
Generalization of Anderson’s t-motives and Tate conjecture

AKIO TAMAGAWA $(\exists\backslash i]||^{\wedge}x\ovalbox{\tt\small REJECT} F)$

RIMS, Kyoto Univ. $(\hat{P\backslash }\#\beta\lambda\doteqdot\ovalbox{\tt\small REJECT}\Phi\Phi\Re\Re_{X}^{*}ffi)$

\S 0. Introduction.
First we shall recall the Tate conjecture for abelian varieties.
Let $B$ and $B’$ be abelian varieties over a field $k$ , and $l$ a prime number $\neq$ char$(k)$ .

In [Tat], Tate asked:
If $k$ is finitely genera$tedo1^{\gamma}er$ a prime field, is the natural homomorphism

$Hom_{k}(B’, B)\bigotimes_{Z}Z_{l}arrow H_{0}m_{Z_{l}[Ga1(k^{sep}/k)](T_{l}(B’),T_{l}(B))}$

an isomorphism?
This is so-called Tate conjecture. It has been solved by Tate ([Tat]) for $k$ finite,

by Zarhin ([Zl], [Z2], [Z3]) and Mori ([Ml], [M2]) in the case char$(k)>0$ , and,
finally, by Faltings ([F], [FW]) in the case char$(k)=0$ .

We can formulate an analogue of the Tate conjecture for Drinfeld modules $(=e1-$

liptic modules ([Dl]) $)$ as follows. Let $C$ be a proper smooth geometrically connected
curve over the finite field $F_{q},$ $\infty$ a closed point of $C$ , and put $A=\Gamma(C-\{\infty\}, \mathcal{O}_{C})$ .
Let $k$ be an A-field, i.e. a field equipped with an A-algebra structure $\iota$ : $Aarrow k$ . Let
$G$ and $G’$ be Drinfeld A-modules over $k$ (with respect to $\iota$), and $v$ a maximal ideal
$\neq Ker(\iota)$ . Then, if $k$ is finitely generated over $F_{q}$ , is the natural homomorphism

$Hom_{k}(G’, G)\bigotimes_{A}\hat{A}_{v}arrow Hom_{\hat{A}_{v}[Ga1(k^{sep}/k)]}(T_{v}(G’), T_{v}(G))$

an isomorphism? We can also formulate a similar conjecture for Anderson’s abelian
t-modules ([Al]) in the case $A=F_{q}[t]$ .

As for this analogue (which we will also refer as Tate conjecture), besides the
result for Drinfeld modules over finite fields (implicitly [D2], [G], explicitly [Y]),
we have Taguchi’s important approach ([Tagl], [Tag2]). He studied the v-adic
Galois representations attached to Drinfeld modules on the lines of Faltings, and
succeeded in proving their semisimplicity. However, in proving the Tate conjecture
for Drinfeld modules on these lines, we have to generalize his work for higher-
dimensional t-modules (in order to apply Zarhin’s arguments), which is difficult for
several reasons. For example, no satisfactory theory of polarizations and moduli
spaces of abelian t-modules has not been established.

Our aim is: (i) to introduce the notions of A-premodules and A-premotives,
generalizing the notions of Anderson’s (abelian) t-modules and t-motives ([Al])
respectively; and (ii) to investigate an analogue of the Tate conjecture for them.
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As a special case, we obtain the affirmative answer to the conjecture above for
Drinfeld modules and abelian t-modules. Our approach is purely algebraic, unlike
Taguchi’s (first) approach.

Remark. (i) The present article is a survey of [Tam].
(ii) Taguchi also has proved independently the Tate conjecture for Drinfeld modules
and abelian t-modules, and his proof is close to ours ([Tag4]).

\S 1. Definition of A-premodules and A-premotives.
For simplicity, we assume that our finite base field is the prime field $F_{p}$ , although

we can develop a similar theory over any finite field $F_{q}$ . Let $A$ be a commutative
$F_{p}$-algebra, and $k$ a field of characteristic $p$ .

Definition. An A-module scheme over $k$ is a pair $(G, \phi)$ , where $G$ is a commu-
tative group scheme over $k$ and $\phi$ : $Aarrow$ End(group schemes$/k$ ) $(G)$ is an $F_{p}$-algebra
homomorphism. (We often write $G$ instead of $(G,$ $\phi).$ )

Remark. This definition is temporary, and is different from the definition appearing
in [Tag2], [Tag3].

The following proposition is fundamental.

Proposition. The functor

$G\mapsto M(G)def=Hom_{(group}$ schemes/k) $(G,$ $G_{a})$

gives $m$ anti-equivalence between th$eca$tegory of affiiie A-module schemes over $k$

whose Verschiebungs are $z$ero and that of left $k \{\tau\}\bigotimes_{F_{p}}$
A-modules. Here $k\{\tau\}$ is the

ring whose underlyin$g$ abelian $gro$up is a k-vector space $wi$th basis $\{\tau^{i}\}_{i=0,1},\ldots$ and
whose multiplication rule is:

$( \sum_{i}a_{i}\tau^{i})(\sum_{j}b_{j}\tau^{j})=\sum_{i}\sum_{j}a_{i}b_{j}^{\rho^{i}}\tau^{i+j}$.

(It is well-known that $k\{\tau\}$ can be ideiitified with the endomorphism ring of the
commuta$ti_{1}regro$up scheme $G_{a}$ over $k.$ ) $\square$

Definition. (i) An A-premotive over $k$ is a left
$k \{\tau\}\bigotimes_{F_{p}}$

A-module $M$ satisfying the

following two conditions:
(a) $M$ is a finitely presented

$k \bigotimes_{F_{p}}$
A-module;

(b) $\tau]_{inear}:M^{(p)}arrow M$ is injective, where

$M^{(p)}=k \bigotimes_{\sigma,k}M$

( $\sigma$ : $karrow k$ is the p-th power map), and $\tau]_{inear}$ is the linearization of $\tau$ :

$\tau]_{inear}(a\otimes x)=a\tau x$ .
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(ii) An A-premodule over $k$ is an affine A-module scheme over $k$ whose Verschiebung
is zero and such that $M(G)$ is an A-premotive.

Remark. (i) By the proposition above, the category of A-premodules over $k$ is anti-
equivalent to that of A-premotives over $k$ .
(ii) Drinfeld modules and Anderson’s abelian t-modules are examples of A-premodules
(for suitable $A$ ).
(iii) Unlike the cases of Drinfeld modules and Anderson’s abelian t-modules, we do
not assume that $k$ is an A-algebra. In particular, we do not (or cannot!) assume
any compatibility of A-actions on Lie $(G)$ .
(iv) We do not assume that $G$ is algebraic over $k$ , or, equivalently, that $M(G)$ is
finitely generated as a $k\{\tau\}$ -module.

\S 2. Tate conjecture.
From now on, we assume that $A$ is a finitely generated $F_{p}$-algebra. (In particular,

$A$ is noetherian.)

Definition. Let $G=(G, \phi)$ be an A-premotive over $k$ , and put $M=M(G)$ , the
A-premotive associated with $G$ .
(i) Let $J$ be an ideal of $A$ . We define an A-module scheme $G[J]$ by:

$G[J]= \bigcap_{f\in J}Ker(\phi_{f}:Garrow G)$
,

which is regarded also as an $A/J$-module scheme. Note that

$M(G[J])=M/JM$.

(ii) Let $I$ be an ideal of $A$ . We define an ind-A-module scheme $\mathcal{T}_{I}(G)$ by:

$\mathcal{I}_{I}(G)=\bigcup_{n=0}^{\infty}G[I^{n}]$ ,

and call it the I-divisible Tate module scheme of $G$ .
Let $v$ be a maximal ideal of $A$ , and $G$ and $G’$ be A-premodules over $k$ \’etale along

$v$ , that is to say, $G[v^{n}]$ and $G’[v^{n}]$ are \’etale over $k$ for all $n\geq 0$ (or, equivalently,
for some $n>0$ ). Then the Tate conjecture in our situation is as follows:

If $k$ is finitely genera$ted$ over $F_{p}$ , is the natural homomorphism

$(\#)$ $Hom_{k}(G’, G)\bigotimes_{A}A_{v}arrow Hom_{A_{v}[Ga1(k^{sep}/k)]}(\mathcal{T}_{v}(G’)(k^{sep}), \mathcal{I}_{v}(G)(k^{sep}))$

an isomorphism?

Remark. This is a v-divisible formulation of the Tate conjecture. We also have a
v-adic formulation of the right-hand side under a certain condition.

From now on, we always assume that $k$ is finitely generated over $F_{p}$ . When $k$ is
finite, the Tate conjecture is easy to prove:
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Theorem. If $k$ is finite, then $(\#)$ is an isomorphism. $\square$

Unfortunately, $(\#)$ is not an isomorphism in general.

Example. Let $A=F_{p}[t]$ , and $v$ a maximal ideal of $A$ . For $\theta\in k$ , the Carlitz
module with respect to $\theta$ is an A-premodule $G=(G, \phi)$ , where

$G=G_{a}$

and
$\phi$ : $Aarrow$ End$($ group $schemes/k)(G_{a})=k\{\tau\},$ $t\mapsto\theta+\tau$.

Let $G’$ be the Carlitz module with respect to $\theta^{p}$ .
Assume that $\theta$ is transcendental over $F_{p}$ . (Note that $G$ is then \’etale along $v.$ )

Then we can prove
$Hom_{k}(G’, G)=0$ ,

and
$Hom_{k}(\mathcal{T}_{v}(G’), \mathcal{T}_{v}(G))\simeq\hat{A}_{v}$ .

The example above shows that our definition of ‘pre-,modules and ‘pre-,motives
is not good enough for the Tate conjecture. So, we introduce.the concept of admis-
sibility for the pair $(G, G’)$ , so that the Tate conjecture is valid. For simplicity, we
assume, from now on, that the ring $A$ is regular at $v$ .

Definition. Put $M=M(G)$ and $M’=M(G’)$ . We say that the (ordered) pair
$(G, G’)$ is admissible at $v$ , if the following conditions are satisfied:

(a) $M \bigotimes_{A}A_{v}$ and $M’ \bigotimes_{A}A_{v}$ are projective as
$k \bigotimes_{F_{p}}A_{v}$

-modules, where

$A_{v}=(A-v)^{-1}A$ .

(b)
$Hom_{k\bigotimes_{F_{p}}A_{v}}(\overline{M}^{(p^{i})}\bigotimes_{A}A_{v},\overline{M}’\bigotimes_{A}A_{v})=0$

for each $i>0$ , where $\overline{N}$ means $N/k\{\tau\}\tau N$ .

The following is our main theorem:

Theorem. If the pair $(G, G’)$ is admissible at $v$ , then $(\#)$ is an isomorphism. $\square$

Corollary. The Tate conjecture for Drinfeld A-modules and abelian t-modules
(see \S 0) is true. $\square$

\S 3. Outline of proof.
For simplicity, we assume that (A is regular at $v$ and) $A/v$ , which is a finite

extension of $F_{p}$ , coincides with $F_{p}$ . Accordingly, we have

$\hat{A}_{v}\simeq F_{p}[[t_{1}, \ldots, t_{n}]]$ ,

where $n=\dim(\hat{A}_{v})$ . Now, in terms of premotives, $(\#)$ corresponds to

$Hom_{(k\bigotimes_{F_{p}}\hat{A}_{v})\{\tau\}}(M\bigotimes_{A}\hat{A}_{v}, M’\bigotimes_{A}\hat{A}_{v})arrow Hom_{(k\bigotimes_{F_{p}}A)_{v}^{\wedge}\{\tau\}}(\hat{M}_{v},\hat{M}_{v}^{;})$ .
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The problem is the difference of two rings

$k \bigotimes_{F_{p}}\hat{A}_{v}\simeq k\bigotimes_{F_{p}}(F_{p}[[t_{1}, \ldots, t_{n}]])$

and

$(k \bigotimes_{F_{p}}A)_{v}^{\wedge}\simeq k[[t_{1}, \ldots, t_{n}]]$ .

(Thereby the case where $k$ is finite is clear.)
More concretely, assume that $M$ and $M’$ are free

$k \bigotimes_{F_{p}}$
A-module of rank $r$ and

$r’$ , respectively. (We can reduce the general case to this case.) Let $C \in M_{r}(k\bigotimes_{F_{p}}A)$

and $C’ \in M_{r’}(k\bigotimes_{F_{p}}A)$ be the matrices representing the $\tau$-actions on $M$ and $M’$ ,

respectively. Then the problem is: If $X\in M_{r’,r}(k[[t_{1}, \ldots, t_{n}]])$ satisfies the equation

$XC=C’X^{(p)}$ ,

does $X$ belong to $M_{r’,r}(k \bigotimes_{F_{p}}(F_{p}[[t_{1}, \ldots, t_{n}]]))$ automatically? Here,

$f^{(p)} def=\sum a_{i_{1n}}^{p}\ldots t_{1}^{i_{1}}\ldots t_{n^{n}}^{i}$

for $f= \sum a_{i_{1n}}\ldots t_{1}^{i_{1}}\ldots t_{n^{n}}^{i}\in k[[t_{1}, \ldots, t_{n}]]$ , and

$X^{(p)}def=(f_{i,i}^{(p)})$

for $X=(f_{i’,i})\in M_{r’,r}(k[[t_{1}, \ldots, t_{n}]])$ .
The proof goes as follows. First, we develop a local theory of premotives, which

can be regarded as a generalization of Anderson’s recent work [A2]. The conclusion
is that, for each discrete valuation ring $R$ whose field of fractions is $k$ , the solution
$X$ belongs to $M_{r’,r}$ $(k \bigotimes_{R} (R[[t_{1}, \ldots , t_{n}]]))$ and it belongs to $M_{r’,r}(R[[t_{1}, \ldots, t_{n}]])$ for

‘most’ $R$ . Then, the following is a key lemma to collect the local results into the
global result (which follows from finiteness of the global sections of the coherent
$\mathcal{O}_{X}$ -module $\mathcal{O}_{X}(D)$ for a suitable (Weil) divisor $D$ whose support is in $\Sigma_{0}.$ )

Lemma. Let $X$ be a proper normal model of $k$ over $F_{p}$ , and $\Sigma$ the set of points of
codimension 1 in X. Let $\Sigma_{0}$ be a finite $su$bset of $\Sigma$ . Then we $hai^{\gamma}e$

$\bigcap_{x\in\Sigma-\Sigma_{0}}\mathcal{O}_{X,x}[[t_{1}, \ldots, t_{n}]]\cap\bigcap_{x\in\Sigma_{0}}k\bigotimes_{\mathcal{O}_{fx}},(\mathcal{O}_{X,x}[[t_{1}, \ldots, t_{n}]])\subset k\bigotimes_{F_{p}}(F_{p}[[t_{1}, \ldots, t_{n}]])$
. $\square$
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