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Abstract

The two-dimensional B\’enard problem of a rarefied gas in a rectangular domain

is studied numerically by a finite-difference analysis of the Boltzmann-Krook-

Welander equation. The diffuse reflection is assumed on the upper cooled wall

and on the lower heated wall and the specular reflection on the side boundaries.

The range of the parameters where a convection exists, steady flow patterns, a

bifurcation of flow pattern, and a process of convergence to an array of uniform

size rolls are presented.

I. Introduction

The B\’enard problem conceming the instability of a layer of fluid heated from below has

long been of interest to many scientists and engineers, and a lot of works have been done

on the basis of the continuum theoryl-5. The study of the problem of a rarefied gas is

just at a starting point, and only a few works6, which their authors call preliminary, have

been done by the direct simulation Monte Carlo method78. In a series of papers we will

study the problem more systematically and try to obtain more comprehensive result of the

problem. In the present paper we consider the two-dimensional B\’enard problem of a rarefied

gas in a rectangular domain and investigate the condition (the range of the parameters

included in the problem) that allows a state with flow, flow pattems, and bifurcation of
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flow. Numerical analysis by a finite-difference method on the basis of the Boltzmann-Krook-

Welander $equation^{8-10}$ is chosen to pursue the problem.

II. Problem and basic equation

In this paper we consider two dimensional flows of a rarefied gas in a rectangular domain

($0<X_{1}<L,$ $0<X_{2}<D;X_{i}$ is the Cartesian coordinate system), where the gas is subject

to a uniform gravitational force in the negative $X_{2}$ direction, the lower boundary at $X_{2}=0$

is heated at a uniform temperature $T_{h}$ , and the upper at $X_{2}=D$ is cooled at a uniform

temperature $T_{c}$ . We analyze the behavior of the gas under the following assumptions:

i $)$ The behavior of the gas is described by the Boltzmann-Krook-Welander equation.

ii) The molecules make the diffuse reflection on the upper and lower boundaries.

iii) The molecules make the specular reflection on the side boundaries at $X_{1}=0$ and $L$ .

The Boltzmann-Krook-Welander equation is given by

$\frac{\partial f}{\partial t}+\xi_{1}\frac{\partial f}{\partial X_{1}}+\xi_{2}\frac{\partial f}{\partial X_{2}}-g\frac{\partial f}{\partial\xi_{2}}=A_{c}\rho(f_{e}-f)$ , (1)

$f_{e}= \frac{\rho}{(2\pi RT)^{3/2}}\exp(-\frac{(\xi_{i}-v_{i})^{2}}{2RT})$ , (2)

$\rho=\int fd\xi_{1}d\xi_{2}d\xi_{3}$ , (3a)

$v_{i}= \rho^{-1}\int\xi_{i}fd\xi_{1}d\xi_{2}d\xi_{3}$, (3b)

$3RT= \rho^{-1}\int(\xi_{i}-v_{i})^{2}fd\xi_{1}d\xi_{2}d\xi_{3}$. (3c)

Here, the notations are as follows: $t$ is the time; $\xi_{i}$ is the molecular velocity; $f$ is the velocity

distribution function; $\rho$ is the density of the gas; $v_{i}$ is the flow velocity $(v_{3}=0)$ of the

gas; $T$ is the temperature of the gas; $g$ is the acceleration of gravity; $A_{c}$ is a constant $(A_{c}\rho$

is the collision frequency of a molecule, which is common to all the molecules in the case

of the Boltzmann-Krook-Welander model); $R$ is the specific gas constant. The integrals in

Eqs. $(3a)-(3c)$ are carried out over the whole $\xi_{i}$ space.
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The boundary conditions on the upper and lower boundaries are, at $X_{2}=0$ ,

$f=\rho h(2\pi RT_{h})^{-3/2}\exp(-\xi_{i}^{2}/2RT_{h})$ , $(\xi_{2}>0)$ , (4a)

$\rho h=-(2\pi/RT_{h})^{1/2}\int_{\xi_{2}<0}\xi_{2}fd\xi_{1}d\xi_{2}d\xi_{3}$ , (4b)

and, at $X_{2}=D$ ,

$f=\rho_{c}(2\pi RT_{c})^{-3/2}\exp(-\xi_{i}^{2}/2RT_{c})$ , $(\xi_{2}<0)$ , (5a)

$\rho_{c}=(2\pi/RT_{c})^{1/2}\int_{\xi_{2}>0}\xi_{2}fd\xi_{1}d\xi_{2}d\xi_{3}$. (5b)

The boundary conditions on the side boundaries are, at $X_{1}=0$ ,

$f(X_{1}, X_{2}, t, \xi_{1}, \xi_{2}, \xi_{3})=f(X_{1},X_{2}, t, -\xi_{1}, \xi_{2}, \xi_{3})$ , $(\xi_{1}>0)$ , (6)

and, at $X_{1}=L$ ,

$f(X_{1},X_{2}, t, \xi_{1}, \xi_{2}, \xi_{3})=f(X_{1},X_{2}, t, -\xi_{1}, \xi_{2}, \xi_{3})$, $(\xi_{1}<0)$ . (7)

The initial condition is, at $t=0$ ,

$f=f_{0}$ , (8)

where $f_{0}$ is properly chosen.

By use of properly chosen nondimensional variables, Eqs. (1)$-(3c)$ and the boundary con-

ditions $(4a)-(7)$ are reduced to a system characterized by the four parameters: the Knudsen

number $Kn[=(8RT_{0}/\pi)^{1/2}(A_{c}\rho_{0})^{-1}D^{-1}=\ell_{0}/D]$ , the Froude number $Fr(=2RT_{h}/Dg)$ , the

temperature ratio $T_{c}/T_{h}$ , and the aspect ratio $L/D$ , where $\rho_{0}$ is the average density of the

gas over the domain, $l_{0}$ is the mean bee path of the state $f_{e}$ [in Eq. (2)].with $\rho=\rho_{0},$ $T=T_{h}$ ,

and $v_{i}=0$ .

Equations (1)$-(3c)$ with the boundary condition $(4a)-(7)$ has a time-independent solution

without flow $(v_{i}\equiv 0)$ for any set of the parameters. Let it be $f_{s}(X_{2}, \xi_{i})$ and let the

corresponding density and temperature be $\rho_{s}(X_{2})$ and $T_{s}(X_{2})$ . When the gravity is strong

(when $Fr$ is small), the density $\rho_{s}$ decreases as $X_{2}$ increases, but when the gravity is weak
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(when $Fr$ is large), $\rho_{s}$ increases with $X_{2}$ . In the intermediate gravity (intermediate $Fr$),

$\rho_{s}$ first decreases with $X_{2}$ , reaches its minimum, and then increases. Our interest is the

possibility of another type of solutions with nonzero flow velocity, such as a steady solution

of a convection roll, in a rarefied gas. Thus, we numerically analyze the initial and boundary-

value problem (1)$-(7)$ for many sets of parameters and investigate the range of parameters

where solutions with flow exist, and their flow pattern. Further, we present an example of

flow bifurcation, i.e., approach to different types of steady solutions from slightly different

initial conditions.

The independent variable $\xi_{3}$ can be eliminated from the system (1)$-(7)$ , if we are satis-

fied with the information of the marginal distribution functions $\int_{-\infty}^{\infty}fd\xi_{3}$ and $\int_{-\infty}^{\infty}\xi_{3}^{2}fd\xi_{3}$ .

The system for these quantities is obtained by integrating Eq. (1), (4a), (5a), (6), and (7)

multiplied by $l$ or $\xi_{3}^{2}$ with respect to $\xi_{3}$ over $(-\infty<\xi_{3}<\infty)$ . In the present work, we carry

out a standard finite-difference numerical analysis of this system.

III. Existence range of nonstationary solutions and their flow patterns

In order to find the range of the parameters $(Fr,$ $T_{c}/T_{h}$ , etc. $)$ where a flow occurs in

the rectangular domain, we investigate the initial and boundary-value problem (1)$-(7)$ for

many sets of the parameters and pursue the long-time behavior of the solution. As the initial

distribution function $f_{0}$ in Eq. (8), we take the Maxwellian distribution:

$f_{0}=\rho(2\pi RT)^{-3/2}\exp(-\xi_{i}^{2}/2RT)$ ,
(9)

$\rho=\rho_{s}(X_{2})$ , $T=T_{s}(X_{2})[1+(1/2)\cos(\pi X_{1}/L)\sin(\pi X_{2}/D)]$ ,

where $\rho_{s}(X_{2})$ and $T_{s}(X_{2})$ are the density and temperature of the stationary solution for the

corresponding values of the parameters. (It is noted that the Maxwellian distribution with

$\rho_{s}$ and $T_{s}$ is not the solution of Eq. (1) owing to its gravitational term.)

Pursuing the long-time behavior of the solution of the initial and boundary-value problem

(1)$-(7)$ , we find that the solution approaches the corresponding stationary solution $f_{s}$ or

a steady solution consisting of a single convection roll for all the cases computed. The
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parameter range of the two class of solutions is shown in Figs. 1-3, where the stationary

solution is marked by $\bullet$ and the steady solution of a convection roll by $0$ in the $(I\dagger_{2}T_{c}/T_{h})$

plane. Fig. 1 is the result at $Kn=0.02,0.03,0.04,0.05$, and 0.06 in the square domain

$L/D=1$ , Fig. 2 is the result at $Kn=0.02$ in the domain $L/D=3/4$ , and Fig. 3 is the result

at $Kn=0.02$ in the domain $L/D=1/2$ . A steady convection roll of flow exists in a triangular

region in the $(Ik, T_{c}/T_{h})$ plane, and it rapidly shrinks as the Knudsen number increases.

According to the linear stability analysis5 based on the continuum theory, $Ra=$ 1700, where

$Ra=(16/\pi)(1-T_{c}/T_{h})/(T_{c}/T_{h})FrKn^{2}$ (Rayleigh number), is the critical value above which

the stationary solution is unstable. In Fig. 1 the curve $Ra=1700$ is shown by a dashed line.

As mentioned in Sec. II, the density $\rho_{s}(X_{2})$ of a stationary solution decreases monotonically

as $X_{2}$ increases for small $F\succ$ , but has its minimum in the gas for intermediate Fr. The

approximate boundary of these regions is shown by a chain line in Fig. 1.

The computation is carried out only for a special initial condition. Thus, in the triangular

region with $0$ sign, a single roll of steady flow certainly exists, but another type of flow may

occur. In fact we will show such examples, besides the reversal $f(L-X_{1}, X_{2}, -\xi_{1}, \xi_{2}, \xi_{3})$ of

a solution. $f(X_{1}, X_{2}, \xi_{1}, \xi_{2}, \xi_{3})$ , in Sec. IV. In the region with $\bullet$ sign, the existence of a flow

cannot be excluded, but various tests, although they are not systematic but are randomly

carried out, show that occurrence of a perpetual flow is improbable.

Example of flow fields (flow velocity vectors, isodensity lines, and isothermal lines) in

the case of $L/D=1$ are shown in Figs. 4 and 5. In Fig. 4 the results at $Kn=0.02$

and $T_{c}/T_{h}=0.4$ are shown for three typical Froude numbers $Fr=2,3$ , and 7.5, which

correspond to three different types of $\rho_{s}(X_{2})$ mentioned in Sec. II. In Fig. 5 the results

for two different Knudsen numbers, $Kn=0.02$ and 0.04 with the other parameters being

common $(T_{c}/T_{h}=0.1, Fr=3)$ are shown. The lateral position of the center of the roll

is nearly at $X_{1}=2L/3$ for all the cases in Figs. 4 and 5, but its vertical position differs

appreciably depending on the parameters.
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IV. Array of rolls and bifurcation of flow

A steady solution of Eq. (1) extended across a specularly reflecting plane boundary

by joining its mirror image or reversal (i.e. extended symmetrically with respect to the

boundary) can be shown to be a solution of Eq. (1) in a wider domain. Thus, by arranging

a series of steady solutions of a kind laterally in such a way that adjacent solutions are the

mirror images of each other, we can construct a steady solution in a wider domain. The

array $f_{a}^{N}$ of $N$ steady solutions of a single roll $f_{a}$ in the domain with $L/D=a$ so arranged

forms a solution consisting of $N$ rolls in the domain $L/D=Na$ . For example both $f_{3/4}^{4}$ and

$f_{1}^{3}$ are solutions in the domain $L/D=3$ .

Our next interest is bifurcation to these different types of flow. Taking, as the initial

condition $f_{0}$ in the initial and boundary value problem (1)$-(7)$ in the domain $L/D=k\ell/m$ ,

$f_{0}=\alpha f_{k/m}^{\ell}+(1-\alpha)f_{\ell/m}^{k}$ , (10)

where $\alpha$ is a constant $(0\leq\alpha\leq 1)$ and $k,$ $\ell$ , and $m$ are positive integers, we pursue the

time-development of the solution and investigate the type of the limiting solution as $tarrow\infty$

for different $\alpha$ .

Here we give some results in the domain $L/D=3$ for the initial condition (10) with $\ell=4$ ,

$k=3$, and $m=4$ for $Fr=3$ and $T_{c}/T_{h}=0.1$ . When $Kn=0.02$ , the solution approaches $f_{1}^{3}$

for $\alpha=0.6$ but $f_{3/4}^{4}$ for $\alpha=0.7$ ; when $Kn=0.03$ , it approaches $f_{1}^{3}$ for $\alpha=0.8$ but $f_{3/4}^{4}$ for

$\alpha=0.9$ ; when $Kn=0.04$, even for $\alpha=0.99$ , it approaches $f_{1}^{3}$ . Several tests indicate that

if $farrow f_{3/4}^{4}$ for $\alpha_{1}$ , then $farrow f_{3/4}^{4}$ for $\alpha\geq\alpha_{1}$ and that if $farrow f_{1}^{3}$ for $\alpha_{2}$ , then $farrow f_{1}^{3}$ for

$\alpha\leq\alpha_{2}$ . The transition processes for $\alpha=0.6$ and 0.7 at $Kn=0.02$ are shown in Fig. 6.
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Fig. 1. The range of the parameters $Fr$ and $T_{c}/T_{h}$ where a convection roll exists for
$L/D=1$ . (a) $Kn=0.02,$ $(b)Kn=0.03,$ $(c)Kn=0.04,$ $(d)Kn=0.05$ , and (e)
$Kn=0.06.0$ : Convection occurs; $\bullet$ : No flow occurs. See the second paragraph in
Sec. III for $—-$ and –. [The $(X_{1}, X_{2})$ space is divided into $24\cross 24$ nonuniform
rectangular lattices finer near the upper and right boundaries. The $(\xi_{1},\xi_{2})$ space,
limited to $|\xi_{1}|$ and $|\xi_{2}|\leq 4(2RT_{h})^{1/2}$ , is divided into 40x40 nonuniform rectangular
lattices, finer near the lines $\xi_{1}=0$ and $\xi_{2}=0.$ ]
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Fig. 4. Flow velocity vectors, isodensity lines, and isothermal lines for three Froude
numbers, $Fr=2,3$ , and 7.5, with $L/D=1,$ $Kn=0.02$ , and $T_{c}/T_{h}=0.4$ . (a)
$F\succ=2,$ $(b)Fr=3$ , and (c) $Fr=7.5$ . The arrows indicate the velocity at their
starting points. The contours $\rho/\rho 0=0.1n$ and $T/T_{h}=0.1n$ are shown. [The $(X_{1}, X_{2})$

space is divided into $48\cross 48$ [in (a) and $(b)$ ] or $72\cross 72$ [in $(c)$ ] nonuniform rectangular
lattices finer near the upper and right boundaries. The $(\xi_{1},\xi_{2})$ space, limited to $|\xi_{1}|$

and $|\xi_{2}|\leq 4(2RT_{h})^{1/2}$ , is divided into $40\cross 80$ [in $(a)$ ], $40\cross 60$ [in $(b)$], or $40\cross 40$ [in $(c)$ ]
nonuniform rectangular lattices, finer near the lines $\xi_{1}=0$ and $\xi_{2}=0$ . ]
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Fig. 5. Flow velocity vectors, isodensity lines, and isothermal lines for two Knudsen
numbers, $Kn=0.02$ and 0.04, with $L/D=1,$ $Fr=3$ , and $T_{c}/T_{h}=0.1$ . $(a)Kn=0.02$
and (b) $Kn=0.04$ . The arrows indicate the velocity at their starting points. The
contours $\rho/\rho_{0}=0.2n$ and $T/T_{h}=0.1n$ are shown. $[$The $(X_{1},$ $X_{2})$ space is divided into
$48\cross 56$ nonuniform rectangular lattices finer near the upper and right boundaries. The
$(\xi_{1}, \xi_{2})$ space, limited to $|\xi_{1}|$ and $|\xi_{2}|\leq 4(2RT_{h})^{1/2}$ , is divided into $40\cross 60$ nonuniform
rectangular lattices, finer near the lines $\xi_{1}=0$ and $\xi_{2}=0$ . ]
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Fig. 6. (See the next page for the caption.)

156



$=0$

$=100$

$=1500$

$=3500$

$[\mapsto 0.25(2RT_{h})^{1/2}]$
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Fig. 6. Bifurcation of flow for $L/D=3,$ $Kn=0.02,$ $Fr=3$, and $T_{c}/T_{h}=0.1$ . (a)
$\alpha=0.6$ and (b) $\alpha=0.7$ . The time-development of velocity fields of the initial and
boundary-value problem (1)$-(8)$ with (10) is shown. The arrows indicate the velocity at
their starting points. In (b) the most right “roll” is smallest at about $t(2RT_{h})^{1/2}/D=50$

$\sim 100$ . [The $(X_{1},X_{2})$ space is divided into $96\cross 28$ rectangular lattices uniform in $X_{1}$

and nonuniform in $X_{2}$ (finer near the upper boundary). The $(\xi_{1},$ $\xi_{2}\}$ space, limited to
$|\xi_{1}|$ and $|\xi_{2}|\leq 4(2RT_{h})^{1/2}$ , is divided into $40\cross 40$ nonuniform rectangular lattices, finer
near the lines $\xi_{1}=0$ and $\xi_{2}=0$ . The time step $\Delta t$ is $\Delta t=0.1D/(2RT_{h})^{1/2}$ . For
accurate description of the initial stage, more detailed computation with a finer time
step is required. ]
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