
On some numerical computations
to the oil-reservoir problems

Tatsuyuki Nakah $\dagger$ ( $\Psi$ X $\leqq\not\equiv$ )

Department of Mathematics,

Fukuoka University of Education

1. Introduction.
In order to recover part of the remaining oil fiom wells (called production wells), it is

used the way that one injects water into another wells (cffied injection wells), which are

located around the reservoir, so that the water pushes the oil toward the production wells.

In this process, two immiscible fluids

–water and oil –flow through the

porous medium, and can be regarded
as separated by a sharp interface dur-

ing penetration of water into oil. By

Iaboratory studies, it is already known
$r\iota cu*\iota 3l$ $Displ\infty nent$ front for a mobility ratio $of20$. showing $thl$

$d\cdot v\cdot lopme\mathfrak{n}($of $\Phi\iota\iota e\iota s(alWT\epsilon\pi yuaI.1958)$ .
that the interface is unstable; small

perturbations in the interface grow up Fig. 1. Instability of the interface [10].

(see Fig. 1).

In this paper we show some numerical computations of two-dimensional problems in the

following cases.

Case (a). The water is injected into the injection wells;

Case (b). The pressure given at the injection wells is negative.

The oil-recovery problem stated above corresponds to Case (a). When the capillary pres-

sure between two fluid can be negected, many numerical simulations are done in $[4]-[7]$

and [11]. From the analytical points of view, Chorin [2] proves under some special initial

and boundary conditions that the interface is linearly unstable if $\mu=\mu_{0}/\mu_{w}>3$ and is lin-

early stable if $\mu<3$ , where $\mu_{w}$ and $\mu_{0}$ are the viscosities of water and oil, respectively. To

investigate the role of the capillary pressure, we shall show some numerical computations

when the capillary pressure is not neglected.
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In Case (b), there exists a steady state solution in one-dimensional problems, and the

numerical simulation suggests us that this steady state solution seems to be stable [8]. Here

the steady state solution means the solution which is independent of time $t$ . Using this

solution, we can construct a planar wave solution (see (13)) in a rectangle region. We try

to investigate the relationship between the stability of the planar wave solution and the

aspect ratio of the rectange region from numerical points of view. The motivation to this

study is as follows. In an$otIner$ problems described by some reaction-diffusion equations,

it is already proved that the steady state solution of planar type is stable (resp. unstable)

when the aspect ratio of a rectangle region is small (resp. large). Our aim is to discuss

whether or not the same property holds in the oil-reservoir problems.

In the $fo\mathbb{I}owing$ section, we show the basic equation and the boundary conditions of our

problems. In Section 3, we treat Case (a) from numerical points of view. Some numerical

computations in Case (b) are shown in Section 4.

The numerical computations in this paper are made by computers FX/1 and FX/4 in De-

partment of Mathematics, Hiroshima University and workstation $Sun4/490$ in Information

Processing Center, Fukuoka University of Education.

2. Basic equations.
We write water and oil as fluid $w$ and fluid $0$ , respectively. Let the saturation $s_{i}(x,t)$ be

the fractional amount of fluid $i(i=w, 0)$ at point $x$ and time $t$ . We denote by $v_{i}(x, t)$ and
$pi(x, t)$ the velocity and the pressure of fluid $i$ , respectively. Then we have

1

$s_{w}+s_{o}=1$ , (.1)

$- \nabla\cdot\rho|v;=\frac{\partial}{\partial t}(n\rho i^{S_{*})},$ $i=w,$ $0$ , (2)

$v_{i}=- \frac{Kk_{i}}{\mu:}(\nabla pi-\beta ig)$ , $i=w,$ $0$ , (3)

$p_{0}-p_{w}=p_{c}$ . (4)

Here $\rho i$ and $\mu$ ; are the density and viscosity of fluid $i(i=w, 0),$ $n$ and $K$ are the porosity

and absolute permeability of the medium, and $g$ is the gavity constant. $k_{w}=k_{w}(s_{o})$ and
$k_{o}=k_{o}(s_{w})$ are the relative permeabilities of fluid $w$ and $0$ , respectively, and $p_{c}=p_{c}(s_{w})$

is the capillary pressure between two fluids. The forms of these three functions are given
by experiments (see [3], for example), and we take

$k_{w}(s_{o})=(1-s_{o})^{2}$ , $k_{o}(s_{w})=(1-s_{w})^{2}$ , and $p_{c}(s_{w})=\epsilon(1-s_{w})$ , (5)
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where $\epsilon$ is some parameter, which means the magnitude of the capillary pressure. The
equation (2) expresses the conservation of fluid $i,$ (3) is Darcy’s law, which means the flow
of fluid $i$ is proportional to the gradient of its pressure. The equation (4) describes the

balance law of the pressure.

For simplicity, we assume that $\rho;,$ $\mu i(i=w, 0),$ $n$ and $K$ are constants with respect to $x$

and $t$ , and that there is no external force, that is $g=0$ . Putting $s=s_{w},$ $v=v_{w}+v_{o}$ and

$p=p_{w}$ , we can rewrite (1)$-(4)$ as follows.

$\frac{\partial}{\partial t}s+\nabla\cdot[vf(s)]-\epsilon\nabla\cdot[d(s)\nabla s]=0$ , (6)

$\nabla\cdot v=0$ , (7)

$v=-[\lambda(s)\nabla p-\epsilon\phi(s)\nabla s]$ , (8)

where

$f(s)= \frac{k_{w}(1-s)}{s)=f(s)\lambda(s)},\lambda(s)=k_{w}(1-s)+\frac,\mu=\frac{\mu_{0}}{\mu_{w}’}d(\phi(s)and\phi(s)=-\frac{k_{o}(s)k_{o}(s)\mu}{\epsilon\mu}p_{c}’(s)$

.

We consider the two-dimensional problem for (6)$-(8)$ on $x\equiv(x, y)\in\Omega(l)\equiv(0,1)\cross(0, l)$ ,

where $\ell$ is positive parameter. Taking Fig. 1 into considerations, we impose the boundary
conditions

$s(0, y, t)=1$ , $p(0, y,t)=p^{*}$ on $0<y<\ell$ , $t>0$ , (9)

$s(1, y,t)=0$ , $p(1, y, t)=0$ on $0<y<\ell$ , $t>0$ , (10)

$\frac{\partial}{\partial y}s(x, y, t)=\frac{\partial}{\partial y}p(x, y,t)=0$ on $(x, y)\in(0,1)\cross\{0,1\}$ , $t>0$ . (11)

The initial condition

$s(x, y, 0)=s_{0}(x, y)$ on $(x, y)\in\Omega(\ell)$ (12)

is also imposed. The conditions (9)$-(10)$ describe the injection of water at $\{0\}\cross(0, l)$ with
the pressure $p^{*}$ , and the production of oil at {1} $\cross(0, \ell)$ , respectively. (11) shows that
$(0,1)\cross\{0\}$ and $(0,1)\cross\{1\}$ are the Neumann boundaries.

REMARK 1. Cases (a) and $(b)$ . stated in Section 1 correspond to $p^{*}>0$ and $p^{*}<0$ ,
respectively.

Under the boundary conditions (9)$-(11)$ , there is solutions $s(x, y, t),$ $v(x, y,t),$ $p(x, y,t)$

of the following foim:

$s(x, y,t)=\tilde{s}(x,t)$ , $v(x, y, t)=\tilde{v}(x, t)$ , $p(x, y, t)=\tilde{p}(x,t)$ , (13)
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where $\tilde{s}(x,t),\tilde{v}(x,t)$ and $\tilde{p}(x, t)$ are the solution of one-dimensional problem of (6)$-(8)$ .

From one-dimensional version of (7), it follows that $\tilde{v}$ does not depend on $x$ . Using this

fact, we find that $\tilde{s}(x, t)$ and $\tilde{v}(t)$ satisfy

$\tilde{s}_{t}+\tilde{v}f(\tilde{s})_{x}-\epsilon(d(\tilde{s})\tilde{s}_{x})_{x}=0$

$\tilde{v}=(p^{*}-c\epsilon)(\int_{0}^{1}\frac{dx}{\lambda(\tilde{s})}I^{-1}$

$\tilde{s}(0, t)=1$ and $\tilde{s}(1,t)=0$

$\tilde{s}(x, 0)=\tilde{s}_{0}(x)$

on $x\in(0,1)$ , $t>0$ , (14)

on $t>0$ , (15)

on $t>0$ , (16)

on $x\in(O, 1)$ , (17)

where $c= \int_{0}^{1}\frac{\phi(\sigma)}{\lambda(\sigma)}d\sigma$ is some positive constant.

REMARK 2. In one-dimensional problem (14)$-(17)$ , the unknown value $\tilde{p}$ can be elimi-

nated.

REMARK 3. The solution of the form (13) is called planar irave solution or solution of

planar type.

3. Numerical computations in Case (a).

In this section we review some numerical simulations to the twodimensional problems

in Case (a) (see [8]). Throughout this section we set $p^{*}=1$ , and the aspect ratio of the

region $\Omega(\ell)$ is fixed to $l=1$ . When the capillary pressure is negligible, that is $\epsilon=0$ , there

appears a shock-interface between the region where $s=0$ (oil region) and the region where

$s>0$ (the region where water is penetrated). Figs. 2 and 3 show graphs of the interfaces

when $\mu=0.5$ and $\mu=20$ , respectively. Fig. 4 is the $niJmerical$ solution $s$ when $\mu=20$ .

Fig. 2. Numerical interfaces
when $\epsilon=0$ and $\mu=0.5$ .

Fig. 3. Numerical interfaces
when $\epsilon=0$ and $\mu=20$ .

$t=0,0.04,$ $\ldots,$
$0.68$ . $t=0,0.4,$ $\cdots,$ $3.6$ .
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$t=3.6$

Fig. 4. Numerical simulation when $\epsilon=0$ and $\mu=20$ .

From these figures, one can find that the interface seems to be stable when $\mu=0.5$ .

However, when $\mu=20$ , the interface is unstable. In one-dimensionaJ problems, we already

know the following theorem.

TIIEOREM 4.[8] Let $t\Lambda e$ initiaI function be $\tilde{s}_{0}\equiv 0$ . $T\Lambda ent\Lambda e$ interface $\eta(t)$ of the

solution of (14)$-(17)$ satisfies

$\eta’’(t)<0$ on $0<t<T_{b}$ i$f$ $0<\mu<\mu^{*}$ , (18)

$\eta’’(t)>0$ on $0<t<T_{b}$ if $\mu>\mu^{*}$ , (19)
1

$w\Lambda ereT_{b}$ is some positi$ve$ constant satisfying $\eta(T_{b})=1$ , and $\mu^{*}=1.65\cdots$ .

REMARK 5. The constant $T_{b}$ in the previous theorem is called the $breaktInioug\Lambda$ time,

which means the time when water reaches to the production wells.

To investigate the role of the capillary pressure, let us consider the case of $\epsilon>0$ . In the

following we set $\mu=20$ ; the case where the interface is unstable when $\epsilon=0$ . For small

value of $\epsilon$ , the interface is also unstable (see Fig. 5).

$t=3.6$

Fig. 5. Numerical simulation when $\epsilon=0.01$ and $\mu=20$ .
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However for large value of $\epsilon$ , the interface becomes stable.

$t=0.01$

Fig. 6. Numerical simulation when $e=100$ and $\mu=20$ .

Hence one may say that the capillary pressure stabilizes the interface (see [9]).
In one-dimensional problems, by numerical simulations, it seems that the acceleration of

the interface is positive for small value of $\epsilon$ and negative for large $\epsilon$ . Hence the capillary
pressure reduces the acceleration of the interface.

4. Numerical computations in Case (b).
In this section we discuss the case of $p^{*}<0$ . In one-dimensional problems, we already

know the following theorem.

TIIEOREM 6. [8] Let $p^{*}<0$ and $\epsilon>0$ . Then there exists a $steadystate$ solution $\tilde{s}(x)$

and $\tilde{v}$ of (14)$-(17)$ .

By a numerical simulation (Fig. 7), it seems that the steady state solution is stable;
however we can not prove it yet. Throughout this section, we set $\mu=20,$ $p^{*}=-50$

and $\epsilon=100$ . The following figure displays the numerical simulation of one-dimensional
problem.

Fig. 7. One-dimensional numerical simulation in Case (b)
at $t=0$ , 0.005, 0.01, $\cdots,$ $0.5$ .

125



By simple calculations, we find that the steady state solution $\tilde{s}(x)$ satisfies

$\tilde{s}(x)=\{\begin{array}{ll}1-(x/\eta)^{1/3}, if 0\leq x\leq\eta,0, if \eta<x\leq 1,\end{array}$ (20)

where $\eta=0.4$ is the position of the interface. Let us construct the two-dimensional steady

state solution of planar type by (13), and we investigate the stability of this solution from

numerical points of view. We take the initial function $s_{0}(x, y)$ as

$s_{0}(x, y)=\{\begin{array}{ll}1-(x/\eta(y))^{1/3}, if 0\leq x\leq\eta(y), 0\leq y\leq l,0, if \eta(y)<x\leq 1, 0\leq y\leq l,\end{array}$ (21)

where $\eta(y)=0.4+0.2\cos\frac{\pi}{\ell}y$ .
The following figure demonstrates numerical simulation when $f=0.01$ .

Fig. 8. Numerical simulation in Case (b) when $\ell=0.01$ .

One can see that the steady state solution of planar type is stable in this case.
Next we show $tbe$ case where $\ell=1000$ .

$t=0$ $t=0.\infty 5$ $t=0.015$ $t=0.05$

Fig. 9. Numerical simulation in Case $($b) when $\ell=1000$ .

In this case the steady state solution of planar type also seems to be stable. We carry on
computations when $\ell=0.1,1,10,100$ . In all cases, we observe that the solutions seem to
be stable.
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