The Multiplicative Group of Rationals Generated by the Shifted Primes

P．D．T．A．Elliott（Colorado Univertily，USA）

1．I begin with three conjectures．
Conjecture 1．Every positive rational r has a representation

$$
r=\frac{p+1}{q+1}, \quad p, q \text { prime. }
$$

Conjecture 2．There is a k so that every positive rational r has a representation

$$
r=\prod_{j=1}^{k}\left(p_{j}+1\right)^{\varepsilon_{j}}, \quad p_{j} \text { prime, } \varepsilon_{j}=+1 \text { or }-1
$$

Conjecture 3．Every positive rational r has a representation

$$
r=\prod_{j=1}^{k_{r}}\left(p_{j}+1\right)^{\varepsilon_{j}}, \quad p_{j} \text { prime }, \varepsilon_{j}=+1 \text { or }-1
$$

Let Q^{*} be the multiplicative group of positive rationals，Γ the subgroup generated by the $p+1, p$ prime，$G=Q^{*} / \Gamma$ the quotient group．Conjecture 3 asserts the triviality of G ．

Clearly the validity of Conjecture 1 implies that of Conjecture 2，and so of Conjecture 3．Actually Conjectures 2 and 3 are equivalent，although that is not at all obvious．Moreover，G is known to be finite．

That G is finite follows from early work of Kátai，and Elliott；not realised at the time．A documented account of their results，related results of Elliott，Wirsing，Dress and Volkmann，Wolke，Meyer，and a proof of the equivalence of Conjectures 2 and 3 may be found in Elliott，［2］，Chapters 15 and 23.

Let $|H|$ denote the order of a finite group H ．

Theorem 1．There is a positive integer k such that every positive rational r has a representation

$$
r^{|G|}=\prod_{j=1}^{k}\left(p_{j}+1\right)^{\varepsilon_{j}}, \quad p_{j} \text { prime } \varepsilon_{j}=+1 \text { or }-1
$$

Theorem 2．$|G| \leq 4$ ．

2．The equivalence of Conjectures 2 and 3 obtained in Elliott［2］，Chapter 23，elaborates to give Theorem 1．I sketch a proof of Theorem 2 that suggests an approach to a sharper bound．

Let U be the multiplicative group of complex numbers that are roots of unity．Let \widehat{G} be the dual group generated by the group
homomorphisms $g: G \rightarrow U$. In particular, $|\widehat{G}|=|G|$.
We can extend the definition of a g in \widehat{G} to Q^{*}, by

$$
Q^{*} \rightarrow Q^{*} / \Gamma \rightarrow U
$$

employing the canonical homomorphism from Q^{*} to G. Thus g is typically a completely multiplicative function, with values in U, and which is identically 1 on the shifted primes.

Let g_{1}, \ldots, g_{t} be extensions of elements in \widehat{G} (we might view them as characters on Q^{*}), and define the arithmetic function

$$
w(n)=\left|\sum_{j=1}^{t} g_{j}(n)\right|^{2}
$$

For real $x \geq 0$, let

$$
S=\sum_{p+1 \leq x} w(p+1)
$$

Our hypothesis ensures that

$$
S \geq(1+o(1)) \frac{t^{2} x}{\log x}, \quad x \rightarrow \infty
$$

and we seek an upper bound for S.
We do not currently possess a method to give sharp upper bounds for sums

$$
\sum_{p+1 \leq x} h(p+1)
$$

when h is multiplicative, constrained only by $|h(n)| \leq 1$; so we argue indirectly.
Let $1 \leq z \leq x ; R$ the product of primes not exceeding $z ; \lambda_{d}$ real numbers for each divisor d of R which does not exceed $z, \lambda_{1}=1$. Following Selberg's sieve method

$$
\begin{aligned}
S & \leq \sum_{n+1 \leq x}\left(\sum_{d \mid n} \lambda_{d}\right)^{2} w(n+1)+t^{2} z \\
& =\sum_{d_{1}, d_{2}} \lambda_{d_{1}} \lambda_{d_{2}} \sum_{\substack{\left.m \leq x \\
m \equiv 1 \\
\bmod \left[d_{1}, d_{2}\right]\right)}} w(m)+\text { small. }
\end{aligned}
$$

Here small indicates that we shall choose z so that the missing term is $o(x / \log x)$ as $x \rightarrow \infty$. In order to proceed we seek an estimate for

$$
\sum_{i, j=1}^{t} \sum_{\substack{m \leq x \\ m \equiv 1(\bmod D)}} g_{i}(m) \overline{g_{j}(m)}
$$

with the positive integer D as large as possible compared to x.

Let $0<\varepsilon<1 / 2$. For the moment assume an analogue of the extended Riemann Hypothesis: that for any multiplicative function h with values in the complex unit disc,

$$
\sum_{\substack{m \leq x \\ m \equiv 1(\bmod D)}} h(m) \approx \frac{1}{\phi(D)} \sum_{\substack{m \leq x \\(m, D)=1}} h(m) \approx \frac{1}{D} \sum_{m \leq x} h(m)
$$

uniformly for D up to $x^{\frac{1}{2}-\varepsilon}$. Here \approx indicates that the difference of the two expressions approximately equated is to have a negligible effect in our subsequent calculations. The second part of the hypothesis, a tricky point, is employed only to simplify the exposition of the argument. Granted a suitable validity to this generalized hypothesis

$$
S \leq \sum_{d_{1}, d_{2}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{\left[d_{1}, d_{2}\right]} \sum_{m \leq x} w(m)+\text { small, } x \rightarrow \infty
$$

Quite generally, if the series

$$
\sum_{p} p^{-1}\left(1-\operatorname{Re} h(p) p^{i \tau}\right)
$$

taken over the prime numbers, diverges for every real τ, then a 1968 theorem of Halász asserts that

$$
x^{-1} \sum_{m \leq x} h(m) \rightarrow 0, \quad x \rightarrow \infty .
$$

In our case, typically either

$$
x^{-1} \sum_{m \leq x} g_{\ell}(m) \overline{g_{j}(m)} \rightarrow 0, \quad x \rightarrow \infty
$$

or

$$
\begin{equation*}
\sum_{p} p^{-1}\left(1-\operatorname{Re} g_{\ell}(p) \overline{g_{j}(p)} p^{i \tau}\right) \tag{1}
\end{equation*}
$$

converges for some real τ. The latter ensures that $g_{\ell}(m) \overline{g_{j}(m)} m^{i r}$ is 'usually near to 1 ' on integers m; hence $g_{\ell}(p+1) \overline{g_{j}(p+1)}(p+1)^{i \tau}$ is 'usually near to 1 . Since every $g_{j}(p+1)=1,1 \leq j \leq t,(p+1)^{i \tau}$ is 'usually near to 1 . In stages, this forces $\tau=0, g_{\ell} \bar{g}_{j}$ near to $1, g_{\ell} \bar{g}_{j}$ identically one. I explicate this part of the argument below.

Accordingly,

$$
\sum_{m \leq x} w(m)=\sum_{\ell, j=1}^{t} \sum_{m \leq x} g_{\ell}(m) \overline{g_{j}(m)}=\sum_{\ell=1}^{t}\left|g_{\ell}(m)\right|^{2}+o(x), x \rightarrow \infty
$$

can be assumed.
Following the classical method of Selberg, we choose the λ_{d} so that

$$
\begin{equation*}
\sum_{d_{1}, d_{2}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{\left[d_{1}, d_{2}\right]} \leq \frac{1}{\log z} \tag{2}
\end{equation*}
$$

Altogether

$$
S \leq \frac{(1+o(1)) t x}{\log z}, \quad x \rightarrow \infty
$$

The best that we can do with our current hypotheses is set $z^{2}=x^{\frac{1}{2}-\varepsilon}$. Since $\varepsilon>0$ may be otherwise arbitrary,

$$
S \leq(4 t+o(1)) \frac{x}{\log x}, \quad x \rightarrow \infty
$$

Combining the upper and lower asymptotic bounds for S gives $t^{2} \leq 4 t, t \leq 4,|\widehat{G}| \leq 4$. Theorem 2 is so established.
3. How can we obviate our generalized Riemann Hypothesis? The example of h a non-principal Dirichlet character (mod 3) shows that our extended hypothesis is in general false. Disregarding this objection we might try for an analogue of the Bombieri-Vinogradov theorem on primes in arithmetic progression; a result of the form

$$
\begin{equation*}
\sum_{D \leq x^{\frac{1}{2}}-\epsilon} \phi(D) \max _{(r, D)=1}\left|\sum_{\substack{m \leq x \\ m \equiv r(\bmod D)}} h(m)-\frac{1}{\phi(D)} \sum_{\substack{m \leq x \\(m, D)=1}} h(m)\right|^{2} \ll x^{2}(\log x)^{-A} \tag{3}
\end{equation*}
$$

valid for each fixed positive A, would suffice. Standard methods, such as Motohashi, [6], require that the function $h(p) \log p$ satisfy an analogue of the Siegel-Walfisz theorem for primes in arithmetic progression; a condition not necessarily satisfied at the outset of our argument.

In [4], [5], I proved that a general result of the type (3) is available provided that h is replaced by $h-h^{\prime}-h^{\prime \prime}$, where $h^{\prime}(m) \approx h(m) / \log m \approx h(m) / \log x ; h^{\prime \prime}(m) \approx$ $h(p) \log p / \log x$, supported on the primes. Thus, besides $w(n)$, we have to consider sums

$$
\sum_{\substack{n \leq x \\ n \equiv 1(\bmod D)}} g_{l}^{\prime}(n) \overline{g_{j}(n)}
$$

and so on. This leads to extra terms. Typically we proceed

$$
\begin{aligned}
\left|\sum_{n \leq x}\left(\sum_{d \mid n} \lambda_{d}\right)^{2} g_{\ell}(n+1) \overline{g_{j}^{\prime \prime}(n+1)}\right| & \leq \sum_{n \leq x}\left(\sum_{d \mid n} \lambda_{d}\right)^{2}\left|g_{j}^{\prime \prime}(n+1)\right| \\
& \ll \sum_{p \leq x}\left(\sum_{d \mid(p-1)} \lambda_{d}\right)^{2} \frac{\log p}{\log x}+\text { small } \\
& \ll \sum_{d_{1}, d_{2}} \lambda_{d_{1}} \lambda_{d_{2}} \sum_{\substack{p \leq x \\
p \equiv 1 \\
\left(\bmod \left[d_{1}, d_{2}\right]\right)}} \frac{\log p}{\log x}+\text { small. }
\end{aligned}
$$

To this last multiple sum we apply the standard theorem of Bombieri and Vinogradov, and obtain a bound

$$
\begin{equation*}
\ll \frac{x}{\log x} \sum_{d_{1}, d_{2}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{\phi\left(\left[d_{1}, d_{2}\right]\right)}+\text { small } \tag{4}
\end{equation*}
$$

In practice we need to choose the λ_{d} to make five quadratic forms simultaneously small; the forms appearing in (2) and (4) typical.

Note that the denominator $\left[d_{1}, d_{2}\right]$ of (2) is replaced by $\phi\left(\left[d_{1}, d_{2}\right]\right)$ in (4). To allow a choice of the λ_{d} we take for R not the product of all primes up to z, but the product of all primes in an interval $\left((\log x)^{c_{1}}, z\right]$, where c_{1} is a constant, of value about 4. We so reach

$$
\begin{equation*}
S \leq \frac{v}{\phi(v) \log z} \sum_{\substack{m \leq x \\(m-1, v)=1}} w(m)+\text { small } \tag{5}
\end{equation*}
$$

where v denotes the product of the omitted primes, those not exceeding $(\log x)^{c_{1}}$.
4. The integer v in (5) is sufficiently small relative to R that the corresponding condition ($m-1, v$)=1 can be dealt with directly.

Lemma 1. Let $0<\beta<1,0<\varepsilon<1 / 8,2 \leq \log M \leq Q \leq M$. Then

$$
\sum_{\substack{n \leq x \\ n \equiv r(\bmod D)}} g(n)=\frac{1}{\phi(D)} \sum_{\substack{n \leq x \\(n, D)=1}} g(n)+O\left(\frac{x}{\phi(D)}\left(\frac{\log Q}{\log x}\right)^{\frac{1}{8}-\varepsilon}\right)
$$

holds for $M^{\beta} \leq x \leq M$, all $(r, D)=1$, all $D \leq Q$ save possibly for the multiples of a $D_{0}>1$.
There are absolute constants B, c and attached to each exceptional modulus a non-principal character χ with the following properties: For $\tau,|\tau| \leq Q^{B}$,

$$
\sum_{Q<p \leq M} p^{-1}\left(1-\operatorname{Re} g(p) \chi(p) p^{i \tau}\right)<\frac{1}{4} \log \left(\frac{\log M}{\log Q}\right)-c
$$

Moreover, the characters are induced by the same primitive character $\left(\bmod D_{0}\right)$.
This result is the substance of [3].
We can largely evaluate $w(m)$ over the integers m which satisfy $(m-1, v)=1$ by means of the representations

$$
\sum_{m \leq x} w(m) \sum_{d \mid(m-1, v)} \mu(d)=\sum_{d \mid v} \mu(d) \sum_{\substack{m \leq x \\ m \equiv 1(\bmod d)}} w(m)
$$

The contribution to the double sums arising from those d exceeding $\exp \left((\log x)^{\varepsilon_{0}}\right)$ for a small, fixed, positive ε_{0}, may be neglected. The remaining d give rise to the main term. Effectively we apply Lemma 1
with $Q=\exp \left((\log x)^{\varepsilon_{0}}\right)$, so that $(\log Q / \log x)^{1 / 10} \ll(\log x)^{-\left(1-\varepsilon_{0}\right) / 10}$ is suitably small. This introduces a factor

$$
\approx \sum_{d \mid v} \frac{\mu(d)}{d}=\frac{\phi(v)}{v}
$$

which cancels the related factor in (5).
The upshot of the argument is a result of the same quality as that which we can achieve by assuming a Riemann Hypothesis analogue for multiplicative functions with values in the complex unit disc.

To improve the bound of Theorem 2 it would suffice to be able to choose a value $z^{2}=x^{\gamma}$ with $\gamma>1 / 2$. To this end we might treat the error term in the application of Selberg's sieve with more care.

The foregoing is an abbreviated account of the lecture with which I opened the conference in Analytic Number Theory, held at the Institute of Mathematics, Kyoto, Japan, in October 19-22, 1993.

In the following sections I substantiate the sketched steps.
5. A valid version of (3) is established as Lemma 6 of [5].

Let g be multiplicative, with values in the complex unit disc. Define an exponentially multiplicative function g_{1} by $g_{1}\left(p^{k}\right)=g(p)^{k} / k!, k=1,2,3, \ldots$; and the multiplicative h by convolution: $g=h * g_{1}$.

For $B \geq 0$ define

$$
\beta_{1}(n)=\sum_{\substack{u m p=n \\ u \leq(\log x)^{B} \\ p \leq b}} \frac{h(u) g_{1}(m) g(p) \log p}{\log m p}, \quad \beta_{2}(n)=\sum_{\substack{u r p=n \\ u \leq(\log x)^{B} \\ r \leq b}} \frac{h(u) g_{1}(r) g(p) \log p}{\log r p},
$$

and set $\beta(n)=g(n)-\beta_{1}(n)-\beta_{2}(n)$.
Lemma 2. Let $B \geq 0, A \geq 0, b=(\log x)^{6 A+15}, 0<\delta<1 / 2$. Then

$$
\begin{aligned}
& \sum_{D_{1} D_{2} \leq x^{6}} \max _{\left(r, D_{1} D_{2}\right)=1}\left|\sum_{\substack{n \leq x \\
n \equiv r\left(\bmod D_{1} D_{2}\right)}} \beta(n)-\frac{1}{\phi\left(D_{2}\right)} \sum_{\substack{n \leq x,\left(n, D_{2}\right)=1 \\
n \equiv r\left(\bmod D_{1}\right)}} \beta(n)\right| \\
& \ll x(\log x)^{-A}(\log \log x)^{2}+\omega^{-1} x(\log x)^{2 A+8}(\log \log x)^{2}+\omega^{-1 / 2} x(\log x)^{5 / 2} \log \log x \\
& +x(\log x)^{\frac{1}{2}(5-B)},
\end{aligned}
$$

where D_{1} is confined to those integers whose prime factors do not
exceed ω, and D_{2} to integers whose prime factors exceed ω. The implied constant depends at most upon A, B.

In the argument following (3) the rôles of $h^{\prime}, h^{\prime \prime}$ are played by β_{1}, β_{2} respectively. An appropriate application of Lemma 2 is embodied in the following result, which is a particular case of [5], Lemma 7.

Lemma 3. In the notation of Lemma 2 set $B=2 A+5$. Let $(\log x)^{3 A+8} \leq \omega \leq \exp (\sqrt{\log x})$. Let P be a product of primes which do not exceed ω. Then

$$
\sum_{\substack{D \leq x^{6} \\ p \mid D \Rightarrow p>\omega}}\left|\sum_{\substack{n \leq x,(n-1, P)=1 \\ n \equiv 1}} \beta(n)-\frac{1}{\phi(D)} \sum_{\substack{n \leq x,(n-1, P)=1 \\(n, D)=1}} \beta(n)\right| \ll x(\log x)^{1-A}
$$

In our application of Lemma 3, $P=v$.
In the application of Lemma 1 to the estimation of

$$
\sum_{\substack{n \leq x \\(n-1, P)=1}} g(n)
$$

It may be necessary to separate off terms of the form

$$
\frac{\phi(P)}{P} \frac{\mu\left(D_{0}\right)}{D_{0}} \prod_{p \mid D_{0}}\left(1-\frac{2}{p}\right)^{-1} \sum_{\substack{n \leq x \\ n \text { odd }}} \chi(n) g(n) \prod_{p \mid n}\left(\frac{p-1}{p-2}\right)
$$

A detailed example of such a procedure occurs in Lemma 11 of [5]. As a consequence, the convergence of the sum (1) is replaced by that of

$$
\begin{equation*}
\sum_{p} p^{-1}\left(1-\operatorname{Re} g_{\ell}(p) \overline{g_{j}(p)} \chi(p) p^{i \tau}\right) \tag{6}
\end{equation*}
$$

for a Dirichlet character χ.
6. To deduce the coincidence of the characters g_{j}, g_{ℓ} from the convergence of the series (6), the following suffices.

Lemma 4. (Proximity Lemma) Let g be a character on Q^{*}. Suppose that for some Dirichlet character χ and real τ the series

$$
\sum p^{-1}\left|1-g(p) \chi(p) p^{i \tau}\right|^{2}
$$

taken over the prime numbers, converges. Suppose further that $g(p+1)=1$ for all sufficiently large primes. Then g is identically 1.

Proof. For any unimodular complex number α, and positive integer $m,\left|1-\alpha^{m}\right| \leq m|\alpha-1|$. If χ has order m, then the series

$$
\sum p^{-1}\left|1-g(p)^{m} p^{m i \tau}\right|^{2}
$$

also converges. This is the particular case with χ replaced by the identity.
If $0<\varepsilon<1$, then $\sum q^{-1}$, taken over the primes q for which $\left|g^{m}(q) q^{i r-1}\right|>\varepsilon$, converges. Given $\eta>0$, there is a prime p in the interval $(x, x(1+\eta)]$, such that $(p+1) / 2$ has at most c prime factors,
none of them an exceptional q. Here c is independent of ε and η, although x may need to be sufficiently large in terms of ε, η. That there are many suitable primes p can be shown using sieve methods, as in [1]; see also [2], Chapter 12, Chapter 23, problem 62. Since $g(p+1)=1$,

$$
\overline{g(2)^{m}}=g\left(\frac{p+1}{2}\right)^{m}=\left(\frac{p+1}{2}\right)^{i \tau}+O(\varepsilon)=\left(\frac{x}{2}\right)^{i \tau}+O(\varepsilon+\eta)
$$

and $x^{i \tau}=2^{i \tau} \overline{g(2)^{m}}+O(\varepsilon+\eta)$. If τ is non-zero, then the choice $x=\exp \left(2 \pi n \tau^{-1}+2 \pi \alpha\right)$ with α real, $n=1,2, \ldots$, gives $x^{i \tau} \rightarrow e^{2 \pi i \tau \alpha}$. Letting $\eta \rightarrow o+, \varepsilon \rightarrow o+$ we see that $e^{2 \pi i \tau \alpha}=2^{i \tau} \overline{g(2)^{m}}$ is valid for all real α. The choice $\alpha=0$ shows that the right hand side of this equation is 1 . Another suitable value for α gives $\tau=0$, and a contradiction.

Thus $\tau=0$. Let χ be a character $(\bmod \delta)$. Let D be a positive integer. We can carry out a similar application of sieves to get a representation $p+1=2 D r$ where r has again a bounded number of prime factors, none of which is a q for which $|\chi(q) g(q)-1|>\varepsilon$. Then

$$
\begin{align*}
1 & =g(p+1)=g(2 D) g(r)=g(2 D)(\chi(r)+O(\varepsilon)) \\
& =g(2 D) \chi\left(\frac{p+1}{2 D}\right)+O(\varepsilon) \tag{7}
\end{align*}
$$

If $(2 D t-1, \delta)=1$ for some integer t, then $(2 D t-1,2 D \delta)=1$. If, further, $(t, \delta)=1$, then we can demand that the prime p in (7) satisfy $p \equiv 2 D t-1(\bmod 2 D \delta)$. The conditions on t allow Dirichlet's theorem on primes in arithmetic progression to be applied. For such primes, $(p+1) /(2 D)$ will have the
form $(2 D)^{-1}(2 D t+2 D m \delta)=t+m \delta$ for some integer m. Letting $\varepsilon \rightarrow o+$ then gives $1=g(2 D) \chi(t)$.
If a further integer D_{1} satisfies $D_{1} \equiv D(\bmod \delta)$ then for the same $t,\left(2 D_{1} t-1, \delta\right)=1$. Hence $1=g\left(2 D_{1}\right) \chi(t)$ as well. The value of $g(D+m \delta)$ is independent of m. From [2], Chapter 19, Lemma $19.3, g$ is a Dirichlet character $(\bmod \delta)$ on the integers prime to δ.

In order for g to be a Dirichlet character $(\bmod \delta)$ on the integers prime to δ it will therefore suffice to find a t such that $(t(2 D t-1), \delta)=1$. Let $\delta=2^{\nu} \delta_{1}$ where δ_{1} is odd. Then $(2 D t-1, \delta)=\left(2 D t-1, \delta_{1}\right)$. We can solve $2 D t \equiv 2\left(\bmod \delta_{1}\right)$ and the t will automatically satisfy $\left(t, \delta_{1}\right)=1$. If t is odd, then $(t, \delta)=1$. If t is even, then $t+\delta_{1}$ will be odd, $\left(t+\delta_{1}, \delta\right)=1$.

Insofar as it can be, g is a Dirichlet character $(\bmod \delta)$.
\dot{W} mop up. Given any D prime to δ, there are infinitely many primes p for which $p+1=2 \delta D m$, $m \equiv 1(\bmod \delta)$. This only needs $p \equiv-1+2 \delta D\left(\bmod 2 \delta^{2} D\right)$. For all large enough such primes

$$
1=g(p+1)=g(2 \delta D) \chi(1)=g(2 \delta D)
$$

Therefore $g(D) g(2 \delta)=1$. The choice $D=1$ shows that $g(2 \delta)=1$. Hence $g(D)=1$ for all D prime to δ.

Given any positive D, an infinity of primes p for which $p+1=2 D m$ with $(m, \delta)=1$ can be arranged. Then $1=g(p+1)=g(2 D) g(m)=g(2 D)$. The choice $D=1$ shows that $g(2)=1$. Therefore $g(D)=1$ for all $D \geq 1$.

A careful examination of this proof shows that g need not be completely multiplicative. It will suffice that it satisfy the standard condition: $g(a b)=g(a) g(b)$ whenever $(a, b)=1$.
7. The argument sketched in the lecture may be applied to the more general sums

$$
\sum_{p+1 \leq x}\left|\sum_{j=1}^{t} z_{j} g_{j}(p+1)\right|^{2}, \quad z_{j} \in \mathbb{C}
$$

and their duals:

$$
\sum_{j=1}^{t}\left|\sum_{p+1 \leq x} g_{j}(p+1) y_{p}\right|^{2}, \quad y_{p} \in \mathbb{C}
$$

A (somewhat lengthy) further argument then removes the need for Lemma 4. This allows an interesting weakening of the hypothesis in Theorem 2. Let P be a collection of primes for which

$$
\underset{x \rightarrow \infty}{\limsup } \frac{\log x}{x} \sum_{\substack{p \leq x \\ p \in P}} 1=1
$$

Then the group G_{1}, defined in a manner analogous to G but employing only the shifted primes $p+1$ with p in P, also satisfies $\left|G_{1}\right| \leq 4$.

References

[1] Elliott, P.D.T.A. A conjecture of Kátai, Acta Arith. 26 (1974), 11-20.
[2] \qquad . Arithmetic Functions and Integer Products, Grund. der math. Wiss. 272, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.
[3] \qquad . Multiplicative functions on arithmetic progressions VI: More Middle Moduli, Journal of Number Theory.
[4] \qquad . Additive functions on shifted primes, Bulletin (New Series) of the American Mathematical Society, 27 (2) (1992), 273-278.
[5] \qquad . The concentration function of additive functions on shifted primes; to appear in Acta Math., Mittag Leffler, 1994.
[6] Motohashi, Y. An induction principle for the generalization of Bombieri's prime number theorem, Proc. Japan. Acad. 52 (1976), 273-275.

