
$K_{2}$ OF A FERMAT QUOTIENT AND
THE VALUE OF ITS $L$ FUNCTION

$\ovalbox{\tt\small REJECT}$xa$\oplus$Hl11$\neq$bfflFRXE$\Phi$-$\beta\beta$ (KEN-ICIIIRO KIMURA)

Introduction. In 1984, Beilinson[Be] formulated a beautiful conjecture which re-
lates the values at each integer of Hasse-Weil $L$ functions of a proper smooth variety
X over a number field to the covolume of the image of the regulator map

erg: $H_{A}^{i}(X, \mathbb{Q}(j))arrow H_{\mathcal{D}}^{i}(X_{\mathbb{C}},\mathbb{R}(j))$

where $H_{A}^{i}(X, \mathbb{Q}(j))=K_{2j-i}^{\langle j)}(X)_{\mathbb{Q}}$ is called absolute cohomology group which is a
certain eager space of the K-group of $X$ under the action of Adams operator, and

$H_{\mathcal{D}}^{i}(X_{\mathbb{C}}, \mathbb{R}(j))=\mathbb{H}^{i}(0arrow \mathbb{R}(j)arrow O_{Xc}arrow\Omega_{X_{\mathbb{C}}}^{1}arrow\ldotsarrow\Omega_{X_{\mathbb{C}}}^{j-1}arrow 0[-1])$ .

is the Deligne cohomology group. The regulator map is defined by Chern class map
of K-theory. There are several affirmative examples for this conjecture. (cf.[Ram],
[Scha] $)$ .

In this article we treat a motive which is a factor of a certain Fermat curve. It
is a curve of genus 2, and so $dim_{\mathbb{R}}H_{\mathcal{D}}^{2}(X_{\mathbb{C}}, \mathbb{R}(2))^{+}=2$. Beilinson conjecture tells
that there should be two linearly independent elements in the absolute cohomology
which corresponds to such a motive, and the main point of this article is to describe
such two elements in an explicit manner. Let $C$ be the Fermat curve of exponent 5:
$x^{5}+y^{5}=1$ . Ross [Ross] found in $K_{2}C$ an element which has nontrivial image under
the regulator map. Define the action of $\mathbb{Z}/5\mathbb{Z}$ on $C$ in such a way that $k\in \mathbb{Z}/5\mathbb{Z}$

acts on $C$ by $(x, y)arrow(\zeta^{k}x, \zeta^{-k}y)$ where $\zeta$ is a fixed nontrivial fifth root of unity.
Let $X$ be the quotient of $C$ by this action.The equation of this curve as an affine
curve is:

$w^{5}=u(1-u)$ .
Here $w=xy$ and $u=x^{5}$ . Ross’ element comes from $K_{2}$ of this quotient by

pulling back. In this case $L(H^{1}(X), s)$ equals $L$ function of a Jacobi sum Hecke
character, so we have good understanding of the value of it at $s=0$ . Moreover, the
recipient of the regulator map is $H^{1}(X(\mathbb{C}), \mathbb{R}(1))$ so the image of regulator map can
be described as a l-form on X. Since ord$s=0L(H^{1}(X), s)=2$ , Beilinson conjecture
asserts the existence of another element of $K_{2}X$ which has an independent image of
Ross’ element under the regulator map. We first exhibit an element of $K_{2}C$ which
by the projection provides an element of $K_{2}X$ . Our main result is that this projected
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element of $K_{2}X$ is the very element which is asserted to exist by the conjecture.
lOnce the elements are exhibited, the linear independence of the regulator images
of those can be proved by showing nonvanishing of the determinant of the matrix
which is given by integrals of those images along two homologically independent
l-cycles on $C$ . We compute the determinant numerically.

We also compute numerically the value of $L$ function which by the conjecture is
prospected to differ from the determinant of the image of the regulator only by a
rational number. The ratio of these two computed values nearly equals a simple
rational number. The author believes that this is the first example for a motif of
rank 2 associated to a curve of genus 2.

\S 1 Regulator map and the Beilinson’s conjecture in the case of a
curve$/\mathbb{Q}$. Let X be a projective smooth $curve/\mathbb{Q}$ .

The localization sequence of $K$ theory provides with the exact sequence

$\prod_{p\in X(\overline{\mathbb{Q}})}K_{2}\mathbb{Q}(p)arrow K_{2}Xarrow K_{2}\mathbb{Q}(X)arrow^{f}\prod_{p\in X(\overline{Q})}\mathbb{Q}(p)^{*}$

Here $\mathbb{Q}(p)$ denotes the residue field of a point $p$ , and $\mathbb{Q}(X)$ denotes the function
field of X with coefficients in $\mathbb{Q}$ .

$\tau=p\in X(\overline{\mathbb{Q}})L]\tau_{p}$
is tame symbol given by

$\tau_{p}\{f,$ $g\}=(-1)^{(ord_{p}f)(}$ord$pg$ )
$\frac{f^{ord_{p}g}}{g^{ord_{p}f}}(p)$ .

Since $K_{2}$ of a number field is torsion, $K_{2}X$ agrees with $Ker\tau$ up to torsion.
Let X be a proper flat model of X over Z. The natural map induces the pullback

$K_{2}Xarrow K_{2}$ X. Conjecturally the image of this is independent of the choice of $X$.
Bloch[Bl] defined the regulator for $K_{2}X$

reg$X$ : $K_{2}Xarrow H^{1}(X(\mathbb{C}), 2\pi i\mathbb{R})^{+}$ .

the superscript $+$ denotes the invariant subspace under the action of complex
conjugate on both $X(\mathbb{C})$ and the coefficient $2\pi i\mathbb{R}$ . $\dim_{\mathbb{R}}H^{1}(X(\mathbb{C}), 2\pi i\mathbb{R})^{+}$ equals
the genus of $X$ . Let $g$ be the genus of $X$ . The Beilinson conjecture in this case is:

Conjecture. 1. regx $(K_{2}X)$ is a lattice in $H^{1}(X(\mathbb{C}),2\pi i\mathbb{R})^{+}$ .
2. Define $c\in \mathbb{R}^{*}/\mathbb{Q}^{*}$ by

$\Lambda^{g}[(regxK_{2}X)\otimes \mathbb{Q}]_{-}=c.\Lambda^{g}H^{1}(X(\mathbb{C}), 2\pi i\mathbb{Q})^{+}$ .

then $c\equiv L^{\langle g)}(X,0)mod\mathbb{Q}^{*}$ .
An explicit description of the regulator is given as follows. Since $\mathbb{Q}(X)$ is a

field, $K_{2}\mathbb{Q}(X)$ is generated by symbols. And so is the elements of $K_{2}(X)$ . Let
$\{f,g\}\in K_{2}(X)$ where $f,$ $g\in \mathbb{Q}(X)$ . reg$x(\{f,g\})$ as a l-form mod. exact forms on
X is represented by
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regx $(\{f,g\})=Im2(\log|f|\partial\log|g|-\log|g|\partial\log|f|)$

Let $\gamma$ be a cycle on X(C) and suppose that both $f$ and $g$ are holomorphic and
nonzero on $\gamma$ . Then as is stated in [Ram],

(1.1) $\int_{\gamma}$ reg$( \{f,g\})=Im(\int_{\gamma}\log fd\log g-\log|g(p_{0})|\int_{\gamma}d\log f)$

where we take a fixed branch of $\log f$ beginning in $p_{0}\in\gamma$ .
Let $C$ be the Fermat curve of exponent 5: $X^{5}+Y^{5}=1$ . Let $\zeta=\exp(\frac{2}{5}\pi i)$ in the

following.Define the action of $\mathbb{Z}/5\mathbb{Z}$ on $C$ in such a way that $k\in \mathbb{Z}/5\mathbb{Z}$ acts on $C$

by $(x, y)arrow(\zeta^{k}x, \zeta^{-k}y)$ . Let $X$ be the quotient of $C$ by this action.The equation
of this curve as an affine curve is:

$w^{5}=u(1-u)$

where $w=xy$ and $u=x^{5}$ . The genus of this curve is 2.
From now on, We consider on certain two elements of $K_{2}X$ .

\S 2 Integration of the regulator images of certain elements of $K_{2}X$ .
Ross[Ross] found that $\alpha$ $:=\{1-w,u\}\in K_{2}X$ has a nontrivial image under the

regulator map. *

According to the Beilinson conjecture, there should be another element of $K_{2}X$

which is independent of Ross’ element. One of our main results is that the projec-
tion of a certain element of $K_{2}C$ on $K_{2}X$ is such an element. We prove this by
numerical integral of the regulator image of these elements along two homologically
independent cycles on $C$ .

Let $\beta\in K_{2}X$ be given by

$\beta:=\pi_{*}\{x+y, \frac{1-x}{y}\}$

where $\pi_{*}:K_{2}Carrow K_{2}X$ denotes the projection of $K$ theory.
Our main result is that $\alpha$ and $\beta$ have linearly independent images under the

regulator map. We prove this by showing non vanishing of the determinant of the
matrix given by integrals of $\pi^{*}$reg$\alpha$ and $\pi^{*}reg\beta$ along two homologically indepen-
dent 1 cycles on C.

$\pi^{*}\beta=\sum_{k=0}^{4}\{\zeta^{k_{X}}+\zeta^{-k}y, \frac{1-\zeta^{k_{X}}}{\zeta^{-k}y}\}$

as a symbol.

*In fact,Ross exhibited for each Fermat curve an element of the $K_{2}$ with nonzero image under
the regubtwr map.
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Let $A_{m,n}$ denote the automorphism of $C$ given by $(x, y)arrow(\zeta^{m}x, \zeta^{n}y)$ and let
$\gamma$ : $[0,1]arrow C$ denote the path from (1,0) to (0,1) given by $t\mapsto((1-t)^{1/5}, t^{1/5})$ .
For $m,$ $n\in \mathbb{Z}$ let $\gamma_{m,n}$ denote the cycle on $C$ given by

$\gamma_{m,n}=\gamma-A_{m,0}\gamma+A_{m,n}\gamma-A_{0,n}\gamma$ .

We want to integrate reg$c(\pi^{*}\alpha)$ and reg$c(\pi^{*}\beta)$ along $\gamma_{1,1}$ and along $\gamma_{2,1}$ . Since
functions which appear in $\pi^{*}\alpha$ and $\pi^{*}\beta$ have poles and zeros on these cycles, a
slight modification is necessary. The following paths are needed. Let $0<\epsilon\ll 1$ .

$\gamma^{2}:[1-(1-\epsilon)^{5},1-\epsilon^{5}]arrow C$

$t\mapsto((1-t)^{1/5},t^{1/5})$

$\gamma^{1}:[1-(1-\epsilon)^{5},1]arrow C$

$t\mapsto((1-t)^{1/5}, t^{1/5})$

$C_{0}^{n}:[0,1]arrow C$

$\theta\mapsto(\epsilon\exp(\frac{2n}{5}\pi i\theta),$ $(1-\epsilon^{5}\exp(2n\pi i\theta))^{1/5})$

$C_{\zeta^{n}}:[0,1]arrow C$

$\theta\mapsto.(\zeta^{n}(1-\epsilon\exp(2\pi i\theta)), (1-(1-\epsilon\exp(2\pi i\theta))^{5})^{1/5})$

$=( \zeta^{n}(1-\epsilon\exp(2\pi i\theta)), (5\epsilon)^{1/5}\exp(\frac{2}{5}\pi i\theta)(1+F(\epsilon,\theta))^{1/5})$

$(\begin{array}{l}(l-(l-\epsilon exp(2\pi i\theta))^{5})--\epsilon exp(2\pi i\theta)(5-10\epsilon exp(2\pi i\theta)andweF(\epsilon,\theta)^{\iota_{et}^{+l0\epsilon^{2}exp(4\pi i\theta)-5\epsilon^{3}exp(6\pi i\theta)+\epsilon^{4}exp(8\pi i\theta)}}=-2\epsilon exp(2\pi i\theta)+2\epsilon^{2}exp(4\pi i\theta)-\epsilon^{3}exp(6\pi i\theta)+\frac{1}{5}\epsilon^{4}exp(8\pi i\theta)\end{array})$

We define the cycles $\gamma_{n,1}^{2}(n=1,2)$ to be

$\gamma_{n,1}^{2}$ $:=\gamma^{2}+C_{0}^{n}-A_{1,0}\gamma^{2}+C_{\zeta^{n}}+A_{n,1}\gamma^{2}-C_{0}^{n}-A_{0,1}\gamma^{2}-C_{1}$

Here is one of our main results.

Theorem 1. regx $(\pi^{*}\alpha)$ and regx $(\pi^{*}\beta)$ are independent in $H^{1}(X(\mathbb{C}),2\pi i\mathbb{R})$ . $i.e$.

$\int_{\gamma_{1,1}^{2}}regc(\pi^{*}\alpha)$ $\int_{\gamma_{l,1}^{2}}regc(\pi^{*}\alpha)$

$\int_{\gamma_{1,1}^{2}}regc(\pi^{*}\beta)$ $\int_{\gamma_{2,1}^{2}}oegc(\pi^{*}\beta)$

$\neq 0$

nmark. Let $C_{n}$ be the Fermat curve of exponent $5n$ : $X^{5n}+Y^{5n}=1$ , and $X_{n}$

be a quotient of $C_{n}$ : $w^{5n}=u(1-u)$ . Let $\alpha_{n};=(\{1-w,u\})\in K_{2}X_{n}$ and
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$\gamma_{n};=\{x+y, \frac{1-x}{y}\}\in K_{2}C_{n}$ and $\beta_{n}$ $:=\pi_{*}\gamma_{n}\backslash \in It_{2}’X_{n}$ and for $m|n$ let $p_{n,m}$ :
$(x, y)\mapsto(x^{\frac{n}{m}}, y^{\frac{n}{m}})$ be the canonical projection. Then it is seen by a straightforward
calculation that

$(p_{n,m}^{*}p_{n,m*}(\pi^{*}\alpha_{n}))=(p_{n,m}^{*}(\pi^{*}\alpha_{m}))$ and $p_{n,m}^{*}p_{n,m*}(\gamma_{n})=p_{n,m}^{*}(\gamma_{m})$ .
We see from this that

$(p_{n,m*}\pi^{*}\alpha_{n})=(\pi^{*}\alpha_{m})$ and $p_{n,m*}\gamma_{n}=\gamma_{m}$ in $K_{2}(C_{m})_{\mathbb{Q}}$

because $p_{n,m*}p_{n,m}^{*}=$multiplication by $\deg p_{n,m}$ and since $\pi op_{n,m}=p_{n,m}o\pi$ , it
follows that

$(p_{n,m*}\pi_{*}\pi^{*}\alpha_{n})=(\pi_{*}\pi^{*}\alpha_{m})$

$p_{n,m*}\alpha_{n}=\alpha_{m}$

and $p_{n,m*}\beta_{n}=\beta_{m}$ .
Consequently, $\alpha_{n}$ and $\beta_{n}$ are norm compatible system in $K_{2}X_{n}$ . So we get the
following

Corollary. $reg(\alpha_{n})$ and $reg(\beta_{n})$ are also lineaxly independent in $H^{1}(X_{n}, \mathbb{R}(1))$ .
We now explain how to perform the numerical integral.

Integration of reg$c(\pi^{*}\alpha)$ (due to Ross). As is stated before,

$\int_{\gamma_{n,1}^{2}}$ reg$c(\pi^{*}\alpha)$

$=Im( \int_{\gamma_{n,1}^{2}}\log(1-xy)d\log x-\log|x(p_{0})|\int_{n,1}2d\log(1-xy))$ .

Since $|xy|<1$ both on $\gamma_{1,1}^{2}$ and $\gamma_{2,1}^{2},$ $\int_{\gamma_{n,1}^{2}}d1og(1-xy)=0$ for $n=1,2$ . Let $p_{0}$ be
$(1-\epsilon_{2}(1-(1-\epsilon)^{5})^{1/5})\in\gamma$ .

Calculation of $\int_{C_{0}^{k}}\log(1-xy)d\log x$ $(k=1,2)$ . By the definition of $C_{0}^{k}$ ,

$\int_{C_{0}^{k}}\log(1-xy)d\log x=\int_{0}^{1}\log(1-\epsilon\exp(\frac{2k}{5}\pi i\theta)(1-\epsilon^{5}\exp(2k\pi i\theta)))2k\pi id\theta$ .

We see from this that

$\lim_{\epsilonarrow 0}\int_{C_{0}^{k}}\log(1-xy)d\log x=0$ .

Putting $\epsilon‘arrow 0$ , we get

$\int_{C_{0}^{k}}$

for
$\epsilon\log(1-xy)d\log x$

(2.2) $= \int_{(\epsilon_{2}(1-\epsilon^{S})^{1/S})}^{(0,1)}\log(1-xy)d\log x$ (integration on $\gamma$ )

$+ \int_{(0,1)}^{(\epsilon,(1-\epsilon^{\epsilon})^{1/f})}\log(1-xy)d\log x$ (integration on $A_{k,0}\gamma$)
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Calculation of $\int_{C_{k}}\log(1-xy)d\log x(n=0,1,2)$ . Since $\log(1-xy),\log x$ are

holomorphic and nonzero in the neighborhoods of $(\zeta^{k},0)$ ,

$\int_{C_{\zeta^{k}}}\log(1-xy)d\log x$

$= \int_{(\zeta^{k}(1-\epsilon),(1-(1-\epsilon)^{5})^{1/6})}^{(\zeta^{k},0)}\log(1-xy)d\log x$

(2.3) integration on $A_{k,0}\gamma$

$+ \int_{(\zeta^{k},0)}^{(\zeta(1-\epsilon),\zeta(1-\langle 1-\epsilon)^{5})^{1/5})}\log(1-xy)d\log x$

integration on $A_{k,1}\gamma$

From (2.2) and (2.3) we see that

(2.4) $\int_{\gamma_{n,1}^{2}}\log(1-xy)d\log x=\int_{\gamma_{n,1}}\log(1-xy)d\log x$ $(n=1,2)$ .

$\int_{\gamma_{n,1}}\log(1-xy)d\log x$ is easily calculated, and we have

$\int_{\gamma_{1,1}^{2}}$ reg$c(\pi^{*}\alpha)$

$=Im \int_{\gamma_{1,1}}\log(1-xy)d\log x$

$= \frac{1}{10}\sum_{k=1}^{\infty}(\sin\frac{4}{5}\pi k-2\sin\frac{2}{5}\pi k)\frac{1}{k}B(\frac{k}{5}, \frac{k}{5})$

(2.5) and

$\int_{\gamma_{2_{J}1}^{2}}$ reg$c(\pi^{*}\alpha)$

$=Im \int_{\gamma_{2,1}}\log(1-xy)d\log x$

$= \frac{1}{10}\sum_{k=1}^{\infty}(\sin\frac{6}{5}\pi k-\sin\frac{2}{5}\pi k-\sin\frac{4}{5}\pi k)\frac{1}{k}B(\frac{k}{5}, \frac{k}{5})$ .

Numerical computation of these values is easily doiie.
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Integration of regc $(\pi^{*}\beta)$ . We have

(2.6)

$\int_{\gamma_{n,1}^{2}}$ reg$c(\pi^{*}\beta)$

$= \int_{\gamma_{n,1}^{2}}\sum_{k=0}^{4}$ reg$c(\{\zeta^{k_{X}}+\zeta^{-k}y,$ $\frac{1-\zeta^{k}x}{\zeta^{-k}y}\})$

$=Im( \sum_{k=0}^{4}\int_{\gamma_{n,1}^{2}}\log(\zeta^{k}x+\zeta^{-k}y)$ (dlog$(1-\zeta^{k}x)-$ dlog$(\zeta^{-k}y)$)

$- \sum_{k=0}^{4}(\log|1-\zeta^{k}x(po)|-\log|\zeta^{-k}y(p_{0})|)\int_{\gamma_{n,1}^{2}}d\log(\zeta^{k}x+\zeta^{-k}y))$ .

We start in $p_{0}=(1-\epsilon, (1-(1-\epsilon)^{5})^{\frac{1}{5}})$ and continue $\log(\zeta^{k}x+\zeta^{-k}y)$ along $\gamma_{n,1}^{2}$ ,
$n=1,2$ .

$|$

Calculation of $\int_{C_{0}^{n}}\log(\zeta^{k}x+\zeta^{-k}y)\{\begin{array}{l}d1og(1-\zeta^{k}x)(n=1,2).d1og(\zeta^{-k}y)\end{array}$

Since $\zeta^{k}x+\zeta^{-k}y,$ $y,$ $1-\zeta^{k}x$ are holomorphic and nonzero in the neighborhoods
of $(0,1)$ , if we let $\gamma_{n,1}^{1}(n=1,2)$ be

$\gamma_{n,1}^{1}$ $:=\gamma^{1}-A_{n,0}\gamma^{1}+C_{\zeta^{n}}+A_{n,1}\gamma^{1}-A_{0,1}\gamma^{1}-C_{1}(n=1,2)$

we see, by the same argument as in (2.2), that

$\int_{\gamma_{n,1}^{2}}regc(\pi^{*}\beta)$

(2.7)
$= \int_{\gamma_{n,1}^{1}}regc(\pi^{*}\beta)$

Let

$A(n)=\{\begin{array}{l}1 n=12 n=2-2 n=3-1 n=4.\end{array}$

We first take the branches of $\log(\zeta^{k}x+\zeta^{-k}y)$ so that $\log(\zeta^{k}1+\zeta^{-k}0)=\frac{2}{5}\pi A(k)i$

at (1,0) $\in\gamma$, and continue this on $\gamma_{n,1}^{1}$ . Let $\log\zeta^{k+n}$ be the continued value of
$1og(\zeta^{k}x+\zeta^{-k}y)$ at the junction of $A_{n,0}\gamma$ and $A_{n,1}\gamma(=(\zeta^{n}, 0))$ . We exhibit tables
of the values $\log\zeta^{k+n}$ .

The value in the third column (with (1,0) on the top) means the value of
$1og(\zeta^{k}x+\zeta^{-k}y)$ when it is continued along $\gamma_{n,1}$ and comes back to $($ 1, $0)$ .
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For $\gamma_{1,1}^{1}$

$(\zeta,0)$

$\frac{2}{5}\pi i$

$- \frac{6}{5}\pi i$

$\frac{6}{5}\pi i$

$- \frac{2}{5}\pi i$

$0$

$k$ (1,0)
$0$ $0$

1 $\frac{2}{5}\pi i$

$2$ $\frac{4}{5}\pi i$

$3$ $- \frac{4}{5}\pi i$

$4$ $- \frac{2}{5}\pi i$

For $\gamma_{2,1}^{1}$

$k$ (1,0) $(\zeta^{2},0)$

$0$ $0$ $\frac{4}{5}\pi i$

1 $\frac{2}{5}\pi i$ $- \frac{4}{5}\pi i$

2 $\frac{4}{5}\pi i$ $\frac{8}{5}\pi i$

3 $- \frac{4}{5}\pi i$ $-2\pi i$

4 $- \frac{2}{5}\pi i$ $\frac{2}{5}\pi i$

(1,0) $\int_{\gamma_{1_{2}1}^{1}}d\log(\zeta^{k}x+\zeta^{-k}y$

$0$ $0$

$- \frac{8}{5}\pi i$ $-2\pi i$

$\frac{4}{5}\pi i$
$0$

$- \frac{4}{5}\pi i$ $0$

$\frac{8}{5}\pi i$
$2\pi i$

(1,0) $\int_{\gamma_{2,1}^{1}}d\log(\zeta^{k}x+\zeta^{-k}y)$

$0$ $0$

$\frac{2}{5}\pi i$ $0$

$\frac{4}{5}\pi i$
$0$

$- \frac{14}{5}\pi i$ $-2\pi i$

$\frac{8}{5}\pi i$
$2\pi i$

We call the values in the ffist column(with (1,0) on the top) $\log(\zeta^{k})(1)$ , the values

in the second column (with $(\zeta^{n},$ $0)$ on the top) $\log(\zeta^{k+n})$ and the values in the third
column(with (1,0) on the top) $\log(\zeta^{k})(2)$ . Then we have following proposition.

Proposition. Let

$\int_{\gamma_{n,1}^{1}}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log(\zeta^{k+n})\}\{\begin{array}{l}d\log(1-\zeta^{k}x)d\log(\zeta^{-k}y)\end{array}$

$= \int_{1}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log\zeta^{k}(1)\}\{\begin{array}{l}d\log(1-\zeta^{k}x)d\log(\zeta^{-k}y)\end{array}$

$- \int_{A_{n,0}\gamma^{1}}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log(\zeta^{k+n})\}\{\begin{array}{l}d\log(1-(kx)d\log(\zeta^{-k}y)\end{array}$

$+ \int_{C_{\zeta^{n}}}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log((k+\hslash)\}\{\begin{array}{l}d\log(1-\zeta^{k}x)d\log(\zeta^{-k}y)\end{array}$

$+ \int_{A_{n,1}\gamma^{1}}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log(\zeta^{k+n})\}\{\begin{array}{l}d\log(1-\zeta^{k}x)d\log(\zeta^{-k}y)\end{array}$

$- \int_{A_{0,1}\gamma^{1}}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log\zeta^{k}(2)\}\{\begin{array}{l}d\log(1-\zeta^{k}x)d\log(\zeta^{-k}y)\end{array}$

$- \int_{C_{1}}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log\zeta^{k}(2)\}\{\begin{array}{l}d\log(1-\zeta^{k}x)d\log(\zeta^{-k}y).\end{array}$
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Then

$Im \int_{\gamma_{n,1}^{1}}\sum_{k=0}^{4}$ regc $(\{\zeta^{k}x+\zeta^{-k}y,$ $\frac{1-\zeta^{k_{X}}}{\zeta^{-k}y}\})$

$=Im \int_{\gamma_{n,1}^{1}}\sum_{k=0}^{4}\{\log(\zeta^{k}x+\zeta^{-k}y)-\log(\zeta^{k+n})\}\{\begin{array}{l}d\log(1-\zeta^{k}x)d\log(\zeta^{-k}y)\end{array}$

$=Im \int_{\gamma_{n,1}}\sum_{k=0}^{4}\{\log(\zeta^{k-k}x+(y)-\log(\zeta^{k+n})\}\{\begin{array}{l}d\log(1-\zeta^{k}x)(n=1,2)d\log(\zeta^{-k}y).\end{array}$

We actually compute the last member of this equality.

\S 3 Numerical computation of the value of the $L$ function. We will explain
how to compute numerically the value of $L(H^{1}(X), 2)$ which the determinant of
the regulator should represent. A general reference for this paragraph is [G-R].

By Weil [W2], $L(H^{1}(x),s)$ for ${\rm Res}>3/2$ can be written as an Euler product

$L(H^{1}(X),s)= \prod_{lprimel\neq 5}P_{l}(l^{-\epsilon})^{-1}$

where
$P_{l}(T)= \prod_{1|l}(1-\tau(1)T^{f})$

and [denotes a prime ideal of $\mathbb{Q}(\zeta)$ and $f$ is the order of $l(mod 5)$ . We denote $\mathbb{Q}(\zeta)$

by $K$ in the sequel.

$\tau(1)=-\sum_{a\in 0_{K/1a\neq 0,1}}\chi_{\iota}(a)\chi|(1-a)$

is the Jacobi sum. $\chi|$ : $(O_{k}/1)^{*}arrow\mu 5$ is a character defined by

$\chi \mathfrak{l}(a)=\zeta^{k}\Leftrightarrow a^{\frac{N1-1}{}}\equiv\zeta^{k}(mod1)$.

We denote the character of the ideal group of $K$ which is induced by $\tau$ also by $\tau$ .
If we let $\sigma_{h}$ be the automorphism of $K$ over $\mathbb{Q}$ given by

$\sigma_{h}(\zeta)=\zeta^{h}$ ,

the Stickelberger relation gives

$\tau(1)=\mathfrak{l}1^{\sigma_{8}}$ (as ideals $ofK$)

in our case, and we have the congmence

$\tau(1)\equiv 1(mod(1-\zeta)^{2})$ .
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$\tau(1)$ can be determined from these conditions. Let $\chi_{\infty}$ : $K^{*}arrow \mathbb{C}^{*}$ and $\varphi:K^{*}arrow\mu 5$

be the characters given by
$\chi_{\infty}(\alpha)=\alpha\alpha^{\sigma_{8}}$

and
$\varphi(\alpha)=\frac{\tau(\alpha)}{\chi_{\infty}(\alpha)}$ .

We use the following theta series for computation.

$\Theta(\varphi,\chi_{\infty}, y)=\sum_{\alpha\in O_{K}}\tau((\alpha))\exp(-2\pi(\alpha\overline{\alpha}y1+\alpha^{\sigma_{S}}\overline{\alpha^{\sigma_{8}}}y2))$
.

We can get the value of $L(H^{1}(X), s)$ by the Mellin transform of this.
Let us denote the fundamental unit of $\mathbb{Q}(\sqrt{5})(=\frac{1+\sqrt{5}}{2})$ by $u$ . Since the norm

from $K$ to $\mathbb{Q}(\sqrt{5})$ of the group of units of $K$ is generated by $u^{2}$ , we have

$\int_{\mathbb{R}_{+}x\mathbb{R}_{+/(u^{2})}}\Theta(\varphi, \chi_{\infty},y)(Ny)^{s}d^{x}y$

$=\#$ {root of unity in $K$ } $((2\pi)^{-s}\Gamma(s))^{2}L(H^{1}(C), s)$

We denote by $\omega$ the character $I_{K}/K^{*}arrow \mathbb{C}^{*}$ induced by $\tau$ . $\omega=\prod_{vplace}$

of
$K^{\omega_{v}}$

is as

follows. For finite $v\{5$ , if $\pi_{v}\in K$ is a generator of $v,$ $\omega_{v}(\pi_{v})=\tau((\pi_{v}))$ .
For $v=(1-\zeta),\omega_{v}(\alpha)=\varphi(\alpha)$ for $\alpha\in K^{*}$ .
For $v$ infinite, $\omega(x)=x^{-1}$ .
Now we consider the standard function $\Phi=\prod\Phi_{v}$ on $A_{K}$ attached to $\tau$ in the

sense of Weil[Wl], and its Fourier transform.
For finite $v$ ,we denote the maximal compact subring of $K_{v}$ by $r_{v}$ . The local

factors $\Phi_{v}$ for each $v$ is:
For finite $v\{5,$ $\Phi_{v}$ is the characteristic function of $r_{v}$ .
For $v=(1-\zeta),$ $\Phi_{v}=\varphi$ on $r_{v}^{*}$ and zero outside $r_{v}^{*}$ .
For $v$ infinite, $\Phi_{v}(x)=x\exp(-2\pi x\overline{x})$ .
Let $\Phi’$ be the Fourier transform of $\Phi$ for some basic character $\chi$ of $A_{K}$ and by

the self dual Haar measure associated to it. Then by Weil[Wl]

$\Phi’(y)=\kappa|b|_{A}^{1/2}\Phi_{\overline{\omega}}(by)$

where $\kappa$ is a complex number with $|\kappa|=1$ , and $b=(b_{v})\in I_{K}$ is such that
ord$v(b_{v})=$ ord$vav+f_{v}$

Here $(a_{v})$ is a differental idele of $\chi$ and $f$ is the conductor of $\omega$ . We choose $\chi$ so
that $(b_{v})=1$ at all finite places (we can do this since the class number of $K=1$ ).

Poisson’s summation formula gives

(3.1)
$\Phi(0)+\sum_{\zeta\in K}$. $\Phi(z\xi)=|z|_{A_{K}}^{-1}(\Phi’(0)+\sum_{\epsilon\in K^{\epsilon}}\Phi’(\xi z^{-1}))$

.
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for $z\in I_{K}$ . For $i=1$ and 3, let $v_{i}$ mean the infinite places of $K$ which is given by
imbedding $K$ to $\mathbb{C}$ by $\sigma_{i}$ . Let $y=(y_{v})\in I_{K}$ be such that

for $v$ finite, $y_{v}=1$ , and $y_{v;}=\sqrt{y}*\cdot\cdot$

Let $b_{1}\in K^{*}$ be such that $N_{k/Q}(b_{1})=|D_{K}|^{-1}N_{K/Q}(f)^{-1}$ and $b_{3}=b_{1}^{\sigma_{3}}$ . By [G-R]
Theorem3.1, $|D_{K}|^{-1}N_{K/Q}(f)^{-1}=5^{-5}$ now.

When (3.1) is applied to $z=y$ , we have the following equality.

$\sum_{\xi\in K}.\varphi(\xi)_{v}f\prod_{inite}ch_{r_{v}}(\xi)\xi\xi^{\sigma_{8}}\sqrt{y_{1}y_{3}}\exp(-2\pi(|\xi|^{2}y_{1}+|\xi^{\sigma_{8}}|^{2}y_{3}))$

$= \kappa|b|_{A_{K}}^{1/2}\sum_{\epsilon\in K}$. $\varphi(\xi)_{v}f\prod_{inite}ch_{r_{v}}(\xi)\overline{b_{1}b_{3}\xi\xi^{\sigma_{\theta}}}(\sqrt{y_{1}y_{3}})^{-1}$

$\cross\exp(-2\pi(|\xi b_{1}|^{2}/y1+|\xi^{\sigma_{\theta}}b_{3}|^{2}/y_{3}))(y_{1}y_{3})^{-1}$ .

Dividing both sides by $\sqrt{y_{1}y_{3}}$, we get

(3.2)

$\sum_{\epsilon\in K^{*}}\varphi(\xi)_{v}f\prod_{lnite}ch_{r_{v}}(\xi)\xi\xi^{\sigma_{S}}\exp(-2\pi(|\xi|^{2}y_{1}+|\xi^{\sigma_{3}}|^{2}y_{3}))$

$= \kappa|b|_{A_{K}}^{1/2}\overline{b_{1}b_{3}}(y_{1}y_{3})^{-2}\sum_{\epsilon\in K^{*}}\varphi(\xi)_{v}f\prod_{inite}ch_{r_{v}}(\xi)\overline{\xi\xi^{\sigma_{3}}}\exp(-2\pi(|\xi b_{1}|^{2}/y_{1}+|\xi^{\sigma_{\theta}}b_{3}|^{2}/y_{3}))$

$= \kappa\kappa’|b|_{A_{K}}(y_{1}y_{3})^{-2}\sum_{\xi\in K^{*}}\varphi(\xi)_{v}f\prod_{inite}ch_{r_{v}}(\xi)\overline{\xi\xi^{\sigma_{\theta}}}\exp(-2\pi(|\xi b_{1}|^{2}/y_{1}+|\xi^{\sigma_{3}}b_{3}|^{2}/y_{3}))$
.

Here $\kappa’=\overline{b_{1}b_{3}}/|b|_{A_{K}}^{1/2}$ and $\kappa\kappa’$ equals to the root number assniated to $L(H^{1}(X), s)$ .
By [G-R](loc. cit),

$\kappa\kappa’=1$

So (3.2) means

$\Theta(\varphi, \chi_{\infty},y_{1}, y_{3})=5^{-5}(y_{1}y_{3})^{-2}\Theta(\varphi, \chi_{\infty}, \frac{|b_{1}|^{2}}{y_{1}}, \frac{|b_{3}|^{2}}{y_{3}})$.

By this formula the problem of convergence of the theta series for $y$ near zero is
settled, and the value of $L(H^{1}(X),2)$ can be computed quite accurately.

Ratio of the determinant of the regulator and the value of $L$ func-
tion. $H^{1}(X, 2\pi i\mathbb{R})$ has a natural $\mathbb{Q}$ stmcture given by $H^{1}(X,2\pi i\mathbb{Q})$ , and from
what we have proved so far,it has another $\mathbb{Q}$ structure given by the image of the
regulator. The Beilinson conjecture predicts that determinant of the matrix of the
base change of these two $\mathbb{Q}$ stmctures coincides with $L^{(2)}(H^{1}(X),0)$ up to a rational
multiple. The author computed numericaUy

$\frac{|_{\int_{\gamma_{11}^{2}}regc(\pi^{*}\beta)}^{\int_{\gamma_{1.1}^{2}\gamma_{2.1}^{2}}}regc(\pi^{*}\alpha)\int_{\int_{\gamma_{2,1}^{2}}}rreeg_{C}g(\pi^{*}\alpha)|}{(2\pi)^{2}L(2)(H^{1}(X),0)}$
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and verified that it coincides with $\frac{5}{12}$ up to 12 decimal place. We put here the value
of entries of the matrix and of $L$ function.

$\int_{\gamma_{1,1}^{2}}$ reg$c(\pi^{*}\alpha)=-1.49583966208347069$

$\int_{\gamma_{2,1}^{2}}regc(\pi^{*}\alpha)=-1.784705124594349710$

$\int_{\gamma_{1,1}^{2}}$ reg$c(\pi^{*}\beta)=-0.6645758775848033518$

$\int_{\gamma_{2,1}^{2}}regc(\pi^{*}\beta)=-22.2610909571881774599$

$L(H^{1}(X), 2)=0.0006247146595905$
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