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The Multiplicative Group of Rationals Generated by the Shifted Primes
PD.T.A. Elliott  ( Colonade Univerrly . USA)

1. I begin with three conjectures.

Conjecture 1. Every positive rational r has a representation
r=——, p,q prime.

Conjecture 2. There is a k so that every positive rational r has a representation

k
r= :[_I(p‘7 +1)%, p; prime, €j=+1or —1.
=1

Conjecture 3. Every positive rational r has a representation

kr
= H(Pj +1)%, p; prime, €;j=+1or —1.
J=1

Let Q* be the multiplicative group of positive rationals, I" the subgroup generated by the p+ 1,p
prime, G = Q*/T the quotient group. Conjecture 3 asserts the triviality of G.

Clearly the validity of Conjecture 1 implies that of Conjecture 2, and so of Conjecture 3. Actually
Conjectures 2 and 3 are equivalent, although that is not at all obvious. Moreover, G is known to be
finite.

That G is finite follows from early work of K4dtai, and Elliott; ﬁot realised at the time. A documented
account of their results, related results of Elliott, Wirsing, Dress and Volkmann, Wolke, Meyer, and a
proof of the equivalence of Conjectures 2 and 3 may be found in Elliott, [2], Chapters 15 and 23.

Let |H| denote the order of a finite group H.

Theorem 1. There is a positive integer k such that every positive rational r has a representation

k
,’.|Gl = H(pJ + 1)55, Pj prime €5 = +1 or —1.
Jj=1

Theorem 2. |G| £ 4.

2. The equivalence of Conjectures 2 and 3 obtained in Elliott {2], Chapter 23, elaborates to give Theorem
1. I sketch a proof of Theorem 2 that suggests an approach to a sharper bound.
Let U be the multiplicative group of complex numbers that are roots of unity. Let G be the dual

group generated by the group
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homomorphisms g : G — U. In particular, |@[ = |G].

We can extend the definition of a g in G to Q*, by
Q@ - Q' r-v,

employing the canonical homomofphism from Q* to G. Thus g is typically a completely multiplicative
function, with values in U, and which is identically 1 on the shifted primes.
Let g1,..., g: be extensions of elements in G (we might view them as characters on Q*), and define

the arithmetic function )
t

win)=|>_g;(n)| .
j=1

For real z > 0, let

S = E w(p+1).
p+1<z
Our hypothesis ensures that
‘ t2x
> — =
S>(0+ 0(1))logx’ T — 00,

and we seek an upper bound for S.

We do not currently possess a method to give sharp upper bounds for sums

> h(p+1),

p+1<z

when h is multiplicative, constrained only by |h(n)] < 1; so we argue indirectly.
Let 1 < z < z; R the product of primes not exceeding z; A4 real numbers for each divisor d of R
which does not exceed z, A\; = 1. Following Selberg’s sieve method

2

S < Z Z)\d w(n+1)+tzz

n+1<z \ d|n
= Z Ad; Ad, Z w(m) + small.
dy,d2

m<z
m=1 (mod [d,dz])

Here small indicates that we shall choose z so that the missing term is o(z/logz) as  — oo. In order
to proceed we seek an estimate for

t

) g(m)g(m),

i,j5=1 m<z
m=1 (mod D)

with the positive integer D as large as possible compared to z.



Let 0 < € < 1/2. For the moment assume an analogue of the extended Riemann Hypothesis: that
for any multiplicative function h with values in the complex unit disc,

Y hm)~ @ 3 him)~ Z h(m),

m<z m<z m<z
m=1 (mod D) (m,D)=1

uniformly for D up to z3~¢. Here ~ indicates that the difference of the two expressions approximately
equated is to have a negligible effect in our subsequent calculations. The second part of the hypothesis,
a tricky point, is employed only to simplify the exposition of the argument. Granted a suitable validity

to this generalized hypothesis

Z Ady A Z w(m) + small, z — oo.
~, [di,da] =

Quite generally, if the series
> p7'(1 - Reh(p)p),
P

taken over the prime numbers, diverges for every real 7, then a 1968 theorem of Haldsz asserts that
z ! Z h(m) -0, =z — oc.
m<z
In our case, typically either

z 1 Z ge(m)gj(m) - 0, z — oo,

m<z

or
(1) > p7'(1 — Rege(p)g;()p™")
P

converges for some real 7. The latter ensures that gg(m)Ej(T)m*’ is ‘usually near to 1’ on integers m;
hence g¢(p + l)m(p+ 1)*" is ‘usually near to 1. Since every g;(p+1)=1,1<j5 <t , (p+1)" is
‘usually near to 1. In stages, this forces 7 = 0, g¢g; near to 1, g,g; identically one. I explicate this part
of the argument below.

Accordingly,

Yo wm) =Y Y gm)gs(m) = lge(m)|* + (=), = — oo,
m<z £,j=1m<z =1

can be assumed.

Following the classical method of Selberg, we choose the A4 so that

Ad, /\d2 1
(2) 22 [dl, dg] log V4




Altogether

g Aotz |
log 2

The best that we can do with our current hypotheses is set 22 = zi—*. Since e > 0 may be otherwise

arbitrary,

S < (4t+o(l))1—o§;, z — 00.

Combining the upper and lower asymptotic bounds for S gives £2 <4t t <4, lél < 4. Theorem 2

is so established.

3. How can we obviate our generalized Riemann Hypothesis? The example of h a non-principal Dirichlet
character (mod 3) shows that our extended hypothesis is in general false. Disregarding this objection
we might try for an analogue of the Bombieri—Vinogradov theorem on primes in arithmetic progression;
a result of the form

2

1 —
® . z_ (D) (rr,rll)aiﬁl Z< h(m) - ¢(D) Z h(m)| < z%(logz)™4,
DS:% ‘ mzrm(azd D) ]§

valid for eaéh fixed positive A, would suffice. Standard methods, such as Motohashi, [6], require that the
function h(p) log p satisfy an analogue of the Siegel-Walfisz theorem for primes in arithmetic progression;
a condition not necessarily satisfied at the outset of our argument.

In [4], [5], I proved that a general result of the type (3) is available provided that h is replaced by
h — h’ — h”, where h'(m) = h(m)/logm =~ h(m)/log z; k" (m) =

h(p)log p/ log z, supported on the primes. Thus, besides w(n), we have to consider sums

> gin)gi(n),
n<z
n=1 (mod D)

and so on. This leads to extra terms. Typically we proceed

n<z \ din n<z \ din

Z(Z*a)zgz(nﬂ) '(n+1) <Z(Z/\4) Y(n+1)|

«Z( > Ad) l—og+small

p<z \dl(p-1)

I
<« da Y lzgz + small.
dy,dz

p<z
p=1 (mod [d1,da])



To this last multiple sum we apply the standard theorem of Bombieri and Vinogradov, and obtain a

bound

/\,11 /\d,

z
(4) < logz df:d, (s, da) + small.

In practice we need to choose the Ay to make five qué,dratic forms simultaneously small; the forms
appearing in (2) and (4) typical.

Note that the denominator [dy, d3] of (2) is replaced by ¢([d:, dg]) in (4). To allow a choice of the
Aq we take for R not the product of all primes up to z, but the product of all primes in an interval

((log ), z], where c; is a constant, of value about 4. We so reach

v
S< ——— il
®) S Gogs X ) emall
g (m—1,v)=1

where v denotes the product of the omitted primes, those not exceeding (log z)°!.

4. The integer v in (5) is sufficiently small relative to R that the corresponding condition (m —1,v) =1

can be dealt with directly.

Lemma 1. Let0< 8<1,0<e<1/8,2<logM < Q< M. Then

1 x log Q L
> g(n)=m > 9("”0(@(@?) )

n<z n<z
n=r (mod D) (n,D)=1

holds for MP < z.< M, all (r, D) = 1, all D < Q save possibly for the multiples of a Do > 1.
There are absolute constants B, ¢ and attached to each exceptional modulus a non-principal character

x with the following properties: For 7,|7| < QFB,

Z p (1 — Reg(p)x(p)p'") < % log (llogM) e

Q<p<M g @

Moreover, the characters are induced by the same primitive character (mod Do).

This result is the substance of [3].
We can largely evaluate w(m) over the integers m which satisfy (m — 1,v) = 1 by means of the

representations

dowlm) 3o wpd=dud) Y wm)
m<z d|(m—1,v) djv m<z
m=1 (mod d)
The contribution to the double sums arising from those d exceeding exp((logz)®) for a small, fixed,

positive €o, may be neglected. The remaining d give rise to the main term. Effectively we apply Lemma 1



with Q = exp((log z)®°), so that (log Q/log z)!/1® « (log z)~(1~%0)/10 is suitably small. This introduces

a factor

which cancels the related factor in (5).

The upshot of the argument is a result of the safne quality as that which We can achieve'by assuming
a Riemann Hypothesis analogue for multiplicative ‘functions with values in the complex unit disc.

To improve the bound of Theorem 2 it would suffice to be able to choose a value z2 = £ with
v > 1/2. To this end we might treat the error term in the application of Selberg’s sieve with more care.

The foregoing is an abbreviated account of the lecture with which I opened the conference in Analytic
Number Theory, held at the Institute of Mathematics, Kyoto, Japan, in October 19-22, 1993.

In the following sections I substantiate the sketched steps.

5. A valid version of (3) is established as Lemma 6 of [5)].
‘Let g be multiplicative, with values in the complex unit disc. Define an exponentially multiplicative
function g, by g,(p*) = g(p)*/k!, k = 1,2,3,...; and the multiplicative h by convolution: g = h % g;.
For B > 0 define

fimy= 3 h(u)g1(m)g(p)logp B = 3 h(u)g1(r)g(p)log p

b b
urmpen log mp urp=n log rp
u<(log z) B u<(log z)?
p< r<b

and set B(n) = g(n) — Bi(n) — Ba(n).
Lemma 2. Let B>0, A>0, b= (logz)54*t1%, 0 < § < 1/2. Then

1
2 e | X Bm-gms Y A

Dy Dy <z* n<z n<z,(n,D3)=1
n=r (mod D; D) n=r (med D;)

< z(log z) "4 (loglog z)? + w™z(log )24 *8(loglog £)? + w1/ 2x(log z)*/% log log =
+z(log z)1G5),

where D, s confined to those integers whose prime factors do not
ezxceed w, and Dy to integers whose prime factors exceed w. The implied constant depends at most

upon A, B.

In the argument following (3) the roles of h',h" are played by B, B2 respectively. An appropriate

application of Lemma 2 is embodied in the following result, which is a particular case of [5], Lemma 7.



Lemma 3. In the notation of Lemma 2 set B =2A+ 5. Let (logz)341® < w < exp(y/Togz). Let P be

a product of primes which do not exceed w. Then

1
> > Bm)- D) Y. B(m)| < =z(logz)' 4.
D<z* n<z,(n—1,P)=1 n<z,(n—1,P)=1
p|D=>p>w | n=1 (mod D) (n,D)=1
In our application of Lemma 3, P = v.
In the application of Lemma 1 to the estimation of

> g0

n<z
(n—1,P)=1

It may be necessary to separate off terms of the form
$(P) p(Do) 2\~ p-1
T—DO_H 1—; ZX(")Q(")H p=2)
p|Do n<z pin
n odd

A detailed example of such a procedure occurs in Lemma 11 of [5]. As a consequence, the convergence

of the sum (1) is replaced by that of

®) 3 9711 - Rege(p)g;@x(@)P"™)
P

for a Dirichlet character x.

6. To deduce the coincidence of the characters gj, 9¢ from the convergence of the series (6), the following

suffices.

Lemma 4. (Proximity Lemma) Let g be a character on Q*. Suppose that for some Dirichlet character

x and real T the series
> op - g(p)x()p I,

taken over the prime numbers, converges. Suppose further that g(p + 1) = 1 for all sufficiently large

primes. Then g is identically 1.

Proof. For any unimodular complex number «, and positive integer m, |1 — a™| < m|a — 1|. If x has
order m, then the series '

Y p - s
also converges. This is the particular case with x replaced by the identity.

If 0 < e < 1, then }_ ¢ 1, taken over the primes ¢ for which |g™(q)q¢*" 1| > €, converges. Given

1 > 0, there is a prime p in the interval (z, z(1 + 7)], such that (p + 1)/2 has at most ¢ prime factors,



none of them an exceptional q. Here c is independent of € and 7, although = may need to be sufficiently
large in terms of €, 7. That there are many suitable primes p can be shown using sieve methods, as in

[1]; see also [2], Chapter 12, Chapter 23, problem 62. Since g(p +1) =1,
—ovm _ p+1 m— p+1 i _ T\
i@ =9 (25) = (L) +oe=(2)" +oe+n,

and z' = 2" g(2)™ + O(e + ). If 7 is non-zero, then the choice z = exp(2rnr~! + 27a) with a real,
n=12,..., gives !" — e>"¥7®_ Letting n — o+, € — o+ we see that e2*7® = 2i"g(2)™ is valid for all
real a. The choice @ = 0 shows that the right hand side of this equation is 1. Another suitabie value

for a gives 7 = 0, and a contradiction.

Thus 7 = 0. Let x be a character (mod §). Let D be a positive integer. We can carry out a similar
application of sieves to get a representation p + 1 = 2Dr where r has again a bounded number of prime
factors, none of which is a g for which |x{q)g(g) — 1| > . Then

1=g(p+1) =9(2D)g(r) = 9(2D)(x(r) + O(e))

p+1

@) = g(2D)x (—2-17> +0(e).

If (2Dt — 1,6) = 1 for some integer ¢, then (2Dt — 1,2D6) = 1. If, further, (,6) = 1, then we can
demand that the prime p in (7) satisfy p = 2Dt — 1 (mod 2D§). The conditions on ¢ allow Dirichlet’s
theorem on primes in arithmetic progression to be applied. For such primes, (p +1)/(2D) will have the

form (2D)~!(2Dt +2DmS§) = t + mé for some integer m. Letting € — o+ then gives 1 = g(2D)x(t).

If a further integer D; satisfies Dy = D (mod §) then for the same t, (2D1t — 1,6) = 1. Hence
1 = g(2Dy)x(t) as well. The value of g(D + md) is independent of m. From [2], Chapter 19, Lemma
19.3, g is a Dirichlet character (mod 6) on the integers prime to 6.

In order for g to be a Dirichlet character (mod §) on the integers prime to § it will therefore suffice
to find a ¢ such that (¢(2Dt —1),6) = 1. Let § = 2“6, where 6, is odd. Then (2Dt -1, 6) = (2Dt -1, 6,).
We can solve 2Dt = 2 (mod 6;) and the ¢ will automatically satisfy (t,6;) = 1. If ¢ is odd, then (¢,6) = 1.
If t is even, then ¢ + §; will be odd, (¢t + 61,6) = 1.

Insofar as it can be, g is a Dirichlet character (mod §).

We mop up. Given any D prime to 8, there are infinitely many primes p for which p + 1 = 26Dm,
m =1 (mod 6). This only needs p = —1 + 26D (mod 262D). For all large enough such primes

1=g(p+1) =g(26D)x(1) = g(26D).

Therefore g(D)g(26) = 1. The choice D = 1 shows that g(26) = 1. Hence g(D) =1 for all D prime to §é.



Given any positive D, an infinity of primes p for which p + 1 = 2Dm with (m,8) = 1 can be
arranged. Then 1 = g(p + 1) = g(2D)g(m) = g(2D). The choice D = 1 shows that g(2) = 1. Therefore
g(D)=1forall D >1.

A careful examination of this proof shows that g need not be completely multiplicative. It will

suffice that it satisfy the standard condition: g(ab) = g(a)g(b) whenever (a,b) = 1.

7. The argument sketched in the lecture may be applied to the more general sums

2

t
> Dozg+1| . zeC,

p+1<z {j=1

and their duals:

t
Z Z gilp+Vyp| , y»€C.

j=1|p+1<z

A (somewhat lengthy) further argument then removes the need for Lemma 4. This allows an
interesting weakening of the hypothesis in Theorem 2. Let P be a collection of primes for which
, logz
1 —_— 1=1.
imsup — Z

r—o0 PSZ

pEP
Then the group Gi, defined in a manner analogous to G but employing only the shifted primes p + 1
with p in P, also satisfies |G| < 4.
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