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A REMARK ON THEOREMS OF DE FRANCHIS AND SEVERI

MASAHARU TANABE
田辺 正晴 (東工大)

1. INTRODUCTION

The purpose of this paper is to study holomorphic maps between compact Riemann
surfaces. There are two famous finiteness theorems related to this problem. Let $\tilde{X}$ be
a compact Riemann surface of genus $>1$ . Then one is that, for fixed compact Riemann
surface $X$ of genus$>1$ , the number of nonconstant holomorphic maps $\overline{X}arrow X$ is finite,
and another is that there are only finitely many compact Riemann surfaces $\underline{\{}X_{i}$ } of genus
$>1$ such that, for each $X_{i}$ , there exists a nonconstant holomorphic map $Xarrow X_{i}$ . The
first assertion is due to de Franchis, and second one is due to Severi.

Let $S(\overline{X})=\{X_{i}\}$ , where $\{X_{i}\}$ is as in Severi’s theorem. Let
$n= \sum_{X\in S(\overline{X})}\#${ $h:\overline{X}arrow X|$ nonconstant holomorphic}.

Then, by the theorems above, we see $n<\infty$ at once. Howard and Sommese [2] showed
that there is a bound on $n$ which depends only on the genus of $\tilde{X}$ , by giving an explicit
estimate.

Here we will give some theorems related to rigidity of holomorphic maps between com-
pact Riemann surfaces, and show that we may take an explicit bound on $n$ depending only
on the genus of $\overline{X}$ smaller than one in [2].

2. PRELIMINARIES

Let $\tilde{X},$ $X$ be compact Riemann surfaces of genera $\tilde{g},$ $g(>1)$ . We denote by $H_{1}(X)$ the
first homology group (with integer coefficients) of $X$ . Any basis of $H_{1}(X)$ with intersection
matrix

$J=(\begin{array}{ll}0 E-E 0\end{array})$

will be called a canonical homology basis, where $E$ is the identity matrix of $g\cross g$ sized. Sim-
ilarly for $\tilde{X}$ . Let $\{\tilde{\chi}_{1}, \ldots,\tilde{\chi}_{2\overline{g}}\}(\{\chi_{1}, \ldots, \chi_{2g}\})$ be a canonical homology basis for $H_{1}(\overline{X})$

( $H_{1}(X)respectively\underline{).}$ Let $\{\tilde{w}^{1}, \ldots,\tilde{w}^{\overline{9}}\}$ and $\{w^{1}, \ldots , w^{9}\}$ be dual bases for holomor-
phic differentials on $X,$ $X$ (i.e. $\int_{\chi_{j}}w^{k}=\delta_{jk}$ where $\delta_{jk}$ is Kronecker’s delta), and $\tilde{\Pi}=$

$(\tilde{E},\tilde{Z}),$ $\Pi=(E, Z)$ be the associated period matrices. Let $h$ : $\tilde{X}arrow X$ be a noncon-
stant holomorphic map. Then $h$ induces a homomorphism $h_{*}$ : $H_{1}(\overline{X})arrow H_{1}(X)$ . Let
$M=(m_{kj})\in M(2g, 2\tilde{g};Z)$ , where $h_{*}( \tilde{\chi}_{j})=\sum_{k=1}^{2g}m_{kj}\chi_{k}.$ ( We denote by $M(m, n;K)$ the
set of $m\cross n$ matrices with K-coefficients.) We will call $M$ the matrix representation of $h$

with respect to $\{\tilde{\chi}_{1}, \ldots , \tilde{\chi}_{2\overline{g}}\}$ and $\{\chi_{1}, \ldots, \chi_{2g}\}$ . The integral $\int_{h_{e}(\overline{\chi}_{j})}w^{i}$ may be evaluated

Typeset by $A_{\mathcal{M}}S-Tm$

数理解析研究所講究録
第 882巻 1994年 110-113



111

in two ways; by expressing $h_{*}(\tilde{\chi}_{j})$ in $H_{1}(X)$ or by expressing the pull back of $w^{i}$ in terms
of the holomorphic differentials on $\overline{X}$ . This leads us to the Hurwitz relation

$A\Pi=\overline{\Pi}M$,

where $A\in M_{-}(g,\tilde{g};\mathbb{C})$ . The set of $M\in M(2g, 2\tilde{g};\mathbb{Q})$ such that there exists $A\in M(g,g;C)$

with $A\Pi=\Pi M$ will be called the space of Hurwitz relations. It is easy to see that it is a
Q-vector space.

Lemma[4]. In the space of Hurwitz relations, $<M,$ $N>=tr(\tilde{J}{}^{t}MJ^{-1}N)$ deffies an
inner product ( ${}^{t}M$ denotes transposition of $M$).

In particular, when $M$ is a matrix representation of a holomorphic map $h$ : $\overline{X}arrow X$ ,
$<M,$ $M>=2dg$ , where $d$ is the degree of the holomorphic map $h$ .

The Jacobian variety of $X$ is $J(X)=\mathbb{C}^{9}/\Gamma$ , where $\Gamma$ is the lattice (over Z) generated by
$2g$-columns of $\Pi$ . Similarly for $J(\tilde{X})$ . For any holomorphic map $h:Xarrow X$ , there exists a
homomorphism $H$ : $J(\overline{X})arrow J(X)$ with $\kappa\circ h=H\circ\tilde{\kappa}$ , where $\tilde{\kappa},$ $\kappa$ are canonical injections.

By an underlying real structure for $J(X)$ , we mean the real torus $\mathbb{R}^{2g}/Z^{2g}$ together
with a map $\mathbb{R}^{2g}/Z^{2g}arrow J(X)$ induced by a linear map $\mathbb{R}^{2_{9}}\ni x-\succ\Pi x\in \mathbb{C}^{9}$ . It is well-
known that for any homomorphism $H$ : $J(\tilde{X})arrow J(X)$ , there are $A\in M(g,\tilde{g};\mathbb{C})$ and
$M\in M(2g, 2\tilde{g};Z)$ such that the following diagram is commutative (precicely, apart $hom$

an additive constant).
$\mathbb{R}^{2\overline{g}}arrow^{\Pi\overline}\mathbb{C}^{\overline{9}}arrow J(\tilde{X})$

$\downarrow M$ $\downarrow A$ $\downarrow H$

$\mathbb{R}^{2g}arrow^{\Pi}\mathbb{C}^{9}arrow J(X)$

In particular, if $h$ is induced by a holomorphic map $h$ : $\tilde{X}arrow X,$ $M$ is the matrix
representation of $h$ .

Giving a nonconstant holomorphic map $h:\tilde{X}arrow X$ , we dnote by $h^{*}(Q)\subset\tilde{X}$ a divisor
of the preimages of $Q\in X$ with multiplicities. Defining $\tilde{\kappa}(h^{*}(Q))$ by linearity, we get a
holomorphic map $Xarrow J(\overline{X})$ , which can be extended to a homomorphism $H^{*}$ : $J(X)arrow$

$J(\overline{X})$ . $H^{*}$ is called the Rosati adjoint of H. $H^{*}$ is induced by the matrix $M^{*}=\tilde{J}{}^{t}MJ^{-1}$

acting on the underlying real tori[4].

3. STATEMENTS

Theorem 1. Let $\tilde{X},$ $X$ be compact Riemann surfaces ofgenera $\tilde{g},g(>1)$ . Let $h_{i}$ : $\tilde{X}arrow X$

$be$ a nonconstant holo$m$orphic map, and $M_{i}\in M(2g, 2\tilde{g};Z)$ be a matrix representation of
$h_{i}(i=1,2)$ . $Su$ppose that there is an integer $l>\sqrt{8(\tilde{g}-1)}$ with $M_{1}\equiv M_{2}$ (mod. $l$).
Then $h_{1}=h_{2}$ .

Let $m_{i}^{j}$ denote the j-th row vector of $M_{i}(i=1,2)$ .

Theorem 2. Let $h_{1},$ $h_{2},andM_{1},$ $M_{2}$ be as in Theorem 1. Suppose that there is an integer
$l>8(\tilde{g}-1)$ with $\mathfrak{m}_{1}^{j}\equiv \mathfrak{m}_{2}^{j}$ (mod. l) for every $j\in\{1, \ldots, g\}$ . Then $h_{1}=h_{2}$ .

It is already known that $M_{1}=M_{2}$ implies $h_{1}=h_{2}$ (see [3]).
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Theorem 3. Let $X_{1},$ $X_{2}$ be compact RiemaIln $s$urfaces of genus $g>1$ . Let $h_{i}$ : $\tilde{X}arrow X_{i}$

be a $n$onconstant holomorphic $map$, and $M_{i}$ be a matrix representation of $h_{i}(i=1,2)$ .
Suppose that there is an integer $l>\sqrt{8}(\tilde{g}-1)$ with $M_{1}\equiv M_{2}$ (mod. $l$). Then $X_{1},$ $X_{2}$ are
conformally $eq$ uivalent and there exis$ts$ a $con$form$al$ map $f$ : $X_{1}arrow X_{2}$ with $f\circ h_{1}=h_{2}$ .

Only outlines of the proofs are given here. For complete proofs, see [5] which will be
published elsewhere.

As we have seen in the lemma before, we have an inner product in the space of Hurwitz
relations. Therefore, we may induce a distance in it. Using this distance, we have Theorem
1 and 2. To get Theorem 3, we use the Rosati adjoint. Let $G_{i}=M_{i^{*}}M_{i}=JM_{i}J^{-1}M_{i}(i\sim_{t}=$

$1,2)$ . Then we have endmorphisms of $J(\overline{X})$ with the matrices $G_{1},$ $G_{2}$ acting on the under-
lying real tori. If $G_{1}=G_{2}$ , then the targets $X_{1},$ $X_{2}$ are conformally equivalent. Using the
distance induced by the inner product, we have Theorem 3.

Next we will give an bound on $n$ which was defined in section 1. Let

$S_{9}=\{X\in S(\tilde{X})|genusg\}$ ,

and

$Hol_{9}( \tilde{X})=\bigcup_{X\in S_{9}}$
{ $h:\tilde{X}arrow X|nonconstant$ holomorphic}.

Let $F_{l}=Z/(l)$ , where $l$ is a prime number $>\sqrt{8}(\tilde{g}-1)$ . By Theorem 1 and 3, we have
an injection $Hol_{9}(\tilde{X})arrow M(2g, 2\tilde{g};F_{l})$ . Thus we consider each matrix representation in
$M(2g, 2\tilde{g};F_{l})$ , for the convenience of calculation. Let $h_{i}$ be an element of $Hol_{9}(\tilde{X})$ and
$M_{i}\in M(2g, 2\tilde{g};F_{l})$ a matrix representation of $h_{i}(i=1,2)$ . If there exists $S\in Sp(2g;F_{l})$

with $M_{2}=SM_{1}$ , then targets of $h_{1},$ $h_{2}$ , say $X_{1},$ $X_{2}$ are conformally equivalent and there
is a conformal map $f$ : $X_{1}arrow X_{2}$ with $f\circ h_{1}=h_{2}$ ( $Sp$ denotes symplectic groups). $M_{i}$

satisfies $M_{i}\tilde{J}{}^{t}M_{i}=d_{i}J$, where $d_{i}$ is the degree of $h_{i}$ . Therefore, we have

$\neq Hol_{9}(\tilde{X})\leq\sum_{d}\#\{M\in M(2g, 2\tilde{g};f|)|M\tilde{J}{}^{t}M=dJ\}\cross 84(g-1)/\# Sp(2g;F_{l})$ ,

where $d$ runs through all considerable numbers as degrees of holomorphic maps. We have

$\# Sp(2g;F_{l})=l^{9^{2}}(l^{2}-1)(l^{4}-1)\ldots(l^{2g}-1)$

(see [1]), and we may take $l$ with $\sqrt{8}(\tilde{g}-1)<l<2\sqrt{8}(\tilde{g}-1)$ . Consequently,

$n\leq 42(\tilde{g}-1)(\tilde{g}-2)2^{2\overline{g}}(4\sqrt{2}(\tilde{g}-1))^{\overline{9}^{2}+\overline{9}/2}+84(\tilde{g}-1)$ .

Howard and Sommese [2] showed that

$n\leq(2\sqrt{6}(\tilde{g}-1)+1)^{2\overline{g}^{2}+2}\tilde{g}^{2}(\tilde{g}-1)(\sqrt{2})^{\overline{g}(\overline{g}-1)}+84(\tilde{g}-1)$ .

It is easy to see that our bound is smaller for every $\tilde{g}>1$ .
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