
The Multiplicative Group of Rationals Generat$\propto 1$ by the Shifted Primes

P.D.T.A. Elliott $\zeta C_{0}t_{0\iota p}d$ $\cup h’$ $\cup SA)$

1. I begin with three $\infty njectures$ .

Conjecture 1. Every positive rational $r$ has a representation

$f= \frac{p+1}{q+1}$ , $p,$ $qpr\dot{\tau}me$ .

Conjecture 2. There is a $k$ so that every poeitive rational $r$ has a representation

$r= \prod_{j=1}^{k}(p_{j}+1)^{\epsilon_{j}}$ , $pjpr\dot{r}me,$ $\epsilon_{j}=+1$ or $-1$ .

Conjecture 3. Every positive rational $f$ has a representation

$f= \prod_{j=1}^{k_{f}}(p_{j}+1)^{\epsilon_{j}}$ , $p_{j}$ prime, $\epsilon_{j}=+1$ or $-1$ .

Let $Q^{*}$ be the multiplicative group of positive rationals, $\Gamma$ the subgroup generated by the $p+1,p$

prime, $G=Q^{*}/\Gamma$ the quotient group. Conjecture 3 asserts the triviality of $G$.

Clearly the validity of Conjecture 1 implies that of Conjecture 2, and so of Conjecture 3. Actually

Conjectures 2 and 3 are equivalent, although that is not at all obvious. Moreover, $G$ is known to be

finite.

That $G$ is finite follows from early work of K\’atai, and Elliott; not realised at the time. A documented

account of their results, related results of Elliott, Wirsing, Dreae and Volkmann, Wolke, Meyer, and a

proof of the equivalence of Conjectures 2 and 3 may be found in Elliott, [2], Chapters 15 and 23.

Let $|H|$ denote the order of a finite group $H$ .

Theorem 1. There is a positive integer $k$ such that every positive mtional $f$ has a representation

$r^{|G|}=\prod_{j=1}^{k}(p_{j}+1)^{\epsilon_{\dot{f}}}$ , $p_{j}$ prime $\epsilon_{j}=+1$ or $-1$ .

Theorem 2. $|G|\leq 4$ .

2. The equivalence of Conjectures 2 and 3 obtained in Elliott [2], Chapter 23, elaborates to give Theorem

1. I sketch a proof of $Th\infty rem2$ that suggests an approach to a sharper bound.

Let $U$ be the multiplicative group of complex numbers that are roots of unity. Let $\hat{G}$ be the dual

group generated by the group
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homomorphism $g:Garrow U$ . In particular, $|\hat{G}|=|G|$ .

We can extend the definition of a $g$ in $\hat{G}$ to $Q^{*}$ , by

$Q^{*}arrow Q^{*}/\Gammaarrow U$,

employing the canonical homomorphism $komQ^{*}$ to $G$ . Thus $g$ is typically a completely multiplicative

function, with valuae in $U$, and which is identically 1 on the shifted primes.

Let $g1,$ $\ldots$ , $g_{t}$ be extensions of elements in $\hat{G}$ (we might view them as characters on $Q^{*}$ ), and define

the arithmetiG function
2

$w(n)= \sum_{j=1}^{t}g_{j}(n)$

For real $x\geq 0$ , let

$S= \sum_{p+1\leq x}w(p+1)$
.

Our hypothesis ensures that

$S \geq(1+o(1))\frac{t^{2_{X}}}{\log x}$ , $xarrow\infty$ ,

and we seek an upper bound for S.

We do not currently poaeess a method to give sharp upper boun&for sums

$\sum_{p+1\leq x}h(p+1)$
,

when $h$ is multiplicative, constrained only by $|h(n)|\leq 1$ ; so we argue indirectly.

Let $1\leq z\leq x;R$ the product of primes not exceeding $z;\lambda_{d}$ real numbers for each divisor $d$ of $R$

which does not exceed $z,$ $\lambda_{1}=1$ . Following Selberg’s sieve method

$S \leq\sum_{n+1\leq x}(\sum_{d|n}\lambda_{d})^{2}w(n+1)+t^{2_{Z}}$

$= \sum_{d_{1},d_{2}}\lambda_{d_{1}}\lambda_{d_{2}}$

$\sum_{m\leq x,m\equiv 1(mod [d_{1},d_{2}])}w(m)+small$

.

Here small indicatae that we shall choose $z$ so that the missing term is $o(x/\log x)$ as $xarrow\infty$ . In order

to proceed we seek an estimate for

$\sum_{\,j=1}^{t}$

$\sum_{m\leq x,m\equiv 1(mod D)}g_{i}(m)\overline{g_{j}(m)}$

,

with the positive integer $D$ as large as possible compared to $x$ .
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Let $0<\epsilon<1/2$. For the moment assume an analogue of the extended Riemann Hypothaeis: that

for any multiplicative function $h$ with values in the complex unit disc,

$m \leq x\sum_{m\equiv 1\langle mod D)}h(m)\approx\frac{1}{\phi(D)}$ $\sum_{m\leq x,(m,D)=1}h(m)\approx\frac{1}{D}\sum_{m\leq x}h(m)$
,

uniformly for $D$ up to $X:-e$ . Here $\approx indicatae$ that the difference of the two expraesions approximately

equated is to have a negligible effect in our subsequent calculations. The second part of the hypothesis,

a tricky point, is employed only to simplify the exposition of the argument. Granted a suitable validity

to this generalized hypothesis

$S \leq\sum_{d_{1},d_{2}}\frac{\lambda_{d_{1}}\lambda_{d_{2}}}{[d_{1},d_{2}]}\sum_{m\leq x}w(m)+small,$
$xarrow\infty$ .

Quite generally, if the series

$\sum_{p}p^{-1}(1-{\rm Re} h(p)p^{tau})$
,

taken over the prime numbers, divergae for every real $\tau$ , then a 1968 theorem of HaldSz asserts that

$x^{-1} \sum_{m\leq x}h(m)arrow 0$
, $xarrow\infty$ .

In our caae, typically either

$x^{-1} \sum_{m\leq x}g\ell(m)\overline{g_{j}(m)}arrow 0$
, $xarrow\infty$ ,

or

(1) $\sum_{p}p^{-1}(1-{\rm Re} g\ell(p)\overline{gj(p)}p^{i\tau})$

$\infty nverges$ for some real $\tau$ . The latter ensures that $g\ell(m)\overline{gj(m)}m^{i\tau}$ is ‘usually near to 1’ on integers $m$ ;

hence $g\ell(p+1)\overline{gj(p+1)}(p+1)^{:\tau}$ is ‘usually near to 1. Since every $g_{j}(p+1)=1,1\leq j\leq t,$ $(p+1)^{1\tau}$ is

‘usually near to 1. In stages, this forces $\tau=0,$ $g\ell\overline{g}_{j}$ near to 1, $g\ell\overline{g}_{j}$ identically one. I explicate this part

of the argument below.

Accordingly,

$\sum_{m\leq x}w(m)=\sum_{\ell,j=1}^{t}\sum_{m\leq x}9l(m)\overline{g_{j}(m)}=\sum_{\ell=1}^{t}|g\ell(m)|^{2}+o(x),$ $xarrow\infty$ ,

can be assumed.

Following the classical method of Selberg, we choose the $\lambda_{d}$ so that

(2) $\sum_{d_{1},d_{2}}\frac{\lambda_{d_{1}}\lambda_{d_{2}}}{[d_{1_{l}}d_{2}]}\leq\frac{1}{\log z}$ .
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Altogether

$S \leq\frac{(1+o(1))tx}{\log z}$ , $xarrow\infty$ .

The baet that we can do with our current hypotheses is set $z^{2}=xi-\epsilon$ . Sinoe $\epsilon>0$ may be otherwise

arbitrary,

$S \leq(4t+o(1))\frac{x}{\log x}$ , $xarrow\infty$ .

Combining the upper and lower asymptotic bounds for $S$ gives $t^{2}\leq 4t,$ $t\leq 4,$ $|\hat{G}|\leq 4$ . Theorem 2

is so aetablished.

3. How can we obviate our generalized Riemann Hypothesis? The example of $h$ a non-principal Dirichlet

character $(mod 3)$ shows that our extended hypothesis is in general false. Disregarding this objection

we might try for an analogue of the Bombieri-Vinogradov $th\infty rem$ on primes in arithmetic prograesion;

a raeult of the form

2

(3)
$D \leq x\sum_{- e}\phi(D)\max_{(r,D)=1}$ $\sum_{m\leq x,m\equiv r(mod D)}h(m)-\frac{1}{\phi(D)}$ $\sum_{m\leq x,(m,D)=1}h(m)$

$\ll x^{2}(\log x)^{-A}$ ,

valid for each fixed positive $A$ , would suffice. Standard methods, such as Motohashi, [6], require that the

function $h(p)\log p$ satisfy an analogue of the Siegel-Walfisz $th\infty rem$ for primes in arithmetic progression;

a $\infty ndition$ not necessarily satisfied at the outset of our argument.

In [4], [5], I proved that a general result of the type (3) is available provided that $h$ is replaoed by

$h-h’-h_{2}’’$ where $h’(m)\approx h(m)/\log m\approx h(m)/\log x;h’’(m)\approx$

$h(p)\log p/\log x$ , supported on the primae. Thus, besides $w(n)$ , we have to consider sums

$n \equiv 1n\leq x\sum_{(mod D)}g_{\ell}’(n)\overline{gj(n)}$

,

and so on. This leads to extra terms. Typically we prooeed

$| \sum_{n\leq x}(\sum_{d|n}\lambda_{d})^{2}g\ell(n+1)\overline{g_{j}’’(n+1)}|\leq\sum_{n\leq x}(\sum_{d|n}\lambda_{d})^{2}|g_{j}’’(n+1)|$

$\ll\sum_{p\leq x}(\sum_{d|(p-1)}\lambda_{d})^{2}\frac{\log p}{\log x}+small$

$\ll\sum_{d_{1},d_{2}}\lambda_{d_{1}}\lambda_{d_{2}}p\equiv 1(mod |d_{1},d_{2}])\sum_{p\leq x}\frac{\log p}{\log x}+smdl$
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To this last multiple sum we apply the standard $th\infty rem$ of Bombieri and Vinogradov, and obtain a

bound

(4) $\ll\frac{x}{\log x}\sum_{d_{1},d_{2}}\frac{\lambda_{d_{1}}\lambda_{d_{2}}}{\phi([d_{1},d_{2}])}+small$.

In practice we need to choose the $\lambda_{d}$ to make five quadratic forms simultaneously small; the forms

appearing in (2) and (4) typical.

Note that the denominator $[d_{1}, d_{2}]$ of (2) is replaced by $\phi([d_{1}, d_{2}])$ in (4). To allow a choice of the

$\lambda_{d}$ we take for $R$ not the product of all primae up to $z$ , but the product of all primae in an interval

$((\log x)^{c_{1}}, z]$ , where $c_{1}$ is a constant, of value about 4. We so reach

(5) $S \leq\frac{v}{\phi(v)\log z}$

$\sum_{m\leq x,(m-1,v)=1}w(m)+small$
,

where $v$ denotae the product of the omitted primae, those not exceeding $(\log x)^{c_{1}}$ .

4. The integer $v$ in (5) is sufficiently small relative to $R$ that the corresponding condition $(m-1, v)=1$

can be dealt with directly.

Lemma 1. Let $0<\beta<1,0<\epsilon<1/8,2\leq\log M\leq Q\leq M$ . Then

$n \equiv Tn\leq x\sum_{(mod D)}g(n)=\frac{1}{\phi(D)}$ $\sum_{n\leq x,(n,D)=1}g(n)+O(\frac{x}{\phi(D)}(\frac{\log Q}{\log x})^{i-\epsilon})$

holds for $M^{\beta}\leq x\leq M$ , all $(r, D)=1$ , all $D\leq Q$ save possibly for the multiples of a $D_{0}>1$ .

Theoe are absolute constants $B,$ $c$ and attached to each exceptional modulus a non-p$r\dot{\tau}n\dot{\alpha p}d$ charucter

$\chi$ unth the following propenies: For $\tau,$
$|\tau|\leq Q^{B}$ ,

$\sum_{Q<p\leq M}p^{-1}(1-Reg(p)\chi(p)p^{:\tau})<\frac{1}{4}\log(\frac{\log M}{\log Q})-c$ .

Moreover, the charucte$rs$ are induced by the same primitive character $(mdD_{0})$ .

This result is the substance of [3].

We can largely evaluate $w(m)$ over the integers $m$ which satisfy $(m-1,v)=1$ by means of the

repraeentations

$\sum_{m\leq x}w(m)\sum_{d|(m-1,v)}\mu(d)=\sum_{d|v}\mu(d)$
$\sum_{m\leq x,m\equiv 1(mod d)}w(m)$

.

The contribution to the double sums arising from those $d$ exceeding $\exp((\log x)^{e_{0}})$ for a small, fixed,

positive $\epsilon_{0}$ , may be neglected. The remaining $d$ give rise to the main term. Effectively we apply Lemma 1
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with $Q=\exp((\log x)^{\epsilon_{O}})$ , so that $(\log Q/\log x)^{1/10}\ll(\log x)^{-(1-e_{O})/10}$ is suitably small. This introduoes

a factor

$\approx\sum_{d|v}\frac{\mu(d)}{d}=\frac{\phi(v)}{v}$ ,

which canoek the related factor in (5).

The upshot of the argument is a raeult of the same quality ae that which we can achieve by assuming

a Riemann Hypothaeis analogue for multiplicative functions with valuae in the $\infty mplex$ unit disc.

To improve the bound of $Th\infty rem2$ it would suffice to be able to choose a value $z^{2}=x^{\gamma}$ with

$\gamma>1/2$ . To this end we might treat the error term in the application of&lberg’s sieve with more care.

The foregoing is an abbreviated $ac\infty unt$ of the lecture with which I opened the $\infty nferenoe$ in Analytic

Number Theory, held at the Institute of Mathematics, Kyoto, Japan, in October 19-22, 1993.

In the following sections I substantiate the sketched steps.

5. A valid version of (3) is established as Lemma 6 of [5].

Let $g$ be multiplicative, with valuae in the complex unit disc. Define an exponentially multiplicative

function $g_{1}$ by $g_{1}(p^{k})=g(p)^{k}/k!,$ $k=1,2,3,$ $\ldots$ ; and the multiplicative $h$ by convolution: $g=h*g_{1}$ .

For $B\geq 0$ define

$\beta_{1}(n)=$ $\sum_{ump=n}\frac{h(u)g1(m)g(p)\log p}{\log mp}$ ,

$u\leq(i\circ gx)^{B}p\leq b$

and set $\beta(n)=g(n)-\beta_{1}(n)-\hslash(n)$ .

$\beta_{2}(n)=$
$\sum_{urp=n}$

$\frac{h(u)g1(r)g(p)\log p}{\log rp}$ ,

$u\leq(|ogx)^{B}r\leq b$

Lemma 2. Let $B\geq 0,$ $A\geq 0,$ $b=(\log x)^{6A+15},0<\delta<1/2$ . Then

$\sum_{D_{1}D_{2}\leq x^{\delta}}\max_{1(r,DD_{2})=1}$ $\sum_{n\leq x,n\equiv r(mod D_{1}D_{2})}\beta(n)-\frac{1}{\phi(D_{2})}$
$\sum_{n\leq x,(n,D_{2})--1,n\equiv r(mod D_{1})}\beta(n)$

$\ll x(\log x)^{-A}(\log\log x)^{2}+\{v^{-1}x(\log x)^{2A+8}(\log\log x)^{2}+\omega^{-1/2}x(\log x)^{s/2}$ log log $x$

$+x(\log x)\#(5-B)$ ,

where $D_{1}$ is confined to those integers whose prnme factors do not

exoeed $\omega$ , and $D_{2}$ to integers whose prime factors exceed $\omega$ . The implied constant depends at most

upon $A,$ $B$ .

In the argument following (3) the r\^olae of $h’,$ $h”$ are played by $\beta_{1},$ $\hslash$ respectively. An appropriate

application of Lemma 2 is embodied in the following raeult, which is a particular case of [5], Lemma 7.
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Lemma 3. In the notation of Lemma 2 set $B=2A+5$. Let $(\log x)^{3A+8}\leq\omega\leq\exp(\mapsto ogx$ . Let $P$ be

a prduct of primes which do not exceed $\omega$ . Then

$D \leq x^{\delta}\sum_{p|D\Rightarrow p>\omega}\sum_{n\equiv 1(mod D)}\beta(n)-\frac{1}{\phi(D)}\sum_{(n,D)=1}\beta(n)n\leq r,(n-1,P)=1n\leq x,(n-1,P)=1\ll x(\log x)^{1-A}$

.

In our application of Lemma 3, $P=v$.
In the application of Lemma 1 to the estimation of

$(n-1,P)=1 \sum_{n\leq x}g(n)$

It may be necessary to separate off terms of the form

$\frac{\phi(P)}{P}\frac{\mu(D_{0})}{D_{0}}\prod_{p|D_{O}}(1-\frac{2}{p})^{-1}$
$\sum_{n\leq x,nodd}\chi(n)g(n)\prod_{p|n}(\frac{p-1}{p-2})$

.

A detailed example of such a prooedure occurs in Lemma 11 of [5]. As a consequence, the convergence

of the sum (1) is replaced by that of

(6)
$\sum_{p}p^{-1}(1-{\rm Re} g_{\ell}(p)\overline{g_{j}(p)}\chi(p)p^{i\tau})$

for a Dirichlet character $\chi$ .

6. To deduce the $\infty incidence$ of the characters $g_{j},g_{\ell}$ from the convergence of the seriae (6), the following

suffioes.

Lemma 4. (Proximity Lemma) Let $g$ be a $cha ucter$ on $Q^{*}$ . Suppose thnt for some Dirtchlet chamcte$r$

$\chi$ and reol $\tau$ the senes

$\sum p^{-1}|1-g(p)\chi(p)p^{i\tau}|^{2}$ ,

taken over the prime numbers, converges. Suppose $fii\hslash her$ that $g(p+1)=1$ for all suffiCiently hrge

primes. Then $g$ is identically 1.

Proof For any unimodular $\infty mplex$ number $\alpha$ , and poeitive integer $m,$ $|1-\alpha^{m}|\leq m|\alpha-1|$ . If $\chi$ has

order $m$, then the series

$\sum p^{-1}|1-g(p)^{m}p^{mi\tau}|^{2}$

also convergae. This is the particular case with $\chi$ replaced by the identity.

If $0<\epsilon<1$ , then $\sum q^{-1}$ , taken over the primes $q$ for which $|g^{m}(q)q^{i\tau-1}|>\epsilon$ , convergae. Given

$\eta>0$ , there is a prime $p$ in the interval $(x, x(1+\eta)]$ , such that $(p+1)/2$ has at most $c$ prime factors,
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none of them an exoeptional $q$ . Here $c$ is independent of $\epsilon$ and $\eta$ , although $x$ may need to be sufficiently

large in terms of $\epsilon,$ $\eta$ . That there are many suitable primae $p$ can be shown using sieve methods, as in

[1]; see also [2], Chapter 12, Chapter 23, problem 62. Since $g(p+1)=1$ ,

$\overline{g(2)^{m}}=g(\frac{p+1}{2})^{m}=(\frac{p+1}{2})^{i\tau}+O(\epsilon)=(\frac{x}{2})^{i\tau}+O(\epsilon+\eta)$ ,

and $x^{i\tau}=2^{i\tau}\overline{g(2)^{m}}+O(\epsilon+\eta)$ . If $\tau$ is non-zero, then the choice $x=\exp(2\pi n\tau^{-1}+2\pi\alpha)$ with $\alpha$ real,

$n=1,2,$ $\ldots$ , gives $x^{i\tau}arrow e^{2\pi i\tau\alpha}$ . Letting $\etaarrow 0+,$ $\epsilonarrow 0+$ we aee that $e^{2\pi:\tau\alpha}=2^{i\tau}\overline{g(2)^{m}}$ is valid for all

real $\alpha$ . The choioe $\alpha=0$ shows that the right hand side of this equation is 1. Another suitable value

for $\alpha$ gives $\tau=0$ , and a contradiction.

Thus $\tau=0$ . Let $\chi$ be a character $(mod \delta)$ . Let $D$ be a positive integer. We can carry out a similar

application of sievae to get a repraeentation $p+1=2Dr$ where $r$ has again a bounded number of prime

factors, none of which is a $q$ for which $|\chi(q)g(q)-1|>\epsilon$ . Then

$1=g(p+1)=g(2D)g(r)=g(2D)(\chi(r)+O(\epsilon))$

(7)
$=g(2D) \chi(\frac{p+1}{2D})+O(\epsilon)$ .

If $(2Dt-1, \delta)=1$ for some integer $t$ , then $(2Dt-1,2D\delta)=1$ . If, further, $(t, \delta)=1$ , then we can

demand that the prime $p$ in (7) satisfy $p\equiv 2$Dt–l $(mod 2D\delta)$ . The conditions on $t$ allow Dirichlet’s

theorem on primae in arithmetic progression to be applied. For such primes, $(p+1)/(2D)$ will have the

form $(2D)^{-1}(2Dt+2Dm\delta)=t+m\delta$ for some integer $m$ . Letting $\epsilonarrow 0+$ then gives $1=g(2D)\chi(t)$ .

If a further integer $D_{1}$ satisfies $D_{1}\equiv D(mod \delta)$ then for the same $t,$ $(2D_{1}t-1, \delta)=1$ . Hence

$1=g(2D_{1})\chi(t)$ as well. The value of $g(D+m\delta)$ is independent of $m$ . From [2], Chapter 19, Lemma

19.3, $g$ is a Dirichlet character $(mod \delta)$ on the integers prime to $\delta$ .

In order for $g$ to be a Dirichlet character $(mod \delta)$ on the integers prime to $\delta$ it will therefore suffice

to find a $t$ such that ($t$ (2Dt-l), $\delta$) $=1$ . Let $\delta=2^{\nu}\delta_{1}$ where $\delta_{1}$ is odd. Then $(2Dt-1, \delta)=(2Dt-1,\delta_{1})$ .
We can solve 2$Dt\equiv 2(mod \delta_{1})$ and the $t$ will automatically satisfy $(t, \delta_{1})=1$ . If $t$ is odd, then $(t, \delta)=1$ .
If $t$ is even, then $t+\delta_{1}$ will be odd, $(t+\delta_{1}, \delta)=1$ .

Insofar as it can be, $g$ is a Dmchlet character $(mod \delta)$ .

We mop up. Given any $D$ prime to $\delta$, there are infinitely many primae $p$ for which $p+1=2\delta Dm$,

$m\equiv 1(mod \delta)$ . This only needs $p\equiv-1+2\delta D(mod 2\delta^{2}D)$ . For all large enough such primae

$1=g(p+1)=g(2\delta D)\chi(1)=g(2\delta D)$.

Therefore $g(D)g(2\delta)=1$ . The choice $D=1$ shows that $g(2\delta)=1$ . Henoe $g(D)=1$ for all $D$ prime to $\delta$ .
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Given any positive $D$ , an infinity of primes $p$ for which $p+1=2Dm$ with $(m, \delta)=1$ can be

arranged. Then $1=g(p+1)=g(2D)g(m)=g(2D)$ . The choice $D=1$ shows that $g(2)=1$ . Therefore

$g(D)=1$ for all $D\geq 1$ .

A careful examination of this proof shows that $g$ need not be completely multiplicative. It will

suffice that it satisfy the standard condition: $g(ab)=g(a)g(b)$ whenever $(a, b)=1$ .

7. The argument sketched in the lecture may be applied to the more general sums

2

$\sum_{p+1\leq x}\sum_{j=1}^{t}z_{j}g_{j}(p+1)$ $z_{j}\in \mathbb{C}$ ,

and their duals:
2

$\sum_{j=1}^{t}\sum_{p+1\leq x}gj(p+1)y_{P}$ $y_{p}\in \mathbb{C}$ .

A (somewhat lengthy) further argument then removae the need for Lemma 4. This allows an

interesting weakening of the hypothaeis in $Th\infty rem2$ . Let $P$ be a collection of primae for which

$\lim_{xarrow}\sup_{\infty}\frac{\log x}{x}\sum_{p<x}1=1$ .
$p\overline{\in}P$

Then the group $G_{1}$ , defined in a manner analogous to $G$ but employing only the shifCed primes $p+1$

with $p$ in $P$ , also satisfiae $|G_{1}|\leq 4$ .
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