A REMARK ON THEOREMS OF DE FRANCHIS AND SEVERI

Masaharu Tanabe
田辺 正晴（東工大）

1．Introduction

The purpose of this paper is to study holomorphic maps between compact Riemann surfaces．There are two famous finiteness theorems related to this problem．Let \widetilde{X} be a compact Riemann surface of genus >1 ．Then one is that，for fixed compact Riemann surface X of genus＞1，the number of nonconstant holomorphic maps $\widetilde{X} \rightarrow X$ is finite， and another is that there are only finitely many compact Riemann surfaces $\left\{X_{i}\right\}$ of genus >1 such that，for each X_{i} ，there exists a nonconstant holomorphic map $\tilde{X} \rightarrow X_{i}$ ．The first assertion is due to de Franchis，and second one is due to Severi．

Let $S(\widetilde{X})=\left\{X_{i}\right\}$ ，where $\left\{X_{i}\right\}$ is as in Severi＇s theorem．Let

$$
n=\sum_{X \in S(\tilde{X})} \#\{h: \widetilde{X} \rightarrow X \mid \text { nonconstant holomorphic }\}
$$

Then，by the theorems above，we see $n<\infty$ at once．Howard and Sommese［2］showed that there is a bound on n which depends only on the genus of \tilde{X} ，by giving an explicit estimate．

Here we will give some theorems related to rigidity of holomorphic maps between com－ pact Riemann surfaces，and show that we may take an explicit bound on n depending only on the genus of \widetilde{X} smaller than one in［2］．

2．Preliminaries

Let \widetilde{X}, X be compact Riemann surfaces of genera $\tilde{g}, g(>1)$ ．We denote by $H_{1}(X)$ the first homology group（ with integer coefficients）of X ．Any basis of $H_{1}(X)$ with intersection matrix

$$
J=\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)
$$

will be called a canonical homology basis，where E is the identity matrix of $g \times g$ sized．Sim－ ilarly for \widetilde{X} ．Let $\left\{\tilde{\chi}_{1}, \ldots, \tilde{\chi}_{2 \tilde{g}}\right\}\left(\left\{\chi_{1}, \ldots, \chi_{2 g}\right\}\right)$ be a canonical homology basis for $H_{1}(\widetilde{X})$ （ $H_{1}(X)$ respectively）．Let $\left\{\tilde{w}^{1}, \ldots, \tilde{w}^{\tilde{g}}\right\}$ and $\left\{w^{1}, \ldots, w^{g}\right\}$ be dual bases for holomor－ phic differentials on \widetilde{X}, X（i．e． $\int_{\chi_{j}} w^{k}=\delta_{j k}$ where $\delta_{j k}$ is Kronecker＇s delta），and $\widetilde{\Pi}=$ $(\widetilde{E}, \widetilde{Z}), \Pi=(E, Z)$ be the associated period matrices．Let $h: \widetilde{X} \rightarrow X$ be a noncon－ stant holomorphic map．Then h induces a homomorphism $h_{*}: H_{1}(\widetilde{X}) \rightarrow H_{1}(X)$ ．Let $M=\left(m_{k j}\right) \in M(2 g, 2 \tilde{g} ; \mathbb{Z})$ ，where $h_{*}\left(\tilde{\chi}_{j}\right)=\sum_{k=1}^{2 g} m_{k j} \chi_{k}$ ．（We denote by $M(m, n ; K)$ the set of $m \times n$ matrices with K－coefficients．）We will call M the matrix representation of h with respect to $\left\{\tilde{\chi}_{1}, \ldots, \tilde{\chi}_{2 \tilde{g}}\right\}$ and $\left\{\chi_{1}, \ldots, \chi_{2 g}\right\}$ ．The integral $\int_{h_{*}\left(\tilde{\chi}_{j}\right)} w^{i}$ may be evaluated
in two ways; by expressing $h_{*}\left(\tilde{\chi}_{j}\right)$ in $H_{1}(X)$ or by expressing the pull back of w^{i} in terms of the holomorphic differentials on \tilde{X}. This leads us to the Hurwitz relation

$$
A \Pi=\widetilde{\Pi} M
$$

where $A \in M(g, \tilde{g} ; \mathbb{C})$. The set of $M \in M(2 g, 2 \tilde{g} ; \mathbb{Q})$ such that there exists $A \in M(g, \tilde{g} ; \mathbb{C})$ with $A \Pi=\widetilde{\Pi} M$ will be called the space of Hurwitz relations. It is easy to see that it is a \mathbb{Q}-vector space.
Lemma[4]. In the space of Hurwitz relations, $\langle M, N\rangle=\operatorname{tr}\left(\tilde{J}^{t} M J^{-1} N\right)$ defines an inner product (${ }^{t} M$ denotes transposition of M).

In particular, when M is a matrix representation of a holomorphic map $h: \tilde{X} \rightarrow X$, $<M, M>=2 d g$, where d is the degree of the holomorphic map h.

The Jacobian variety of X is $J(X)=\mathbb{C}^{g} / \Gamma$, where Γ is the lattice (over \mathbb{Z}) generated by 2 g -columns of Π. Similarly for $J(\widetilde{X})$. For any holomorphic map $h: \widetilde{X} \rightarrow X$, there exists a homomorphism $H: J(\widetilde{X}) \rightarrow J(X)$ with $\kappa \circ h=H \circ \tilde{\kappa}$, where $\tilde{\kappa}, \kappa$ are canonical injections.

By an underlying real structure for $J(X)$, we mean the real torus $\mathbb{R}^{2 g} / \mathbb{Z}^{2 g}$ together with a map $\mathbb{R}^{2 g} / \mathbb{Z}^{2 g} \rightarrow J(X)$ induced by a linear map $\mathbb{R}^{2 g} \ni x \mapsto \Pi x \in \mathbb{C}^{g}$. It is wellknown that for any homomorphism $H: J(\widetilde{X}) \rightarrow J(X)$, there are $A \in M(g, \tilde{g} ; \mathbb{C})$ and $M \in M(2 g, 2 \tilde{g} ; \mathbb{Z})$ such that the following diagram is commutative (precicely, apart from an additive constant).

In particular, if h is induced by a holomorphic map $h: \tilde{X} \rightarrow X, M$ is the matrix representation of h.

Giving a nonconstant holomorphic map $h: \tilde{X} \rightarrow X$, we dnote by $h^{*}(Q) \subset \tilde{X}$ a divisor of the preimages of $Q \in X$ with multiplicities. Defining $\tilde{\kappa}\left(h^{*}(Q)\right)$ by linearity, we get a holomorphic map $X \rightarrow J(\tilde{X})$, which can be extended to a homomorphism $H^{*}: J(X) \rightarrow$ $J(\tilde{X}) . H^{*}$ is called the Rosati adjoint of $H . H^{*}$ is induced by the matrix $M^{*}=\tilde{J}^{t} M J^{-1}$ acting on the underlying real tori[4].

3. Statements

Theorem 1. Let \tilde{X}, X be compact Riemann surfaces of genera $\tilde{g}, g(>1)$. Let $h_{i}: \widetilde{X} \rightarrow X$ be a nonconstant holomorphic map, and $M_{i} \in M(2 g, 2 \tilde{g} ; \mathbb{Z})$ be a matrix representation of $h_{i}(i=1,2)$. Suppose that there is an integer $l>\sqrt{8(\tilde{g}-1)}$ with $M_{1} \equiv M_{2}$ (mod. l). Then $h_{1}=h_{2}$.

Let \mathfrak{m}_{i}^{j} denote the j-th row vector of $M_{i}(i=1,2)$.
Theorem 2. Let h_{1}, h_{2}, and M_{1}, M_{2} be as in Theorem 1. Suppose that there is an integer $l>8(\tilde{g}-1)$ with $\mathfrak{m}_{1}^{j} \equiv \mathfrak{m}_{2}^{j}(\bmod . l)$ for every $j \in\{1, \ldots, g\}$. Then $h_{1}=h_{2}$.

It is already known that $M_{1}=M_{2}$ implies $h_{1}=h_{2}$ (see [3]).

Theorem 3. Let X_{1}, X_{2} be compact Riemann surfaces of genus $g>1$. Let $h_{i}: \widetilde{X} \rightarrow X_{i}$ be a nonconstant holomorphic map, and M_{i} be a matrix representation of $h_{i}(i=1,2)$. Suppose that there is an integer $l>\sqrt{8}(\tilde{g}-1)$ with $M_{1} \equiv M_{2}$ (mod. l). Then X_{1}, X_{2} are conformally equivalent and there exists a conformal map $f: X_{1} \rightarrow X_{2}$ with $f \circ h_{1}=h_{2}$.

Only outlines of the proofs are given here. For complete proofs, see [5] which will be published elsewhere.

As we have seen in the lemma before, we have an inner product in the space of Hurwitz relations. Therefore, we may induce a distance in it. Using this distance, we have Theorem 1 and 2 . To get Theorem 3 , we use the Rosati adjoint. Let $G_{i}=M_{i}^{*} M_{i}=\widetilde{J}^{t} M_{i} J^{-1} M_{i}(i=$ 1,2). Then we have endmorphisms of $J(\widetilde{X})$ with the matrices G_{1}, G_{2} acting on the underlying real tori. If $G_{1}=G_{2}$, then the targets X_{1}, X_{2} are conformally equivalent. Using the distance induced by the inner product, we have Theorem 3.

Next we will give an bound on n which was defined in section 1. Let

$$
S_{g}=\{X \in S(\tilde{X}) \mid \text { genus } g\}
$$

and

$$
\operatorname{Hol}_{g}(\tilde{X})=\bigcup_{X \in S_{g}}\{h: \tilde{X} \rightarrow X \mid \text { nonconstant holomorphic }\}
$$

Let $F_{l}=\mathbb{Z} /(l)$, where l is a prime number $>\sqrt{8}(\tilde{g}-1)$. By Theorem 1 and 3 , we have an injection $\mathrm{Hol}_{g}(\tilde{X}) \rightarrow M\left(2 g, 2 \tilde{g} ; F_{l}\right)$. Thus we consider each matrix representation in $M\left(2 g, 2 \tilde{g} ; F_{l}\right)$, for the convenience of calculation. Let h_{i} be an element of $\operatorname{Hol}_{g}(\widetilde{X})$ and $M_{i} \in M\left(2 g, 2 \tilde{g} ; F_{l}\right)$ a matrix representation of $h_{i}(i=1,2)$. If there exists $S \in S p\left(2 g ; F_{l}\right)$ with $M_{2}=S M_{1}$, then targets of h_{1}, h_{2}, say X_{1}, X_{2}, are conformally equivalent and there is a conformal map $f: X_{1} \rightarrow X_{2}$ with $f \circ h_{1}=h_{2}$ ($S p$ denotes symplectic groups). M_{i} satisfies $M_{i} \tilde{J}^{t} M_{i}=d_{i} J$, where d_{i} is the degree of h_{i}. Therefore, we have

$$
\# \operatorname{Hol}_{g}(\tilde{X}) \leq \sum_{d} \#\left\{M \in M\left(2 g, 2 \tilde{g} ; F_{l}\right) \mid M \tilde{J}^{t} M=d J\right\} \times 84(g-1) / \# S p\left(2 g ; F_{l}\right)
$$

where d runs through all considerable numbers as degrees of holomorphic maps. We have

$$
\# S p\left(2 g ; F_{l}\right)=l^{g^{2}}\left(l^{2}-1\right)\left(l^{4}-1\right) \ldots\left(l^{2 g}-1\right)
$$

(see [1]), and we may take l with $\sqrt{8}(\tilde{g}-1)<l<2 \sqrt{8}(\tilde{g}-1)$. Consequently,

$$
n \leq 42(\tilde{g}-1)(\tilde{g}-2) 2^{2 \tilde{g}}(4 \sqrt{2}(\tilde{g}-1))^{\tilde{g}^{2}+\tilde{g} / 2}+84(\tilde{g}-1) .
$$

Howard and Sommese [2] showed that

$$
n \leq(2 \sqrt{6}(\tilde{g}-1)+1)^{2 \tilde{g}^{2}+2} \tilde{g}^{2}(\tilde{g}-1)(\sqrt{2})^{\tilde{g}(\tilde{g}-1)}+84(\tilde{g}-1)
$$

It is easy to see that our bound is smaller for every $\tilde{g}>1$.

References

1. E.Artin, Geometric Algebra, Interscience Publishers Inc., 1957.
2. A.Howard, A.J.Sommese, On the theorem of de Franchis, Ann. Scoula. Norm. Sup. Pisa 10 (1983), 429-436.
3. H.H.Martens, Observations of morphisms of closed Riemann surfaces, Bull. London Math. Soc. 10 (1978), 209-212.
4. _, Mappings of closed Riemann surfaces, Proc. of Symp. in Pure Math. 49 (1989, Part 1), 531-539.
5. M.Tanabe, On finiteness of holomorphic maps of compact Riemann surfaces (to appear).

Department of Mathematics, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo, 152 , Japan

