle.
For the proof of Step 3, we need just more delicate arguments than in Step 1. By
the way, one can prove the following

PROPOSITION. Let $S$ and $R$ be compact Riemann surfaces and $S_{0}\subset S,$ $R_{0}\subset R$

be $subdom$ains with quasi-analytic boundaries. $Su$ppose that $\overline{f}$ : $Sarrow R$ is an
orientation preservin$ghom$eomorphism such that $\overline{f}(S_{0})=R_{0}$ and the restriction
map $\overline{f}|s_{0}$ : $S_{0}arrow R_{0}$ is $qu$asiconformal. Then, there exists a $qu$asiconformal $map$
$\overline{f}_{1}$ : $Sarrow R$ which is homotopic to $\overline{f}$ and $\tilde{f}_{1}=\tilde{f}$ on $R_{0}$ .

By virture of this proposition, we can choose a quasiconformal $\tilde{f}$ : $Sarrow R$

as the extension of $f$. Then, a topological extension $F$ : $\hat{C}arrow\hat{C}$ of a lift of $\tilde{f}$ is
quasiconformal on $\Omega(\Gamma)$ , so $\tilde{F}$ : $\hat{C}arrow\hat{C}$ is a quasiconformal self-homeomorphism
since $\Lambda(\Gamma)=\hat{C}\backslash \Omega(\Gamma)\subset\hat{\mathbb{R}}$ is a quasiconformaUy removable $\grave{s}et$ . Therefore
$D=\tilde{F}(\mathbb{H})$ is a quasi-disk, the proof is completed.
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