0000000000
08860 19940 88-113 88

Dirichlet series with periodic coefficients

M. Ishibashi’and S. Kanemitsu
T 1% A% it
(1B %) GLER Rtz

Summary

In this paper we study periodic arithmetic functions f = f(»n) and the associated
Dirichlet series L(s, f) as a generalization of Dirichlet characters y and the associated
Dirichlet L - functions L(s, ¥ ). Our results cover most of the results obtained so far by
various authors, mostly for Dirichlet characters. In § 1 we give explicit evaluation of
thevalues I(k,f), and Pq, f) (ke N).In § 2, we consider the product of several L
-functions, more specifically, in § 2-1, we make an explicit determination of coefficients
of the main term in the Piltz type divisor problem and related constants, in § 2-2, asa
generalization of the Miiller-Carlitz-Ayoub-Chowla-Redmond-Berndt theorem, give a
Bessel series expression for the associated summatory functions and explicit
determination of coefficients in the main term, and finally in § 2-3 we refer to the
general product of L-series. Finally, in § 3 we give Chowla-Selberg type formulas in

special cases.

§ 0. Preliminaries

Let ge N be fixed throughout, and let (X g) denote the C - vector space of all
arithmetic functions f: N — C with period g, i.e. f{n+q)=f(n), Yne N. Itis convinient

to extend the domain of definition of fby letting for "ne Z

An)=f(a), n=a(modg), 1<a<gq
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Then, as noted by Yamamoto[11], C(g) is an inner product space of dimension ¢, the

inner product of f,g € C(g) being given by

(f.9)= X flaga).

amodq

1
With respect to this , —J-——-éa , wih a running through a complete set of residues
q .
modulo g, and & (n)= exp(2nian/ q), additive characters of Z/qZ, form an orthonormal
basis(abbriviated as ONB hereafter).

Yamamoto gives another basis of interest, which we will study at another ocassion ;

1
in this paper we will be mainly concerned with {—ﬁ & 1 amod q} .

Isomorphic with C(q) is the vector space IXq) of Dirichlet series associated to each
fe€(q), namely

L(s,f) =2{§f’—),

n=1

where s= 0 + itis the complex variable and the series is absolutely convergent, say for
o >1(which is the case if f{n)=O(n®) for every € > 0). Using the Hurwitz zeta

function defined for a > 0 by

=1
Sso) =Y,

Zn+a)’

absolutely convergnt for o > 1, we can find a basis of

D(q): q°¢(s,{a/q} +[1-{a/q}]), amod q
where, [-] denotes the integral part of . and {} =-—[-] the fractional part of . .
Thus

Ks.p)=q" Y f(aX(s.falqt+11-{alg}]),

amodq
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which implies from the known fact about {(sx) that L(s,f) is extended analytically over
the whole plane and is holomorphic except possibly at s=1. Note that L(s,f) is
holomrphic at s=1 if and only if f(1)+-----f(q)=0.

We define the Fourier transform f‘ of fe((q) as the Fourier coefficients of f

) 1
w.r.t. the basis {Tgé}

Fmy=(f, J—é,,) 2 f(a)exp(—Zm—n)

amodq
Corresponding to the Fourier series

o 1
finy=Y, f(a):l—a&,,(n),

amodq

we have the representation of L(s,f) :

0.1) Ls./)=— 3, Ha)F(s=)
. s,1[)="F f(a)F(s,—),
J_m q
where
a. &)
F(s,q)—ng e

is often referred to as the polylogarithm [(a/q) with complex exponential argument and
other times as the Lerch zeta-function, and is absolutely convérgent for o >1, in the

first place. If a = 0(mod q), it reduces to the well-known Riemann zeta-function
{(s) = (s,]), meromorphic with a simple pole at s=1 with residue 1(see(1.7)), while if

a#0 (mod g), it can be extended to an integral function, say, by LLemma 2 of Milnor{8].



We note, in passing, the inversion formula(Funakura[5], Lemma 2) :An arithmeticai

rfunction has period q if and only if }(n) = f(—n) holds for all n.We define the even

part ( f,.,) and odd part ( £ ,,) of fby

. 1
Fora(m)=5( finmod g) + f(~nmod q))

and
1
fradm)=5( f(nmod g)~ f(~nmodg)).
Then
0.2) ' f= feven + fadw

We say fis an even or odd function according as f = f,,, or f= f.-

L(s,f) satisfies a ramified type functional equation due to Schnee[10]:

©3)  Ll-sf) =(;§) | L(5.}.00)

(cf. Apostol[ 1], Funakura[5])

§ 1. Special values of L(s,f) and values I®(1,f)

; . [
From Formula (0.1) , taking into account that the term with a=q is —J-; F(@(s),

we get

Theorem 1

§iC) 1 9. »
Us,f)= J—§(s)+ Jagl,f(a)lf(s,a/q),

in particular, for ke N,

J&(uk,f)—{(/‘i)g“(k)) L S:,f( )A{ ) @ Zf(a)B[ )

91
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where B(x) is the &-th Bernoulli polynomial and Ak(x) is essentially the Clausen
function(cf. Kanemitsu [7]), and where for k=1and

(1.1) Jai (@ = f) +--+ f(g) %0,

the left-hand side is to.be understood to mean

}lir;f(lls H=r Ji(/gl)g(s)}

Of course, if ‘/af(q) =0, the formula gives the special values I(k,f).

q-1
From now on, for g=1, the empty sum z is taken to mean O so as to include

the case ofq:l, L(s,f)=C((s).

a=1 .

Definition We call fprincipal if Hq)#0 and non-principal otherwise.

Corollary 1 (Generalization of Proposition 4.1 of Yamamoto [11])

If fis non-principal, i.e. if f(g) #0, then for every se C,

Ls.f)= Zf(a)F(s alg).

9 o=
In paniculér, for ke N b,
(Zm)" 'S . : :
\/C_I z f(a)A if fand & have the opposite parity.
a=1
Lk,f)= .
1 (2mi) : :
‘/— @ 2 f(a)B if fand k have the same parity.
a=l1

Proof. The proof of this Corollary as well as other results pertaining to evenness and
oddness rests on the correspondence : Evenness and oddness of fand a fortiori, of
L(s f) corresponds to that of the basis of K_, the Kubert vector space of dimension 2,

Milnor [8]. In this case, according as k is even or odd, A,(a/q) is odd or even, and
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B(a/q) is even or odd, the result now follows from

Lk, f0) = (Z—-————-f(”)nﬂ ")), Lk, f) = [2————f(")+f(*”)]

n=1 n

Corollary 2 (Corollary 6 of Funakura [6])

(1) L1.f,5) = lqﬁf(a)anf“—,
. 2qa=l q
1 2. na
©) L fon) = —ng(a)IOg sin -~ f(q)log2.

Proof. This follows immediately from Corollary 1, and the following formula

which will also be used subsequently :
Kl - na
(1,2) 2 f(@A(alg)=|-3, fla)log2sin -
a=1 a=1 .

q-1
——Jaf @+ @)~ 3. Fa)og sin%’-
a=1

(where the last term can be expressed further as

zfmz }ogzsm-——J

n—l a=1

(13) Zf(a)B (alg)= ZJ—Zf(r)cot—

Corollary 3 (Dirichlet class number formula in finite form)

If x is a non-principal Dirichlet character mod g, then

W K1 oud) =-’2‘;§x(a)cot%’-
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. 15, . 7a G
(ii) L1,X ven) =—:I E X(a)logsin p (x not necessarily primitive)
a=}

)N na ey
Z (a)log sin-; (x primitive),

where G(y) = Z x(a)E, Q) is the normalized Gauss sum.

a mod q
Theorem 2. Ats=1, L(sf) has the Laurent or Tayldr expansion according as fis

principal or not :

.(f) i}'n(f)
n

Ls, f)— +7,(f)+ (s-1)",

where
1 .
Y—l(f) =Tf(CI),

(1.4) 7, ()=—Ffgy - Zf(r)log 2sm———f<q)1og 24 —Zf(r)cot——
\/_ J_ 9= 24 q

(Theorem 5 of Funakura 6D

1, 1 U, . Ta
A5 wH=lam -+ 1°gZﬂ)Z,f(a)log28m—q—

EEN Y E P
2‘/- 2; f(a{logl"[ q] 1ogr(1 —%D,

(1.6) 1,(f)= J“f(qn’2 3J—2f(a{ ( )+R{1—q})

o) 412
Ja y og a=1 ¢ q q
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2 -1

1 » , .
_-‘—/.-;(logz 2 +{(2)+y? + 2y log2n -% f(a)logzsin-’f;i

a=1

. a ﬂi q-1 . a a
z,/z;gf(a{R[ ] ‘{l—gn— J;l(y+1og2n)§f<a{1ogr(q]_logr[l_qn
:;C—I[log 21 +§(2)+y* +2ylog21r—7r2 -f(a)B[ J

etc., where ¥, are generalized Euler constants (¥, =7 , the Euler constant ; for more

details about generaﬁzed Euler constants, cf. § 2-1). In particular, if fis non-principal,
then LX(1,f) =7,.,(f), so that above formulas give closed form evaluation of the value
of the derivatives at s=1.

Further simplication of (1.4) using (1.2) leads to formulas in Corollary 2 of
Theorem 1. Similarly, Formulas (1.3), (1.4) can be expressed without Fourier
transforms of f.

Proof. The proof easily follows from the formula in Theorem 1. Namely, since
$(s) has the well-known Laurent expansion

(1.7) &(s) ———-+y +Sy.(s-1)

n=1t

with generalized Euler constants and Hs,a/q) (1 < a < q) has a Taylor expansion,

al vl f a
S'q _"=0n!8s" q )

as an integral function of s, it follows that

1 .
(D= Ko,

and

1 q-1 n o
(f)~f—‘(/-ﬂy,, J—Ef(a)as ﬁ{ a} neN.
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. 5 |
The closed form for 5{;:1{1 ,%J (n=0,1,2) is given by Kanemitsu [7].

Corollary 1.

. 1
(i) L(l,j;m)=——J—_q-(y+1og2n)2f(a)1oozsm—-+J_Zf(a).t{ )

| | q
(ii) E(l,ﬁ,dd)=~%(y+log27z)2f(a)B( J TZ a)]ogr(g-J

=1

- Corollary 2.

2 o
Q) LA.f.)= ,/_ 2 f(a)R( ] Jtlos2e + D) f(a)R[-z-J

g —1

1 2 2 T ~ . Ta
+-E log”2n +{(2)+y +2ylog27t—z f(a)log2sm7

a=1

. q-1
(i)  L(fu)= ‘/-Ef(a)l{) J—<y+log2n>2f<a>logr[qJ

+”i[1 om +8(2)+ 77 +2y log2n anf( )E(aj‘
~T1 108 o - a - I
Ja y y g 12 - lq

Both of these Corollaries immediately follow from Theorem 2 by separating even
and odd parts (i.e. summing the term with @ and g-a in pairs).

Remark. Corollary 1 with f = y (non-principal Dirichlet character) and

5= x(— 1)G(x)
Ja

gives Chowla-Selberg formula and Deninger's formula. Similarly Corollary 2, (i), (ii)

give generalizations of formulas of Kanemitsu [7].



Further derivative L'*’(1,f),k >3 can be calculated in principle by using the function

R, . (x), on the basis of
) F
LO(s.f)= J—Zf(a) ( qJ

§ 2. Products of L-functions
§ 2-1. A generalization of the Piltz divisor problem.

We consider the k-fold product of the L-function with a principal f:

X5)=Z(5)=Ls, ) =Y, ’;f"),

n=1

where we write dy(n) =d, _f(n) = z“f(d1 ):-- f(d,), the k-fold divisor-like sum (so that
d -dp=n

for f=1,d, f(n) =d,(n), the ordinary divisor function).

The summatory function D(x) =D, (x) = de(n) admits the asymptotic formula
n<x

D(x)=xE(logx)+ A(x),
where the main term xR(logx) = x(a(") (logx)*™ +---+ a Y logx + a ) is the residue of

Z(s)x’ I's at x=1 and A(x) is the associated error term. Under the assumption

fin)<<n® "€ >0,

it is easily proved by elementary means that

A(x) <<x'Vk

(the estimate can be improved by using more subtle techniques).

97
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Lavrik [8] has generally been considered as the first who expressed the

coefficients a’ in terms of generalized Euler constants 7, defined by

1y . log'n 1 ret =
(22) Y= r! m(é n _—_r'+1log * f—Ol,Z; ’
but preceding Lavrik by more than 20 tears, Eda [6] had made the same thing,
except for estimation and representation of ¥, . Eda also referred to a more general

problem for the product of k L-functions, but he gave a representation of L(1,x)
only, so that it can hardly be said the determination of a® for this problem was

 done. Finite form expressions for L¥(1,%) have been given by Deninger [3] for
k=0,1 and by Kanemitsu [7] for 0< k < 2 (similar formulas hold for general k).

The generalized Euler constants ¥, appear as the Laurent coefficients of §(s)

at s=1 (it is more customary to define ')/,‘ by (2.2) without the factor (~1)"/r!, but
to conform with the notation of Lavrik [8]and Sitaramachandrarao [12] we adopted
the above notation. Anyway, these were already known to Stieltjes and have been
considered by several authors including Briggs, Chowla, Hardy, Kluyver et al (cf.
Ref. of Berndt's paper [2]). |

In that paper, Berndt obtained the Laurent coefficients of the Hurwitz zeta-
function, generalizing former results due to Wilton, but he does not mention the
paper of Daojoy [5] whose results were the basis of Eda's investigation. However,

Berndt had better estimates, which have been subsequently improved by Balakrishnan

[1]. For sharp estimates for_ 7, 's themselves, see the papers of Matsuoka [11].



The expression of Eda-Lavrik for a® led Lavrik, Israilov and Edgorov [9] to

express the values of integral
= A (u)
I=1(f)=] L du

in terms of 7, 's. More recently, Sitaramachandrarao [ 12] has simpliﬁed theh
ar’gumeﬁts of Lavrik [8] and Lavrik et al [9], giving lucid relation among those
constants.

We now follow Sitaramachandrarao's argument (still simplifying it) to prove
his formula (1.2), (1.3), (1.4).

By partial summation

k-1
uYy a®(logu) + A (u)

7 édk(n')n"’ =x"Dk(_x)+ sJ: ‘ = e du.

Letting x — o for 0 >1, we get

k-1 :
As) =3 Y a1y + | M)
i=0 u

1
or

’ k-1
(23) o= A =223 a1y,

u s i=1

By (2.1), the integral defining f(s) is absolutely and uniformly convergent in the
wide sense in the region 0 >1-1/k, whence f(s) is analytic there. In particular,
the right-hand side is also analytic at s=1, to the effect that the principal part of Z(s)/s

around s=1 is exactly the second summand (with minus sign omitted) of (2.3).

99



For comparis()n's sake we now deduce the Laurent expansion of Z(s)/s

= L(s,f)k/s from that of L(s,f). Writting 7, =7,(f)=7,...(f), we have from

Theorem 2
1 o Y
) =(27n(f)(s—l)”“J (=1 (s=1+1)"
- ko
=(an(f)(s—l)”) Y (1) (s-1)"(s-D*
n=0 n=0
= iﬁi“(s—l)"(s—l)"‘,
say, where

BY =BP(H= XV, 7, = 2( DY AN

i+h e tig=n §eetig=r
iy 20 iy 20

so that

BE =(-1"y_(f) +Z< D" XD Y-

i1+ tig=r
1120

We separate the innermost sum according to how many (, say s) of i,'s are non-

zero, and obtain

r=}

23) BY =(-1\|y ,(f>+2( -1y 2( )n(f)"*’ Sy (v (D |

i1+ +ig=r—s
i, 21

Since the principal part of the Laurent expansion of Z(s)/s is

k-1 i
> B (s-1)",
i=0

it follows that

(k)

®) k=1-i .
aq = 2 3 1—0"",k_1s

which is (1.3) of [12], Theorem 1 of [8], Theorem 2 of [6].

100
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Similarly, the constant term is B,fk) , which is equal to f,(1)= I, , giving

Formula (1.4) of [12] :

A(u)
I, =f ;2 du = f(1)= k(k)‘
Finally, to prove Formula (1.2), we need a recurrence between

BE*" and BY, which is obtained as follows. We have -

1 < n k-
;Zk+1(s)=2B’fk+l)(S_l) (S__l)k I,
n=0

or
c C+ n 1 k+
ZB'SL D(s-1) :;((s—l)L(s,f)) l
n=0 ’
1 k
=3 ()5 =1)' (s =1)L(s.f)
v =zﬁifk)(.s_l)nzf"(s_1)n’
n=0 n=0
whence
n n-1
B = X7 = B+ S DB
i=0 i=0
In particular,

k-1
RrE® _pk+d (k)
Ik— t — Mk —ZYi(.f) n—i—1
i=0

k-1
_ (k+1) k)
=af*" =Y ay(Ha®,
i=0

which is the theorem of Lavrik, Israilov and Edgorov [9].
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§ 2-2. A generalization of a theorem of Miiller-Carlitz-Ayoub-Chowla-
Redmond-Berndt

Consider the convolution r = f * g with f,g both even and period g,q',

respectively (aiming at an application to the case of real quadratic fields K = ( Jd),

d&>0: . (s)= {,’(s)L(s(-;D, where both f=1, g =(j], the Kronecker symbol,

are even), and the associated L-series

r(n)
T, 0 >1.
n

As)=L(s,)L(sg) =Y.

The authors in the title (except for Berndt, who considers far more general class
of Dirichlet series) were interested in the asymptotic formula for the logarithmic

Riesz sum (of order 1)

) =Sy = Sr(mlog > === 2(s)%5ds, with c>1
TS L TOR o ey A @ W

We note the following estimate for L(s,f) :

1, o>1,

1-o 1o .
Us.f)<<\qz “(qfh)2 loghl 0<o <1,
(s logl, o <0,

which follows from absolute convergence, the corresponding order estimate for
{(sox) and (0.0), and functional equation (0.3), respectively.y
Hence, by Cauchy's theorem, we can shift the line of integration to 1-c,

encountering two poles at s=0,1. The point 1 is a pole only when at least one of f, g

is principal. Hence,
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o ' sy L z
@4) xx)=(13§s+135s) (7 + 5], L) ds
= M(x)+E(),

say. Redmond [8] made an explicit determination of the coefficients in M(x) with
f.g Dirichiet_ characters, which we will first generalize.

In the neighborhood of s=0,

Z(s)f—z =Z(0)s +(C,logx+C,)s™ +---
‘with
C, =C{q4q)=Z(0)= L(0,HL(0g),

Ci=C{q4)=Z(0)=L(0,/)L(0.g)+ L(0,/)L(0 ),

which can be explicitly expressed in view of

J a z 1 a

and

a=1

L(0.f)= i f(a)§'[0,-;-)= i f(q{logl{%)—%log o J

In the same way as Redmond [8] we get

5

X
RglsZ(s);z- =C,xlogx+C,x,
where

C =Clad)= {7_1(f)7_.(g), if both f,g are principal,
1 =09 o, otherwise,

—27_1(f))/_1(g) +Y (N (@) +7.(F)Y_(8),
C,=Cy(q4)= if at least one of f,g is principal,
0, ~ if neither of f,g is principal.
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Hence
(2.5) ’ Mx) =Cxlogx+ C,x+C,logx +C,.
We make a parenthetical note on ¥, ( f) when f = %, , a principal character

mod g : On the one hand

q-1
Yo(Xo)= My j-Zf(r)log2sm—q-+ —Zf(r)cot—q-

by Theorem 2, and on the other hand, by Redmond's Lemma 4,
_ Qi logp
%olxe)="y % p-1"7]

whence

q-1

o )2 ogp __‘/"Zf(r)log251n-7:—+z;— > f(r)cot%.

plq r=1
(r.q)=1

Now in the integral E(x), make the change of variable s <> 1 —s and use the

s—1/2 q' s—1/2 xl—-s
) (?J -8

functional equation (0.3) to obtain

(2.6)
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Thus we are led to evaluate the integral

2 ;g_ 1-s5
a1t (2}‘

(x)=—— = ds
2mi ()1_‘2(1__s}1__s)2

2

for x>0 and 0<c<3/2 (to secure absolute convergence).

We note that without loss of generality we may assume that O<c<1/2, in which

2| 8 | iss
. 1. Tk

’XE;Kx) =%L)F2(l _S}l _s) ds

case

2
is exactly the integral I,(x) in the following (cf. [5], Lemma 7.1).

Lemma. Let x>0, ke N and o<c<k/2. Then

\
I-\2 adl k—s
C +ico (2}

L= = ds
FZ(—;}l—s)-~-(k—s)
2
=2t H 2 (g Ry g O r@2m+1)’ '
* T(k=2m+1)

z (4x)2m—l

, k=1(2),
1<2m—1<k—c '(2m) 2)

where, following ‘Voronof, we put
v —1 2
E(x)=Y,(x)+(-1) ;KV(X),

and Y, (x), K, (x) are ordinary and modified Bessel functions usually so denoted.
Thus

d 1
Z =R,



or

x 1
() = R
1 o5
=—> | FOMy

1 ¢4/ 2 _
= [ Eo+ 2K .
N§w noting |
K,(»)=-K,(»), [10],p.79,(7),

Y, (y)=-Y(y), [10], p.66, (14),

and
2
Y,(0)+—K,(0) =0,
w
we conclude that
1 2
(2.7) (x) =§(Y,(4J;)+ ;K,(4J£)].

Now from (2.4)-(2.7) we have

Theorem 3. If f, g are both even, then

ns<x

Zr(n)log-:-:- ~C,xlogx+C,x+C,logx+C,

W”f*f%(nf[L ]3[_”_ J]
+2ﬂ§ . k1’14‘IZI;M+”K,4‘/E‘/E.

The study of other cases will be given elsewhere.
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We only note the special case of imaginary quadratic fields K = Qv-d),d >0,

in whichcase f=1,g 2(——), the Kronecker character. The Dedekind zeta function

Hn)

n

Le()=2,
n=|

satisfies the functional equation of Hecke type and the following

has been given by Berndt [2].

x . Jde B nx
2.7 log— =Ah 0)—— ) — 4 —
(2.7) Ef(n) og==Ahx +{ (O)logx +{(0)~" ZI - Jo[ ”\’IdIJ’
WMCh reduces, in fhe case Qv—4), to

(2.8) Eg(n)log%=7cx-logx+§;(0)—%i—rg-(’;£)'Jo(2an_;),

n=1

where

n(n)= 1 =4F(n)=4 Y1, and gz(s‘)=i—r2—;l(si),

a® +b%=n Na=n
Comparing this with the formula obtained by Miiller [6], Carlitz {3] or
Redmond [8] :

LU4) | oy sy

2.9 Y r(n)lo X r—logx—lo
‘ 4 nn)iog’ =M —logx =0T

(on noting that the first term of the asymptotic formula for J, gives the same
error estimate) we get

. : T41/4)
S0 =6,(0)= —log——.

Incidentally, Nowak [7] has also proved (2.8) with different evaluation of the

constant term, whence we deduce in particular the following strange evaluation : -

1 &r(n r*a/4
(2.10) ;E-rl(;—)Jo(Zanu)=7m—-logu—log o ),for0<u<l.
n=1
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On§2-3and § 3 only a brief mention is made of some possible directions of
research and details will be given elsewhere.

Some of the most natural products of L-functions are
d ) i .
(D( s)L(s,[-)= Coc J7,» the Dedekind zeta-function of the quadratic field Q(JE ).

Q) L, (s)L,( S) = L,(s, %), the L-series with a genus character y for the quadratic

field K = Q(+/d), where d,, d, arise from the decomposition d = d,d,.

(3)&(s) IT L(s,x)=¢,(s), the Dedekind zeta-function for the maximal real subfield
X#*Xo

% even
K = Q¢ +¢™")of the cyclotomic field Q(§ »)» Where { is the p-th root of unity
¢ = exp(2ni/ p), p a prime.
@ L(s, %)~ L(s, )= Z(s), the product of k L-functions, not necessarily
primitive, considered by Gel'fond, Landau, Suetuna, ....
(1) - (3) and generalization thereof are of arithmetic flavor and usually lead
to the Chowla-Selberg type formulas, while for the product of type (4) one can

build up an analogous theory to the well-known case {(s)", i.e. approximate

functional equation, mean value theorems, etc.



109

References

General references (in particular for §' 1):

[1] T.M. Apostol, Introduction to Analytic Number Theory, Springer Verlag
1976. |

[2] Bruce C. Berndt, Periodic Bernoulli numbers, summation formulas and
applications, Theory and Application of Special Fun;:tions, ed. by Richard |
A. Askey, Academic Press 1975, 143-189.

[3] Chr. Deninger, On the analogue of the formula of Chowla and Selberg for real
quadratic fields, J. Reine Angew. Math. 351(1984), 172-191.

[4] K. Dilcher, Generalized Euler constants for arithmetical progressions, Math.
Comp. 59 (1992), 259-282.

[5] T. Funakura, On functional equations of certain Dirichlet series, Striken-
koukyuroku, 631(1987), 55-65.

[6] T. Fnnakula, On Kronecker's limit formula for Dirichlet series with periodic
coefficients, Acta Arith. 55(1990), 59-73.

[7] S. Kanemitsu, Cn evaluation of cérta_in limits in closed form, Théorie des
nombres, J.-M. De Koninck & C. Levesque (éd.), 1989, 459-474,Walter de
Gruyter 1989

[8] J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities,
Enseignement Math. (2) 29 (1983), 281-322.

[9] T. Okada, On an extension of a theorem of S. Chowla, Acta Arith. 38(1981),
341-345. _

[10] W. Schnee, Die Funktionalgleichung der zeta-funktion und der Dirichletschen

Reihen mit periodischen Koeffizienten. Math. Z. 31 (1930), 378-390.



110

[11] Y. Yamamoto, Dirichlet series with periodic coefficients, Proc. Intern. Sympos.

"Algebraic Number Theory", Kyoto 1976, 275-289. JSPS, Tokyo 1977.

References for § 2:
§2-1
[1] U. Balakrishnan, On the Laurent expansion of {(s,&) ats=1, J. Indian Math.
- Soc. 46 (1982), 181-187.
[2] B. C. Bemndt, On the Hurwitz ieta function, Rocky Mountain J. Math. 2
(1972), 151-157. | |
- [3]1 W. E. Briggs, The irrationality of y or of similar constants, Norske Vid. Sersk.
Forch.(Trondheim)34 (1961), 25-28.
[4] W. Briggs and S. Chowla, The power series coefficients of {(s), Amer. Math.
Monithly 62(1955), 323-325. |
[5] A. Denjoy, L'equation fonctionelle de {(s), C. R Acad. Sci. Paris 258, No.5
(1954). |
[6] Y. Eda, A note on the general Diyisor problem, Sci. Rep., Kanazawa Univ.
vol. 3, no.1 (1955), 5-9. |
[71J. Knopmacher, Generalized Euler constants, Proc. Edinburgh Math. Soc. 21
(1978), 25-32.
[8] A. F. Lavrik, On the main term in the divisor problem and the power series of
the Riemann zeta-function in a neighborhood of its pole, Trudy Mat. Inst.

Steklov 142 (1976), 165-173 ; Proc. Steklov Inst. Math.(1979), 175-183.



111

[9] A. F. Lavrik, M. L. Israilov and Z. Edgorov, On an integral containing the
rimainder term in divisor problems (Russian), Acta Arith. 37 (1980), 381-389.
[10] D. H. Lehmer, Euler constants for arithmetic progressions, Acta arith. 27
(1975), 125-142 ; Selected Papers of D. H. Lehmer, vol. II, 591-608, Charles
| Babbage Res. Center, Manitoba 1981.
[11]Y. Matsuoka, On the power series coefficients of the Riemann zeta function,
Tokyo J. Math. 12 (1988), 49-58.
[12] R. Sitaramachandrarao, An integral involving the remainder term in the Piltz
divisor problem, Acta Arith. 48 (1987), 89-92.
[13] J. R. Wilton, A note on the coefficients in the expansion of {(s,x) in powers

of s-1, Quart. J. Pure. Appl. Math. 50 (1927), 329-332.
Refernces for § 2-2 :

[1] R.Ayoub and S. Chowla, On a theorem of Miiller and Carlitz, J. Number
Theory 2(1970), 342344, |

[2] Bruce C. Berndt, Identities involving the coefficients of a class of Dirichlet
series II, Trans. Amer. Math. Soc. 137(1969), 361-374.

[3] L. Carlitz, A formula connected with lattice points in a circle, Abh. Mat. Sem.
Univ. Hamburg 21(1957), 87-89.

[4] K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and

arithmetical identities, Ann. of Math. (2) 74 (1961), 1-23.



112

[5] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple
gamma factors and the average order of arithmetical functions, ibid. 76 (1962),
93-136.

[6] Cl. Miiller, Eine Formel der analytische Zahlentheorie, Abh. Math. Sem.
Hamburg Univ. 19 (1954), 62-65.

[7] W. -G. Nowak, letter to the second author, dated 12-06-1984.

[8] D. Redmond, A generalization of a theorem of Ayoub and Chowla, Proc.

Amer. Math. Soc. 86 (1982), 574-580.

[9] D. Redmond, Corrections and additions to " A generalization of a theorem of
Ayoub and Chowla", ibid. 90 (1984), 345-346.
[10] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed.,
Cambridge UP 1966.

References for § 2-3
[17 A. O. Gel'fond, Some functional eqliations of Riemann type, Izb. Trudy,

372-3717.

[2] J. L. Hafner, On the representation of the summatory functions of a class of
arithmetical functions, Analytic Number Theory, LNM 899 (1981), 148-165.

[31 A. A. Karatsuba, Dirichlet's divisor problem in number ﬁélds, Dokl. Akad.
Nauk SSSR, 204 (1972), 540-541.

[4], E. Landau, Uber die Anzahl der Gitterpunkte in gewissen Bereichen, Nachr.
Konig. Ges. Wiss. Goéttingen, Math.-Phys. Kl. 1912, 687-770 ; Collected
Works, Vol. 5, 156-239, Thales Verl. 1986.

[4], E. Landau, Uber die Anzahl der Gitterpunkte in gewissen Bereichen, ibid.
1915, 209-243 ; Collected Worl;s, Vol. 6, 308-342, Thales Verl. 1986.

[5] Z. Suetuna, On the product of L-functions, Japanese J. Math. 2 (1925),

19-37 ; Collected Papers, Vol. 1, Nansoosha, 19--.



113

References for § 3.

[1] E. Artin, Uber die Zetafunktionen gewiBer algebraischer Zahlkorper, Math.
Ann. 89 (1923), 147-156 ; Collected Papers, |

[2] Chr. Deninger, cited as [3]in § 1.

[3] M. Gut, Die Zetafunktion, die Klassenzahl und die Kroneckersche
Grenzformel eines beliebigen Kreiskorpers, Comment. Math. Helv. 1 (1930), |
160-266. '

[4] K. Katayama, Kronecker's limit formulas and their applications, J. Fac. Sci.
Tokyo Univ. 13 (1966) 1-44.

[5] C. J. Moreno, The Chowla-Selberg formula, J. Number Theory 17 (1983),
226-24S.

[6] C. L. Siegel, Advanced analytic number theory, Tata Inst. Fund. Res. 1980.

and the papers cited in the above references.

M. Ishibashi S. Kanemitsu
Kagoshima Nat'l Dept. of Lib. Arts and Sci.
College of Tech. Kinki Univ. in Kyushu
1460-1 Shinko Hayato-cho lizuka

Kagoshima 899-51. Fukuoka 820

Japan Japan



