
ON VECTOR-VALUED WHITE NOISE FUNCTIONALS

Nobuaki Obata (Nagoya University)

$E$ ffl {$ Hfi $(gg\ovalbox{\tt\small REJECT} x_{\neq\mp\#)}^{r}\Phi^{r_{o}}$

INTRODUCTION

Since the white noise calculus initiated by T. Hida [6] is based on Schwartz type distri-
bution theory on Gaussian space (the foundation is due to I. Kubo and S. Takenaka [14]),
it has been expected to provide a nice framework of calculus on Boson Fock space or an
operator formalism of quantum physics.

In fact, one of the most signfficant features of white noise calculus lies in the possible
use of pointwisely defined creation and annihilation operators. This has been improved
to establish a general theory of operators on white noise functionals ([8], [9], [24], [25],
[26] and [28] where the full description is given). During the study the key role has been
played by an integral kernel operator with distribution $\kappa$ as integral kernel:

(0-1) $-l,m- \int_{T^{\mathfrak{l}+m}}1,$$\cdots,l,1l$
where $\partial_{s}^{*}$ and $\partial_{t}$ are creation and annihilation operators at points $s$ and $t$ , respectively. The
use of distributions as integral kernels leads us to the theory of Fock expansion. Namely,
in white noise calculus every continuous operator on white noise functionals admits an
infinite series expansion in terms of integral kernel operators with precise estimate of the
convergence. Moreover, having a nice characterization theorem for operator symbols, we
can check easily whether or not an operator on Fock space defined only on the exponential
vectors comes into our framework. (The theory is outlined in Sections 3-4.)

However, the discussion has been so far restricted to scalar-valued white noise functionals
and little attention has been given to vector-valued ones. Meanwhile, we have obtained
good motives to consider such generalization. First, calculus on Fock space has been
considerably developed under the name of quantum probability and it has an interesting
application to a quantum interacting system described on the tensor product of Boson Fock
space and a so-called initial Hilbert space (in this connection see [11], [20], [21], [22], [30]
and references cited therein; for a brief introduction to quantum probability theory see e.g.,
[33], [34] $)$ . Secondly in [1] A. Arai studied infinite dimensional Dirac operators defined
on Boson-Fermion Fock space with application to supersymmetric quantum field theory,
see also [2]. It is highly plausible that the idea of distributions on Gaussian space makes
the discussion clearer. In fact, Z.-Y. Huang [10] discussed quantum It\^o formula in terms
of white noise calculus though the discussion is restricted to the case of scalar-valued
funct ionals.
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The main purpose of this paper is to propound a theory of vector-valued distribution
theory on Gaussian space in line with white noise calculus. The first question is, obviously,
to find a suitable vector space in which the distributions under consideration take values.
In this paper we take a standard countably Hilbert space (see \S 1.2 for definition) for
some special reasons. First of all, taking application into account, we must not exclude
Hilbert spaces. Secondly, a standard countably Hilbert space possesses nice properties
from the viewpoint of topological vector spaces, in particular, the theory of topological
tensor products can be applied effectively. Finally, notation and results established for
scalar-valued functionals help the study of vector-valued case very much.

The use of pointwisely defined creation and annihilation operators is not a new idea and
there are closely related works, see [4] and references cited therein. In particular, Kr\’ee’s
work [12] is based on the theory of nuclear spaces and has much in common with ours,
see also [23]. Nevertheless, an advantage of our theory is found in the theory of Fock
expansion.

In Section 1 we assemble general notations and give the definition of a standard countably
Hilbert space. Sections 2-4 are devoted to an overview of operator theory on scalar-
valued white noise functionals. In Section 5 we discuss the vector-valued case, for the full
description of the matters see the forthcoming paper [29].

1. PRELIMINARIES

1.1. General notations. For a real vector space $X$ we denote its complexification by
$X_{C}$ . Unless otherwise stated the dual space $X^{*}$ of a locally convex space $X$ is assumed to
carry the strong dual topology. The canonical bilinear form on $X^{*}xX$ is denoted by $\{\cdot).\}$

or by similar symbols. When $H$ is a complex Hilbert space, in order to avoid notational
confusion we do not use the hermitian inner product but the C-bilinear form on $HxH$.

Let $X$ and $\mathfrak{Y}$ be locally convex spaces. The $\pi$-topology is by definition the strongest
locally convex topology on their algebraic tensor product $X\otimes$ alg $\mathfrak{Y}$ such that the canonical
bilinear map $Xx\mathfrak{Y}arrow X\otimes$alg $\mathfrak{Y}$ is continuous. The completion of $X\otimes$ alg $\mathfrak{Y}$ with respect to
the $\pi$-topology is called $\pi$ -tensor product and denoted by $X\otimes_{\pi}\mathfrak{Y}$ . While, for two Hilbert
spaces $H$ and $K$ we denote by $H\otimes K$ their Hilbert space tensor product. When there
is no danger of confusion, $X\otimes_{\pi}\mathfrak{Y}$ is also denoted by $X\otimes \mathfrak{Y}$ for simplicity. For a locally
convex space $X$ let $X^{\otimes n}\wedge\subset X^{\otimes n}$ the closed subspace of symmetric tensor products and let
$(X^{\otimes n})_{sym}^{*}$ be the space of continuous linear functionals on $X^{\otimes n}$ which are symmetric.

For two toplogical vector spaces $X$ and $\mathfrak{Y}$ let $\mathcal{L}(X, \mathfrak{Y})$ stand for the space of continuous
linear operators from $X$ into $\mathfrak{Y}$ . The space $\mathcal{L}(X, \mathfrak{Y})$ is equipped with the topology of
uniform convergence on every bounded subset in $X$ .

1.2. Standard countably Hilbert space. Let $H$ be a (real or complex) Hilbert space
with norm $|\cdot|_{0}$ and let $A$ be a positive selfadjoint operator on $H$ with $infSpec(A)>0$ .
Since $Spec(A)$ is closed, the last condition is equivalent to that $A$ admits a dense range and
bounded inverse. According to the standard spectral theory we may define a selfadjoint
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operator $A^{p}$ for any $p\in R$ with maximal domain in $H$ . Note that Dom $(A^{p})=H$ for $p<0$ .
We then put

$|\xi|_{p}=|A^{p}\xi|_{0}$ , $\xi\in$ Dom $(A^{p})$ , $p\in R$ .

For $p\geq$ Olet $E_{p}$ be the Hilbert space Dom $(A^{p})$ with the norm $|\cdot|_{p}$ and let $E_{-p}$ be the
completion of $H$ with respect to $|\cdot|_{-p}$ . These Hilbert spaces satisfy the natural inclusion
relations:

.. . $\subset E_{q}\subset\cdots\subset E_{p}\subset\cdots\subset E_{0}=H\subset\cdots\subset E_{-p}\subset\cdots\subset E_{-q}\subset\cdots$ , $0\leq p\leq q$ .

Then, in an obvious manner,

$E= proj\lim_{\infty parrow}E_{p}=\bigcap_{p\geq 0}E_{p}$

becomes a countably Hilbert space (abbr. CH-space). Since a general CH-space (see
Gelfand-Vilenkin [5] for definition) is not necessarily of this type, we say that $E$ is the
standard CH-space constructed from a pair $(H, A)$ . It is known that $E^{*}$ is isomorphic to
the inductive limit:

$E^{*} \cong ind\lim_{parrow\infty}E_{-p}=\bigcup_{p\geq 0}E_{-p}$
.

A standard CH-space $E$ constructed from $(H, A)$ is nuclear if and only if $A^{-r}$ is of Hilbert-
Schmidt type for some $r>0$ . In that case we obtain a Gelfand triple $E\subset H\subset E^{*}$ .

2. WHITE NOISE FUNCTIONALS

2.1. Gaussian space. Let $T$ be a topological space with a Borel measure $\nu(dt)=dt$

and let $H=L^{2}(T, \nu;R)$ be the real Hilbert space of all v-square integrable functions on
$T$ . The inner product is denoted by $\langle\cdot,$ $\cdot\}$ and the norm by $|\cdot|_{0}$ . We think of $T$ as a time
parameter space when it is an interval, or more generally as a field parameter space.

Let $A$ be a positive selfadjoint operator on $H$ with Hilbert-Schmidt inverse. Then there
exist an increasing sequence of positive numbers $0<\lambda_{0}\leq\lambda_{1}\leq\lambda_{2}\leq\cdots$ and a complete
orthonormal basis $\{ei\}_{j=0}^{\infty}$ for $H$ such that $Aei=\lambda_{j}ei$ and

$\delta\equiv(\sum_{=0}^{\infty}\lambda_{j}^{-2})^{1/2}=\Vert A^{-1}\Vert_{HS}<\infty$ .

Let $E$ be the standard CH-space constructed from $(H, A)$ . Since $A^{-1}$ is of Hilbert-Schmidt
type by assumption, $E$ becomes a nuclear Fr\’echet space and we obtain a Gelfand triple
$E\subset H=L^{2}(T, \nu;R)\subset E^{*}$ . The canonical bilinear form on $E^{*}xE$ is also denoted by
$\langle\cdot,$ $\cdot)$ .
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By construction each $\xi\in E$ is a function on $T$ determined up to $\nu$-null functions.
This hiders from introducing a delta-function which is indispensable to our discussion.
Accordingly we are led to the following hypotheses:

(Hl) For each $\xi\in E$ there exists a unique continuous function $\tilde{\xi}$ on $T$ such that $\xi(t)=\tilde{\xi}(t)$

for $\nu- a.e$ . $t\in T$ .
Once this is satisfied, we always assume that every element in $E$ is a continuous function
on $T$ and do not use the symbol $\tilde{\xi}$ . We further need:

(H2) For each $t\in T$ a linear functional $\delta_{t}:\xi\mapsto\xi(t),$ $\xi\in E$ , is continuous, i.e., $\delta_{t}\in E^{*}$ ;
(H3) The map $t\mapsto\delta_{t}\in E^{*},$ $t\in T$ , is continuous.
(Recall that $E^{*}$ is equipped with the strong dual topology.) Under (Hl)$-(H2)$ the conver-
gence of a sequence in $E$ implies the pointwise convergence as functions on $T$ . If we have
(H3) in addition, the convergence is uniform on every compact subset of $T$ . Moreover,
(Hl)$-(H3)$ are preserved under forming tensor products, see [27].

By another reason (see \S 2.3) we need one more assumption:
(S) $\lambda_{0}=$ $infSpec(A)>1$ .

The constant number
$0<\rho\equiv\lambda_{0}^{-1}=\Vert A^{-1}\Vert_{oP}<1$

will be often used together with the inequality $|\xi|_{p}\leq\rho^{q}|\xi|_{p+q},$ $\xi\in E,$ $p\in \mathbb{R},$ $q\geq 0$ .
By the Bochner-Minlos theorem (e.g., [7]) there exists a unique probability measure $\mu$

on $E^{*}$ (equipped with the Borel $\sigma- field$ ) such that

$\exp(-\frac{1}{2}|\xi|_{0}^{2})=\int_{E^{*}}e^{i(x,\xi)}\mu(dx)$, $\xi\in E$ .

This $\mu$ is called the Gaussian measure and the probability space $(E^{*}, \mu)$ is called the
Gaussian space. We put $(L^{2})=L^{2}(E^{*}, \mu;C)$ for simplicity.

2.2. Wiener-It\^o decomposition. The canonical bilinear form on $(E^{\otimes n})^{*}x(E^{\otimes n})$ is
denoted by $\{\cdot,$ $\cdot\}$ again and its bilinear extension to $(E_{C}^{\otimes n})^{*}x(E_{C}^{\otimes n})$ is also denoted by the
same symbol.

For $x\in E^{*}$ let : $x^{\otimes n}$ : be defined as a unique element in $(E^{\otimes n})_{sym}^{*}$ satisfying

(2-1) $\phi_{\xi}(x)\equiv\sum_{n=0}^{\infty}\{:x^{\otimes n}$ :, $\frac{\xi^{\otimes n}}{n!}\}=\exp(\langle x,$ $\xi\}-\frac{1}{2}(\xi, \xi\rangle),$ $\xi\in E_{\mathbb{C}}$ .

Note that the right hand side is a “normalized” exponential function. The explicit form
of: $x^{\otimes n}$ : is well known, see e.g., [27], [28]. We call $\phi_{\xi}$ an exponential vector.

Let $H_{n}$ be the closed subspace of $(L^{2})$ spanned by the functions $x\mapsto\langle:x^{\otimes n}$ :, $f\}$ , where

$f$ runs over $E_{C}^{\otimes^{\wedge}n}$ . Then, we have the so-called Wiener-It\^o decomposition of $(L^{2})$ into an
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orthogonal direct sum of $H_{n}$ . More precisely, for each $\phi\in(L^{2})$ there exists a unique
sequence $(f_{n})_{n=0}^{\infty},$

$f_{n}\in H_{\mathbb{C}}^{\otimes^{\wedge}n}$ , such that

(2-2) $\phi(x)=\sum_{n=0}^{\infty}\{:x^{\otimes n}:,$ $f_{n}\}$ , $x\in E^{*}$ ,

where each $x\mapsto\langle:x^{\otimes n}:,$ $f_{n}\rangle$ is a function in $H_{n}$ and the series is an orthogonal direct
sum. In that case

$\Vert\phi||_{0}^{2}\equiv\int_{E^{*}}|\phi(x)|^{2}\mu(dx)=\sum_{n=0}^{\infty}n!|f_{n}|_{0}^{2}$ .

The above correspondence gives a unitary isomorphism between $(L^{2})$ and the Boson Fock
space over $H_{\mathbb{C}}$ .
2.3. Scalar-valued white noise functionals. We first define the second quantized
operator $\Gamma(A)$ for $A$ introduced in \S 2.1. Let $\phi\in(L^{2})$ be given as in (2-2) and we put

$\Gamma(A)\phi(x)=\sum_{n=0}^{\infty}\{:x^{\otimes n}:,$ $A^{\otimes n}f_{n}\}$ , $\phi\in$ Dom $(\Gamma(A))$ .

Equipped with the maximal domain, $\Gamma(A)$ becomes a positive selfadjoint operator on $(L^{2})$ .
Let $(E)$ be the standard CH-space constructed from the pair $((L^{2}), \Gamma(A))$ . Since $\Gamma(A)$

admits Hilbert-Schmidt inverse by the hypothesis (S), $(E)$ is a nuclear Fr\’echet space and
we obtain a complex Gelfand triple:

$(E)\subset(L^{2})=L^{2}(E^{*}, \mu;C)\subset(E)^{*}$ .

Elements in $(E)$ and $(E)^{*}$ are called a test (white nois $e$) functional and a generalized
(white noise) functional, respectively. We denote by $\{\{\cdot,$ $\cdot\}\rangle$ the canonical bilinear form on
$(E)^{*}x(E)$ and by $||\cdot||_{p}$ the norm introduced from $\Gamma(A)$ , namely,

(2-3) $|| \phi||_{p}^{2}=||\Gamma(A)^{p}\phi||_{0}^{2}=\sum_{n=0}^{\infty}n!|(A^{\otimes n})^{p}f_{n}|_{0}^{2}=\sum_{n=0}^{\infty}n!|f_{n}|_{p}^{2}$ ,

where $\phi$ and $(f_{n})_{n=0}^{\infty}$ are related as in (2-2). Therefore $\phi\in(L^{2})$ belongs to $(E)$ if and only
if $f_{n}\in E_{C}^{\otimes^{\wedge}n}$ for all $n$ and $\Sigma_{n=0}^{\infty}n!|f_{n}|_{p}^{2}<\infty$ for all $p\geq 0$ .

We use a similar (but formal) expression for a generalized white noise functional:

(2-4) $\Phi(x)=\sum_{n=0}^{\infty}\{:x^{\otimes n}:,$ $F_{n}\}$ ,

where $F_{n}\in(E_{\mathbb{C}}^{\otimes n})_{sym}^{*}$ and

(2-5) $|| \Phi||_{-p}^{2}=\sum_{n=0}^{\infty}n!|F_{n}|_{-p}^{2}$ .
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Note that (2-5) is valid for all $p\in R$ though the value can be infinite. By construction
$||\Phi||_{-p}<\infty$ for some $p\geq 0$ . If $\Phi$ is given as above, for any $\phi\in(E)$ we have

$\langle(\Phi,$ $\phi\rangle\rangle=\sum_{n=0}^{\infty}n!(F_{n},$ $f_{n}\rangle$ ,

where $(f_{n})_{n=0}^{\infty}$ is determined as in (2-2). It is also known that any $\Phi\in(E)^{*}$ is expressible
in the above form.

3. INTEGRAL KERNEL OPERATORS

3.1. Hida’s differential operator. For any $y\in E^{*}$ and $\phi\in(E)$ we put

(3-1) $D_{y} \phi(x)=\lim_{\thetaarrow 0}\frac{\phi(x+\theta y)-\phi(x)}{\theta}$ , $x\in E^{*}$ .

It is known that the limit always exists and that $D_{y}\in \mathcal{L}((E), (E))$ . Since the delta-
functions $\delta_{t}$ are elements in $E^{*}$ by hypotheses (Hl)$-(H3)$ , we may define

$\partial_{t}=D_{\delta_{t}}$ , $t\in T$.

This is called Hida’s differential operator. Obviously, $\partial_{t}$ is a rigorously defined annihilation
operator at a point $t\in T$ . It should be therefore emphasized that $\partial_{t}$ is not an operator-
valued distribution as in most literatures but a continuous operator for itself. The creation
operator is by definition the adjoint $\partial_{t}^{*}\in \mathcal{L}((E)^{*}, (E)^{*})$ .

As is easily expected, $\partial_{t}$ and $\partial_{t}^{*}$ satisfy the so-called canonical commutation relation:

(3-2) $[\partial_{s}, \partial_{t}]=0$ , $[\partial_{s}^{*}, \partial_{t}^{*}]=0$ , $[\partial_{s}, \partial_{t}^{*}]=\delta_{s}(t)I$ , $s,t\in T$.

The last relation is understood in a generalized sense.

3.2. Integral kernel operators. For $\phi,$ $\psi\in(E)$ let $\eta\phi_{t}\psi$ be a function on $T^{l+m}$ defined
by

(3-3) $\eta\phi,\psi(s_{1}, \cdots, s\iota, t_{1}, \cdots, t_{m})=\{\{\partial_{s_{1}}^{*}\cdots\partial_{s_{l}}^{*}\partial_{t_{1}}\cdots\partial_{t_{m}}\phi,$ $\psi\}\}$ .

Then one see that $\eta\phi,\psi\in E_{C}^{\otimes(l+m)}$ , and that the bilinear form $\phi,$ $\psi\mapsto\{\kappa,$ $\eta\emptyset,\psi\}$ is continuous
on $(E)x(E)$ for any $\kappa\in(E_{\mathbb{C}}^{\otimes(l+m)})^{*}$ . Thus a continuous linear operator $—\iota_{m}(\kappa)\in$

$\mathcal{L}((E), (E)^{*})$ is determined uniquely by

(3-4) $\{\{--(\kappa)\phi,$ $\psi\rangle\}=\{\kappa,$ $\eta\phi_{2}\psi\rangle$ , $\phi,$ $\psi\in(E)$ .
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In other words, $-l,m-$ is defined through two canonical bilinear forms:

$\{\{--(\kappa)\phi,$ $\psi\rangle\rangle=\{\kappa,$ $\{\{\partial_{s_{1}}^{*}\cdots\partial_{s_{l}}^{*}\partial_{t_{1}}\cdots\partial_{t_{m}}\phi,$ $\psi\rangle\}\}$ , $\phi,$ $\psi\in(E)$ .

This suggests us to employ a formal integral expression as in (0-1). We call $—\iota_{m}(\kappa)$ an
integral kernel operator with kernel distribution $\kappa$ . But we must not forget that $-l,m-$

becomes a continuous operator in $\mathcal{L}((E), (E)^{*})$ for any $\kappa\in(E_{C}^{\otimes(l+m)})^{*}$ . In view of a
precise norm estimate of $—\iota_{m}(\kappa)\phi,$ $\phi\in(E)$ , we see that $—\iota_{m}(\kappa)\in \mathcal{L}((E), (E))$ if and only
if $\kappa\in(E_{\mathbb{C}}^{\otimes l})\otimes(E_{C}^{\otimes m})^{*}$ .

The kernel distribution is not uniquely determined due to the fact (3-2). For the unique-
ness we only need to consider the space $(E_{C}^{\otimes(l+m)})_{sym(l,m)}^{*}$ of all $\kappa\in(E_{\mathbb{C}}^{\otimes(l+m)})^{*}$ which is
symmetric with respect to the first $l$ and the last $m$ variables independently.

4. FOCK EXPANSION

4.1. Symbol of operators. Since the exponential vectors $\{\phi_{\xi};\xi\in E_{\mathbb{C}}\}$ spans a
dense subspace of $(E)$ , the behavior of an operator $\Xi\in \mathcal{L}((E), (E)^{*})$ on those vectors is
worthwhile to study. For $\Xi\in \mathcal{L}((E), (E)^{*})$ a function on $E_{\mathbb{C}}xE_{C}$ defined by

(4-1) $-(\xi, \eta)=\underline{\underline{\wedge}}\{\{\Xi\phi_{\xi},$ $\phi_{\eta}\}\}$ , $\xi,$ $\eta\in E_{C}$ ,

is called the symbol of $\Xi$ after Berezin [3] and $Kr\acute{e}e- R\S Czka[13]$ . For example,

(4-2) $-l,m-\{\kappa,$ $\eta^{\otimes \mathfrak{l}}\otimes\xi^{\otimes m}\}e^{(\xi,\eta)}$ , $\xi,$ $\eta\in E_{C}$ , $\kappa\in E_{C}^{\otimes(l+m)}$ .

In particular,

$\overline{\partial_{t}}(\xi, \eta)=\xi(t)e^{(\xi,\eta)}$ , $\hat{\partial_{t}^{*}}(\xi, \eta)=\eta(t)e^{\{\xi\eta)})$ , $\xi,$ $\eta\in E_{\mathbb{C}}$ .

We then observe important propertirs of $\Theta=-\underline{\underline{\wedge}}$ . For any $\Xi\in \mathcal{L}((E), (E)^{*})$ we have
(Ol) (analyticity) For any $\xi,$ $\xi_{1},$

$\eta,$ $\eta 1\in E_{\mathbb{C}}$ , the function

$z,$ $w\mapsto\Theta(z\xi+\xi_{1}, w\eta+\eta 1)$ , $z,$ $w\in C$ ,

is entire holomorphic;
(O2) (boundedness) There exist constant numbers $C\geq 0,$ $K\geq 0$ and $p\in R$ such that

$|\Theta(\xi, \eta)|\leq C\exp K(|\xi|_{p}^{2}+|\eta|_{p}^{2})$ , $\xi,$ $\eta\in E_{C}$ .
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If $\Xi\in \mathcal{L}((E), (E))$ , we have a stronger estimate:
$(O2^{/})$ (boundedness) For any $p\geq 0$ and $\epsilon>0$ there exist $C\geq 0$ and $q\geq 0$ such that

$|\Theta(\xi, \eta)|\leq C\exp\epsilon(|\xi|_{p+q}^{2}+|\eta|_{-p}^{2})$ , $\xi,$ $\eta\in E_{C}$ .

More important is that the above listed properties reproduce the operator on white noise
functionals.

THEOREM 4.1. Assume that a C-valued function $\Theta$ on $E_{C}xE_{C}$ satisfies the conditions
(01) and $(O2)$ . Then, there exists a unique family of kernel distributions $(\kappa\iota_{m})_{l,m=0}^{\infty}$ ,
$\kappa l,m\in(E_{\mathbb{C}}^{Q(l+m)})_{sym(l,m)}^{*}$ , such that

(4-3) $\Theta(\xi, \eta)=\sum_{l,m=0}^{\infty}\{\langle--(\kappa\iota_{m})\phi_{\xi},$
$\phi_{\eta}\rangle\}$ , $\xi,$ $\eta\in E_{\mathbb{C}}$ .

$Moreover_{f}$ the series

(4-4) $\Xi\phi=\sum_{l,m=0}^{\infty}---\iota_{m}(\kappa_{l,m})\phi$ , $\phi\in(E)$ ,

converges in $(E)^{*},$ $\Xi\in \mathcal{L}((E), (E)^{*})$ and $-\underline{\underline{\wedge}}=\Theta$ . If $\Theta$ satisfies the conditions (01)
and $(0\ovalbox{\tt\small REJECT})$ , the kernet distribution $\kappa\iota_{m}$ belongs to $((E_{C}^{\otimes l})\otimes(E_{C}^{\otimes m})^{*})_{sym(l,m)}=(E_{C}^{\otimes^{\wedge}l})\otimes$

$(E_{C}^{\otimes m})_{sym}^{*}$ . In that case; the senes (4-4) converges in $(E)$ and $\Xi\in \mathcal{L}((E), (E))$ .
The idea of the proof is as follows. If (4-3) holds, we see from (4-2) that

(4-5) $e^{-\langle\xi,\eta)} \Theta(\xi, \eta)=\sum_{l,m=0}^{\infty}\{\kappa_{l,m},$
$\eta^{\emptyset l}\otimes\xi^{\otimes m}\}$ , $\xi,$ $\eta\in E_{\mathbb{C}}$ .

Therefore, an $(l+m)$-linear form $\kappa l,m$ on $E_{\mathbb{C}}^{\emptyset(l+m)}$ is obtained by Taylor expansion of
$e^{-(\xi,\eta)}\Theta(\xi, \eta)$ . We then use the assumptions to obtain a norm estimate of $\kappa l,m$ which
implies that $\kappa l,m\in(E_{\mathbb{C}}^{\otimes(l+m)})^{*}$. Finally with the help of precise norm estimate of $-l,m-$

we prove the strong convergence of (4-4) in $(E)^{*}$ or $(E)$ . For the complete proof see [26]
and [28].

COROLLARY 4.2. Let $\Theta$ be a function on $E_{\mathbb{C}}xE_{\mathbb{C}}$ with values in C. Then, there exists
$\Xi\in \mathcal{L}((E), (E)^{*})$ with $\Theta=-\underline{\underline{\wedge}}$ if and only $if\Theta$ satisfies $(Ol)$ and $(O2)$ . $Fu$ rthermore, there
exists $\Xi\in \mathcal{L}((E), (E))$ with $\Theta=-\underline{\underline{\wedge}}$ if and only if $\Theta$ satisfies $(Ol)$ and $(O2’)$ .

In some practical problems operators on Fock space are only defined on the exponential
vectors $\{\phi_{\xi};\xi\in E_{C}\}$ due to the fact that they are lmearly independent. The above result
is therefore useful for checking whether the operator comes into our framework.

4.2. Fock expansion. Since the symbol of $\Xi\in \mathcal{L}((E), (E)^{*})$ satisfies (Ol) and (O2),
Theorem 4.1 gives rise to reconstruction of $\Xi$ in terms of integral kemel operators. A
similar discussion for $\Xi\in \mathcal{L}((E), (E))$ is also valid and we come to the following
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THEOREM 4.3. For any $\Xi\in \mathcal{L}((E), (E)^{*})$ there exists a unique family of kernel distribu-
tions $(\kappa\iota_{m})_{l,m=0}^{\infty},$ $\kappa_{l,m}\in(E_{\mathbb{C}}^{\emptyset(l+m)})_{sym(l,m)}^{*}$ , such that the series (4-4) converges in $(E)^{*}$ , If
$\Xi\in \mathcal{L}((E), (E))$ , then every kernel distribution $\kappa l,m$ belongs to $((E_{\mathbb{C}}^{\otimes l})\otimes(E_{C}^{\otimes m})^{*})_{sym(l,m)}=$

$(E^{\bigotimes_{\mathbb{C}}^{\wedge}\mathfrak{l}})\otimes(E_{\mathbb{C}}^{\otimes m})_{sym}^{*}$ and (4-4) converges in $(E)$ .
The unique expression of $\Xi\in \mathcal{L}((E), (E)^{*})$ given as in (4-4) is called the Fock expansion

of $\Xi$ . As we explained in \S 4.1, for a given $\Xi\in \mathcal{L}((E), (E)^{*})$ the kernel distributions
$(\kappa_{l,m})_{l,m=0}^{\infty}$ are obtained from the Taylor expansion of $e^{-\{\xi,\eta)_{-}^{\wedge}}--(\xi, \eta)$ , see (4-5).

Since every bounded operator on $(L^{2})$ belongs to $\mathcal{L}((E), (E)^{*})$ , it admits the Fock ex-
pansion. However, the convergence can not be discussed within the framework of Hilbert
space. In fact, except scalar operators no integral kernel operator admits an extension
to a bounded operator on $(L^{2})$ . Therefore, the Fock expansion of a non-scalar bounded
operator on $(L^{2})$ is always an infinite series of unbounded operators.

4.3. Examples of Fock expansion.

EXAMPLE 1 (differential operators and translations). For $y\in E^{*}$ a differential operator
$D_{y}$ is defined by (3-1). Then

$D_{y^{=}-0,1}^{-}-(y)$ , $D_{y^{=}-1,0}^{*-}-(y)$ .

In particular, for $t\in T$ it holds that

$\partial_{t-0,1}^{-}=-(\delta_{t})$ , $\partial_{t-1,0}^{*-}=-(\delta_{t})$ .

As is easily expected, $D_{y}$ is related to a translation operator. For $y\in E^{*}$ we define

$T_{y}\phi(x)=\phi(x+y)$ , $x\in E^{*}$ , $\phi\in(E)$ .

Then $T_{y}\in \mathcal{L}((E), (E))$ and

$T_{y}= \sum_{n=0}^{\infty}\frac{1}{n!}--(y^{\otimes n})=\sum_{n=0}^{\infty}\frac{1}{n!}D_{y}^{n}$.

Note also that the Fock expansion of $T_{y}$ above yields Taylor expansion of test white noise
functionals obtained by Potthoff-Yan [32].

EXAMPLE 2 (multiplication operators). As is well known (see e.g., [14]), the pointwise
multiplication induces a continuous bilinear map from $(E)x(E)$ into $(E)$ . Hence each
$\Phi\in(E)^{*}$ gives rise to a continuous operator in $\mathcal{L}((E), (E)^{*})$ in such a way that $\{\{\Phi\phi,$ $\psi\rangle\rangle=$

{$\langle\Phi,$ $\phi\psi\rangle\rangle,$ $\phi,$ $\psi\in(E)$ . If $\Phi$ is given as $\Phi(x)=\Sigma_{n=0}^{\infty}\langle:x^{\otimes n}:,$ $F_{n}$ } in a symbolic sense (see
(2-3) $)$ , we have

$\Phi=\sum_{1,m=0}^{\infty}(\begin{array}{ll}l+ mm \end{array})--(F_{l+m})$ .
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In particular, for $x(t)=\{:x^{\otimes 1}:,$ $\delta_{t}\},$ $t\in T$ , we have

$x(t)=—1,0(\delta_{t})+---0,1(\delta_{t})=\partial_{t}^{*}+\partial_{t}$ .

This is an integrand of quantum Brownian motion $($ see $e.g.,$ $[11])$ , and therefore may be
called quantum white noise.

EXAMPLE 3 (Laplacians). Let $\tau\in(E\otimes E)^{*}$ be defined as $\langle\tau,$ $\xi\otimes\eta\rangle,$ $\xi,$ $\eta\in E$ . The integral
kemel operators with $\tau$ being the kemel distribution are of great importance. We put

$\Delta_{G}=---0,2(\tau)=\int_{TxT}\tau(s,t)\partial_{s}\partial_{t}dsdt$ , $N=—1,1( \tau)=\int_{T\cross T}\tau(s,t)\partial_{s}^{*}\partial_{t}dsdt$ .

These are called the Gross Laplacian and the number operator, respectively. It is noted
that both are continuous operators from $(E)$ into itself. Obviously, $N^{*}$ is an extension of
$N$ and $\Delta_{G}^{*}$ is given as $\Delta_{G}^{*}=---2,0(\tau)$ .

A white noise analogue of the Euclidean norm is $\{:x^{\otimes 2}$ :, $\tau\}$ . Regarded as a multiplica-
tion operator,

$\{:x^{\otimes 2}:,$ $\tau\}=\Delta_{G}^{*}+2N+\Delta_{G}$ .

The above mentioned Laplacians are characterized as rotation-invariant operators on white
noise functionals. For the full description, see [24].

EXAMPLE 4 (projection onto the n-th chaos). Let $(L^{2})=\Sigma_{n=0}^{\infty}\oplus?t_{n}$ be the Wiener-It\^o
decomposition (see also \S 2.2) and let $\pi_{n}$ be the projection onto the n-th chaos $?t_{n}$ . It is
easy to see that $\pi_{n}\in \mathcal{L}((E), (E))$ if restricted to $(E)$ . Then,

$\pi_{n}=\sum_{l=n}^{\infty}\frac{(-1)^{l-n}}{(l-n)!n!}---\iota,\iota(\lambda_{l})$ ,

where

(4-6) $\lambda_{l}=.\sum_{i_{1)l}i_{l}=0}^{\infty}i_{1}i_{1}\in(E^{\otimes 2l})^{*}$ .

It is also interesting to note that

$—l,l(\lambda_{l})=N(N-1)\cdots(N-l+1)$ ,

where $N$ is the number operator, see Example 3.

EXAMPLE 5 (Fourier-Wiener transfrom). Let $(\exp(i\theta N))_{\theta\in R}$ be a one-parameter group
of Fourier-Wiener transform, namely, it is a one-parameter group of unitary operators on
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$(L^{2})$ with the number operator $N$ being the infinitesimal generator. Then $\exp(i\theta N)\in$

$\mathcal{L}((E), (E))$ and, with $\lambda_{l}$ defined as in (4-6) we have

$\exp(i\theta N)=\sum_{l=0}^{\infty}\frac{(e^{i\theta}-1)^{l}}{l!}---\iota,\iota(\lambda_{l})$.

EXAMPLE 6 (Weyl form of canonical commutation relation). We consider representations
of the additive group $E$ . For $\xi\in E$ and $\phi\in(E)$ put

$P_{\xi} \phi(x)=\phi(x+\xi)\exp(-\frac{1}{2}(x, \xi\}-\frac{1}{4}\langle\xi, \xi\rangle)$ ,

$Q_{\xi}\phi(x)=e^{i(x,\xi)}\phi(x)$ .

Then, $P_{\xi}$ and $Q_{\xi}$ belong to $\mathcal{L}((E), (E))$ and are extended to unitary operators on $(L^{2})$ .
The Fock expansions of $P_{\xi}$ and $Q_{\xi}$ are given as

$P_{\xi}=e^{-(\xi,\xi)/8} \sum_{l,m=0}^{\infty}\frac{(-1)^{l}}{l!m!}(\frac{1}{2})^{l+m}--(\xi^{\otimes(l+m)})$ ,

$Q_{\xi}=e^{-\langle\xi,\xi)/2} \sum_{l,m=0}^{\infty}\frac{i^{l+m}}{l!m!}--(\xi^{\otimes(l+m)})$.

Moreover,

$p \xi\equiv\frac{d}{d\theta}P_{\theta\xi}$ $= \frac{1}{2}(D_{\xi}-D_{\xi}^{*})$ ,
$\theta=0$

$qf^{\equiv\frac{d}{d\theta}Q_{\theta\xi}}$ $=i(D_{\xi}+D_{\xi}^{*})$ .
$\theta=0$

These operators belong to $\mathcal{L}((E), (E))$ again and satisfy the canonical commutation rela-
tion.

EXAMPLE 7 (Kuo’s Fourier transform). There is a white noise analogue of a usual Fourier
transform on $R^{n}$ introduced by Kuo in [16] at somehow formal level and in [18] rigorously.
This operator is characterized as a unique operator in $\mathcal{L}((E)^{*}, (E)^{*})$ which intertwines
differential operators and coordinate multiplication operators, see [8]. Moreover, Kuo’s
Fourier transform is imbedded in a one-parameter group of transformations called Fourier-
Mehler transforms $(S_{\theta})_{\theta\in R}\subset \mathcal{L}((E)^{*}, (E)^{*})$ in such a way that $S_{-\pi/2}=S$ , see [17], [18].
Regarded as an operator in $\mathcal{L}((E), (E)^{*}),$ $\mathfrak{F}_{\theta}$ admits Fock expansion:

$\mathfrak{F}_{\theta}=\sum_{l,m=0}^{\infty}\frac{1}{l!m!}(\frac{i}{2}e^{i\theta}\sin\theta)^{l}(e^{i\theta}-1)^{m}--(\tau^{\otimes l}\otimes\lambda_{m})$ .

EXAMPLE 8 (integral-sum kernel operators). In order to describe solutions of certain quan-
tum stochastic differential equations Maassen [21] introduced a certain class of operators
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on Fock space. The discussion has been improved by Lindsay [20] and Meyer [22], and
those operators are now called integral-sum kernel operators. Formal relation between
their operators and our integral kernel operators is discussed in [25] and [26].

5. CALCULUS ON VECTOR-VALUED FUNCTIONALS

5.1. Construction. Let $’\kappa$ be another complex Hilbert space whose norm is denoted
by $|\cdot|_{0}$ again. This will be called an initial space. Let $B$ be a positive selfadjoint operator
on $\prime k\ell$ with $infSpec(B)>0$ and let $\mathcal{E}$ be the standard CH-space constructed from $(H, B)$ .
Then $(E)\otimes \mathcal{E}$ is the space of $\mathcal{E}$-valued test white noise functionals and its dual space
$((E)\otimes \mathcal{E})^{*}=(E)^{*}\otimes \mathcal{E}^{*}$ consists of $\mathcal{E}^{*}$ -valued generalized white noise functionals. It must
be recalled here that $(E)$ is a nuclear Fr\’echet space. We put

(5-1) $\sigma=($ $infSpec(B))^{-1}=\Vert B^{-1}\Vert_{oP}>0$.

Note that the identity operator on $\mathcal{H}$ can be taken for $B$ . In that case, identifying $H^{*}$

with $\prime H$ , we obtain $\prime ft$-valued test and generalized white noise functionals. Since $(E)$ is the
standard CH-space constructed from $(\Gamma(A), (L^{2}))$ , we have

THEOREM 5.1. Notations and assumptions being as above, $\Gamma(A)\otimes B$ is a positive self-
adjoint operator on $L^{2}(E^{*}, \mu)\otimes \mathcal{H}\cong L^{2}(E^{*}, \mu;\mathcal{H})$ with inf Spec $(\Gamma(A)\otimes B)>0$ . The
standard CH-space constructed from $(L^{2}(E^{*}, \mu)\otimes?t, \Gamma(A)\otimes B)$ is isomorphic to $(E)\otimes \mathcal{E}$ .

By virtue of the above fact we may extend basic notations for scalar-valued functionals
to the case of vector-valued ones. The canonical bilinear form on $((E)\otimes \mathcal{E})^{*}x((E)\otimes \mathcal{E})$

is denoted by $\langle\langle\cdot,$ $\cdot\}\}$ again. Similarly, the norms of $(E)\otimes \mathcal{E}$ are denoted again by $||\cdot||_{p}$ .
While, the bilmear form $\{\cdot,$ $\cdot\rangle$ on $(E_{C}^{\otimes n})^{*}xE_{C}^{\otimes n}$ is extended to a continuous bilinear map
from $(E_{\mathbb{C}}^{\otimes n})^{*}x(E_{C}^{\emptyset n}\otimes \mathcal{E})$ into $\mathcal{E}$ in an obvious way. Then, according to the Wiener-It\^o
decomposition :

$L^{2}(E^{*}, \mu;\mathcal{H})\cong(L^{2})\otimes \mathcal{H}=\sum_{n=0}^{\infty}\oplus(H_{n}\otimes 7t)$ ,

we adopt formally the same notations for $\mathcal{E}$-valued test functionals and $\mathcal{E}^{*}$-valued gen-
eralized functionals as in (2-2) and (2-4), respectively. However, $f_{n}\in E_{\mathbb{C}}^{\otimes^{\wedge}n}\otimes \mathcal{E}$ and
$F_{n}\in(E_{C}^{\otimes n}\otimes \mathcal{E})_{sym}^{*}\equiv(E_{C}^{\otimes n})_{sym}^{*}\otimes \mathcal{E}^{*}$ . Note also that (2-3) and (2-5) remain valid.

5.2. Continuous version theorem. Kubo-Yokoi’s continuous version theorem [15] is
generalized to the case of vector-valued functionals.

THEOREM 5.2. For each $\phi\in(E)\otimes \mathcal{E}$ there exists a unique continuous function $\tilde{\phi}$ : $E^{*}arrow \mathcal{E}$

such that $\phi(x)=\tilde{\phi}(x)$ for $\mu- a.e$ . $x\in E^{*}$ .

The proof requires an explicit estimate of $|\phi_{0}(x)-\phi_{0}(y)|,$ $\phi 0\in(E),$ $x,$ $y\in E^{*}$ , in terms
of a defining seminorm of $E^{*}$ and a general result on the $\pi$-tensor product.
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The white noise delta function $\delta_{x}\in(E)^{*}$ now becomes a continuous linear map from
$(E)\otimes \mathcal{E}$ into $\mathcal{E}$ , i.e., $\delta_{x}\in \mathcal{L}((E)\otimes \mathcal{E}, \mathcal{E})$ . Therefore the convergence in $(E)\otimes \mathcal{E}$ implies the
pointwise convergence as $\mathcal{E}$-valued functions on $E^{*}$ .

5.3. The S-transform. The $S- transform_{-}for$ scalar-valued functionak due to Kubo-
Takenaka [14] is naturally extended to the case of vector-valued white noise functionals.
The S-transfo $rm$ of $\Phi\in((E)\otimes \mathcal{E})^{*}$ is a function on $E_{C}$ with values in $\mathcal{E}^{*}$ defined by

(5-2) $\langle S\Phi(\xi),$ $u\rangle=\{\{\Phi,$ $\phi_{\xi}\otimes u\rangle\}$ , $u\in \mathcal{E}$ , $\xi\in E_{C}$ .

Then $F=S\Phi$ : $E_{C}arrow \mathcal{E}^{*}$ satisfies the following properties:
(Fl) (analyticity) For any fixed $\xi,$ $\xi_{1}\in E_{C}$ and $u\in \mathcal{E}$ , the function

$z\mapsto\langle F(z\xi+\xi_{1}),$ $u\rangle$ , $z\in C$ ,

is entire holomorphic;
(F2) (boundedness) There exist $C\geq 0,$ $K\geq 0$ and $p\geq 0$ such that

$|\{F(\xi),$ $u\rangle|\leq C|u|_{p}\exp(K|\xi|_{p}^{2})$ , $\xi\in E_{\mathbb{C}}$ , $u\in \mathcal{E}$ .

If $\Phi=\phi\in(E)\otimes \mathcal{E}$ , then $F=S\phi$ satisfies a stronger estimate:
$(F2^{/})$ (boundedness) For any $\epsilon>0$ and $p\geq 0$ there exists $C\geq 0$ such that

$|\{F(\xi), u\}|\leq C|u|_{-p}\exp(\epsilon|\xi|_{-p}^{2})$ , $\xi\in E_{C}$ , $u\in \mathcal{E}$ .

Note also that if a function $F$ : $E_{\mathbb{C}}arrow \mathcal{E}^{*}$ satisfies (F2’), then $F(\xi)\in \mathcal{E}$ for all $\xi\in E_{C}$ .
More important is that the above listed properties characterize the S-transform of gen-

eralized or test functionals. Namely, characterization theorem due to Potthoff-Streit [31]
and Kuo-Potthoff-Streit [19] holds for vector-valued functionals as well.

THEOREM 5.3. If a function $F:E_{C}arrow \mathcal{E}^{*}$ satisfies $(Fl)$ and $(F2)$ , there exists $\Phi\in$

$((E)\otimes \mathcal{E})^{*}$ such that $S\Phi=F$ , If $F$ satisfies $(Fl)$ and $(F2^{l})$ , there exists $\phi\in(E)\otimes \mathcal{E}$ such
that $S\phi=F$ .

For the proof we need the original result on scalar-valued functionals with precise norm
estimate obtained in [28] and the famous kemel theorem for nuclear spaces. (Recall that
$\mathcal{E}$ is not necessarily nuclear; The nuclearity of $(E)$ is essential.)

5.4. Contraction of tensor products. In order to define an integral kernel operator
on vector-valued functionals we do not follow the method used in \S 3.2 but adopt a more
direct definition. (This is also applicable to the case of scalar-valued functionals.)
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Let $f\in E_{\mathbb{C}}^{\otimes(l+m)}$ and $g\in E_{C}^{\otimes(n+m)}$ be given in Fourier series expansions:

$f= \sum_{ij}\langle f,$
$e(i)\otimes e(j)\rangle e(i)\otimes e(j)$ ,

where

$g= \sum_{kj}(g,$
$e(k)\otimes e(j)\rangle e(k)\otimes e(j)$ ,

$e(i)=e;_{1}\otimes\cdots\otimes ei_{l}$ , $e(j)=e\otimes\cdots\otimes e$ , $e(k)=e_{k_{1}}\otimes\cdots\otimes e_{k_{u}}$ .

We then put

(5-3) $f \otimes_{m}g=\sum_{i,k}(\sum_{j}\{f,$ $e(i)\otimes e(j)\rangle\langle g,$ $e(k)\otimes e(j)\rangle)e(i)\otimes e(k)$ .

This is a contraction of tensor product. It is important to have its precise norm estimate.
Define $|f|_{l,m;p,r}$ by

(5-4)
$|f|_{lm;p,r}^{2})= \sum_{ij}|\{f,$

$e(i)\otimes e(j)\rangle|^{2}|e(i)|_{p}^{2}|e(j)|_{r}^{2}$ , $p,$ $r\in$ R.

With these notation a simple application of the Schwartz inequality yields

(5-5) $|f\otimes_{m}g|_{l},\cdot\leq|f||g|_{n,m\cdot q)^{-r}})$ ’
$f\in E_{\mathbb{C}}^{\otimes(l+m)},g\in E_{C}^{\otimes(n+m)},p,$

$q,$ $r\in R$ .

We next generalize the contraction (5-3) to the vector-valued case, namely, for $\kappa\in$

$\mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ and $f\in E_{C}^{\otimes(m+n)}\otimes \mathcal{E}$ we shall define $\kappa\otimes_{m}f\in(E_{\mathbb{C}}^{\otimes(l+m)}\otimes \mathcal{E})^{*}$ . For
that purpose we need to define some norms. For a linear map $\kappa$ : $E_{C}^{\otimes(l+m)}arrow \mathcal{L}(\mathcal{E},\mathcal{E}^{*})$ and
$p,$ $q,$ $r,$ $s\in R$ we put

$|| \kappa||_{l,m;p,q;r_{z^{S}}}=\sup\{\begin{array}{l}1/2\sum_{ij}|\{\kappa(e(i)\otimes e(j))u, v\}|^{2}|e(i)|_{p}^{2}|e(j)|_{q}^{2}; |v|_{-r}\leq 1\end{array}$
$|u|_{-s}\leq 1$

For brevity we put $||\kappa||_{p}=||\kappa||_{l,mp,p;p,p}$ . It can be proved that $\kappa\in \mathcal{L}(E_{\mathbb{C}}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ if
and only if $||\kappa\Vert_{-p}<\infty$ for some $p\geq 0$ .

Let $\kappa\in \mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ and $f\in E_{\mathbb{C}}^{\otimes^{\wedge}(m+n)}\otimes \mathcal{E}$ . It then follows from a general theory
that there exists an element $\kappa\otimes_{m}f\in(E_{C}^{\otimes(l+m)}\otimes \mathcal{E})^{*}$ uniquely determined by

$\{\kappa\otimes_{m}(f_{0}\otimes u),g0\otimes v\}=\{\kappa(g0\otimes_{n}f_{0})u,$ $v\rangle$ , $f_{0}\in E_{\mathbb{C}}^{\otimes(m+n)},$ $g0\in E_{C}^{\otimes(l+n)}$ , $u,$ $v\in \mathcal{E}$ .
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Moreover, by a direct calculation with (5-5) we obtain

(5-6) $|\kappa\otimes_{m}f|_{-(p+1)}\leq\delta^{l+m+2n}\sigma||\kappa||_{\mathfrak{l},m;-p,-q;-p,-s}|f|_{m,n;q+1,-p+1;s}$ ,

where
$|f|_{m,n;q+1,-p+1;s}=|((A^{\otimes m})^{q+1}\otimes(A^{\otimes n})^{-p+1}\otimes B^{s})f|_{0}$ .

5.5. Integral kernel operators. With each $\kappa\in \mathcal{L}(E_{\mathbb{C}}^{\otimes(1+m)},\mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ we shall
associate a continuous operator $-l,m-$ from $(E)\otimes \mathcal{E}$ into $((E)\otimes \mathcal{E})^{*}$ . For $\phi\in(E)\otimes \mathcal{E}$ in
the canonical form:

$\phi(x)=\sum_{n=0}^{\infty}\{:x^{\otimes n}:,$ $f_{n}\}$ ,

where $f_{n}\in E_{\mathbb{C}}^{\otimes n}\otimes \mathcal{E}$ , we put

$— \iota_{m}(\kappa)\phi(x)=\sum_{n=0}^{\infty}\frac{(n+m)!}{n!}\{:x^{\emptyset(l+n)}:,$ $\kappa\otimes_{m}f_{n+m}\}$ .

Then a computation with (5-6) leads us to the following key result.

PROPOSITION 5.4. Let $\kappa\in \mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$. $Then_{f}$ for any $\phi\in(E)\otimes \mathcal{E}$ ,

$\Vert_{-l,m}^{-}-(\kappa)\phi\Vert_{p}\leq\rho^{-q/2}\delta^{l+m-1}\sigma^{2}(l^{l}m^{m})^{1/2}(\frac{\rho^{-\alpha/2}}{-\alpha e\log\rho}I^{l/2}$

$x(\frac{\rho^{-\beta/2}}{-\beta e\log\rho}I^{m/2}||\kappa||_{l,m\cdot p+1,-(p+q+1);p+1,-(p+q+1)})||\phi||_{p+q+2}$ ,

whenever $p\in R,$ $q\geq 0,$ $\alpha,$ $\beta>0$ satisfy

$||\kappa||_{l,m\cdot p+1,-(p+q+1);p+1,-(p+q+1)}<\infty)$ ’
$\delta^{2}\rho^{q}<1$ , $\delta^{4}p^{2q}\leq\rho^{\alpha+\beta}$ .

Specializing the parameters $p,$ $q,$ $\alpha,$
$\beta$ in Proposition 5.4, we come to the following

THEOREM 5.5. For any $\kappa\in \mathcal{L}(E_{\mathbb{C}}^{\emptyset(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ the $operat_{0r-l,m}^{-}-(\kappa)$ becomes a contin-
uous operator in $\mathcal{L}((E)\otimes \mathcal{E}, ((E)\otimes \mathcal{E})^{*})$ . Moreover,

$\Vert_{-l,m}^{-}-(\kappa)\phi\Vert_{-(p+1)}\leq\delta^{l+m}\sigma||\kappa||_{-p}||\phi||_{p+1}(\delta\rho^{p})^{-1}(l^{l}m^{m})^{1/2}(\frac{(\delta\rho^{p})^{-1}}{-2e\log\delta\rho^{p}})^{(l+m)/2}$

THEOREM 5.6. For $\kappa\in \mathcal{L}(E_{C}^{\otimes(1+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ the following four conditions are equivalent:
(i) $—\iota_{m}(\kappa)\in \mathcal{L}((E)\otimes \mathcal{E}, (E)\otimes \mathcal{E})$ ;
(ii) for any $p\geq 0$ there exists $q\geq 0$ such that $|\kappa|_{l,m;p,-(p+q)p,-(p+q)}<\infty$ ;
(iii) for any $p\geq 0$ there exists $r,$ $s\in R$ such that $|\kappa|_{l,m}iP^{r;p,s}<\infty$ ;
(iv) $(\xi, \eta)\mapsto\kappa(\xi\otimes\eta)$ admits an extension to a separately continuous bilinear map from

$(E_{\mathbb{C}}^{\otimes l})^{*}x(E_{\mathbb{C}}^{\otimes m})$ into $\mathcal{L}(\mathcal{E}, \mathcal{E})$ .
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Let $\mathcal{B}((E_{\mathbb{C}}^{\otimes l})^{*}, E_{C}^{\otimes m};\mathcal{L}(\mathcal{E}, \mathcal{E}))$ denote the space of $\kappa\in \mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ satisfying one
of the conditions in Theorem 5.6.

As is easily verified, the operator $-l,m-$ is uniquely determined by

$\{\{\Xi(\phi\otimes u), \psi\otimes v\}\}=\{\kappa(\eta\emptyset,\psi)u,$ $v\}$ , $\phi,$ $\psi\in(E)$ , $u,$
$v\in \mathcal{E}$ ,

where $\eta\phi,\psi$ is defined as in (3-3). In view of (3-4) we again adopt a formal expression
for $–l,m$ as in (0-1), where $\partial_{s}^{*}$ and $\partial_{t}$ are respectively shortened notation for $(\partial_{s}\otimes I)^{*}$

and $\partial_{t}\otimes I,$ $I$ being the identity operator on $\mathcal{E}$ . While, $\kappa\in \mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))$ might
be called a $\mathcal{L}(\mathcal{E}, \mathcal{E}^{*})$ -valued distribution on $T^{l+m}$ . The uniqueness of a kernel distribution
is described by $\mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))_{sym(l_{t}m)}$ and $\mathcal{B}((E_{\mathbb{C}}^{\otimes l})^{*}, E_{C}^{\otimes m};\mathcal{L}(\mathcal{E}, \mathcal{E}))_{sym(l,m)}$ of wbich
definitions are apparent.

5.6. Symbol of operators on vector-valued functionals. The symbol of $\Xi\in$

$\mathcal{L}((E)\otimes \mathcal{E}, ((E)\otimes \mathcal{E})^{*})$ is a function on $E_{C}xE_{C}$ with values in $\mathcal{L}(\mathcal{E}, \mathcal{E}^{*})$ defined by

$\{-\wedge--(\xi, \eta)u,$ $v\}=\{\{\Xi(\phi_{\xi}\otimes u),$ $\phi_{\eta}\otimes v\}\rangle$ , $\xi,$ $\eta\in E_{C}$ .

This is a direct generalization of an operator symbol introduced in \S 4.1. For an integral
kemel operator we have

$-l,m-(\eta^{\otimes l}\otimes\xi^{\otimes m})$ , $\xi,$ $\eta\in E_{C}$ , $\kappa\in E_{C}^{\otimes(l+m)}$ .

In particular, for $\xi,$ $\eta\in E_{C}$ we have

$(\partial_{t}\otimes I)^{\wedge}(\xi, \eta)=e^{\{\xi,\eta)}\xi(t)$ , $(\partial_{t}^{*}\otimes I)^{\wedge}(\xi, \eta)=e^{\{\xi,\eta)}\eta(t)$ ,

where the right hand sides are scalar operators on $\mathcal{E}$ , see also \S 4.1.
We now list some properties of the symbol of an operator $\Xi$ in $\mathcal{L}((E)\otimes \mathcal{E}, ((E)\otimes \mathcal{E})^{*})$

and $\mathcal{L}((E)\otimes \mathcal{E}, (E)\otimes \mathcal{E})$ . Put $\Theta=-\underline{\underline{\wedge}}$ .
(Ol) (analyticity) For any $\xi,$ $\xi_{1},$

$\eta,$ $\eta 1\in E_{C}$ and $u,$ $v\in \mathcal{E}$ the function

$z,$ $w\mapsto\{\Theta(z\xi+\xi_{1}, w\eta+\eta 1)u, v\}$ , $z,$ $w\in C$ ,

is entire holomorphic;
(O2) (boundedness) There exist constant numbers $C\geq 0,$ $K\geq 0$ and $p\in R$ such that

$|\langle\Theta(\xi, \eta)u,$ $v\}|\leq C|u|_{p}|v|_{p}\exp K(|\xi|_{p}^{2}+|\eta|_{p}^{2})$ , $\xi,$ $\eta\in E_{C}$ , $u,$ $v\in \mathcal{E}$ .
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If $\Xi\in \mathcal{L}((E)\otimes \mathcal{E}, (E)\otimes \mathcal{E})$ , we have

(O2’) (boundedness) For any $p\geq 0$ and $\epsilon>0$ there exist $C\geq 0$ and $q\geq 0$ such that

$|\{\Theta(\xi, \eta)u, v\}|\leq C|u|_{p+q}|v|_{-p}\exp\epsilon(|\xi|_{p+q}^{2}+|\eta|_{-p}^{2})$ , $\xi,$ $\eta\in E_{\mathbb{C}}$ , $u,$ $v\in \mathcal{E}$ .

As in the case of scalar-valued functionals (\S 4), we have the following characterization
theorems.

THEOREM 5.7. Let $\Theta$ be a $\mathcal{L}(\mathcal{E}, \mathcal{E}^{*})$ -valued function on $E_{\mathbb{C}}xE_{\mathbb{C}}$ . If $\Theta$ satisfies the con-
ditions $(Ol)$ and $(O2)_{f}$ there exists a unique family of kernel distributions $(\kappa l_{1}m)_{l,m=0}^{\infty}$ ,
$\kappa\iota_{m}\in \mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))_{sym(l_{r}m)\prime}$ such that

$(\Theta(\xi, \eta)u,$ $v \rangle=\sum_{l,m=0}^{\infty}\{\{-l_{t}m-,$ , $\xi,$ $\eta\in E_{C}$ .

Moreover, the series

(5-7) $\Xi\emptyset=\sum_{)}^{\infty}--l,mlm=0$ ’
$\phi\in(E)\otimes \mathcal{E}$ ,

converges in $((E)\otimes \mathcal{E})^{*},$ $\Xi\in \mathcal{L}((E)\otimes \mathcal{E}, ((E)\otimes \mathcal{E})^{*})$
$and-\underline{\underline{\wedge}}=\Theta$ . If $\Theta$ satisfies (01) and

$(O\ovalbox{\tt\small REJECT})$, the kernel distribution $\kappa_{l_{1}m}$ belongs to $\mathcal{B}((E_{C}^{\otimes \mathfrak{l}})^{*}, E_{C}^{\otimes m};\mathcal{L}(\mathcal{E}, \mathcal{E}))_{sym(l,m)}$ . In that case
the series (5-7) converges in $(E)\otimes \mathcal{E}$ and $\Xi\in \mathcal{L}((E)\otimes \mathcal{E}, (E)\otimes \mathcal{E})$ ,

5.7. Fock expansion. As an immediate consequence of Theorem 5.7 we come to the
Fock expansion of $\Xi\in \mathcal{L}((E)\otimes \mathcal{E}, ((E)\otimes \mathcal{E})^{*})$ .
THEOREM 5.8. For any $\Xi\in \mathcal{L}((E)\otimes \mathcal{E}, ((E)\otimes \mathcal{E})^{*})$ there exists a unique family of distri-
butions $(\kappa_{l,m})_{l,m=0^{f}}^{\infty}\kappa_{l,m}\in \mathcal{L}(E_{C}^{\otimes(l+m)}, \mathcal{L}(\mathcal{E}, \mathcal{E}^{*}))_{sym(l,m)}$ , such that

(5-8) $\Xi\phi=\sum_{l,m=0}^{\infty}---\iota_{m}(\kappa\iota_{m})\phi$ , $\phi\in(E)\otimes \mathcal{E}$ ,

where the nght hand side converges in $((E)\otimes \mathcal{E})^{*}$ . If $\Xi\in \mathcal{L}((E)\otimes \mathcal{E}, (E)\otimes \mathcal{E})$ , then every
kernel distribution $\kappa l,m$ belongs to $\mathcal{B}((E_{C}^{\otimes l})^{*}, E_{C}^{\otimes m};\mathcal{L}(\mathcal{E}, \mathcal{E}))_{sym(l,m)}$ and the right hand side
of (5-8) converges in $(E)\otimes \mathcal{E}$ .
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