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1. INTRODUCTION

In 1976, I obtained the generalized isoperimetric inequality in my thesis (Saitoh
[14] ):

For a bounded regular region G in the complex z $=x+iy$ plane surrounded by a
finite number of analytic Jordan curves and for any analytic functions $\varphi(z)$ and $\psi(z)$

on $\overline{G}=G^{\cup}\partial G$,

$\frac{1}{\pi}\int\int_{G}|\varphi(z)\psi(z)|^{2}dxdy\leqq\frac{1}{2\pi}\int_{\partial G}|\varphi(z)|^{2}|dz|\frac{1}{2\pi}\int_{\partial G}|\psi(z)|^{2}|dz|$.

The crucial point in this paper is to determine completely the case that the equality
holds in the inequality.

In order to prove this simple inequality, surprisingly enough, we must use the long
historical results of.

Riemann (1826-1866) $-$ Klein $(1849- 1925)-$ Bergman - Szeg\"o
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- Nehari - Schiffer- Garabedian - Hejhal (1972, thesis),

in particular, a profound result of D. A. Hejhal which establishes the fundamental inter-
relationship between the Bergman and the Szeg\"o reproducing kernels of $G$ (Hejhal[8]).
Furthermore, we must use the general theory of reproducing kemels by (Aronszajn [2])
in 1950. –These circumstances do still not exchange, since the paper (Saitoh [14]) has
been published about 15 years ago.

The thesis will become a milestone on the development of the theory of reproducing
kemels. In the thesis, we realized that miscellaneous applications of the general theory
of reproducing kernels are possible in many concrete problems. See (Saitoh [19]) for the
details. It seems that the general theory of reproducing kernels was, in a strict sense,
not active in the theory of concrete reproducing kemels until the publication of the
thesis. Indeed, after the publication of the thesis, we, for example, derived miscellaneous
fundamental norm inequalities containing quadratic norm inequalities in matrices in
many papers over 18. Furthermore, we got a general idea for linear transforms by using
essentially the general theory of reproducing kemels which is the main theme of this
exposition.

2. LINEAR TRANSFORMS IN HILBERT SPACES

In 1982 and 1983, we published the very simple theorems in (Saitoh [15, 16]). Cer-
tainly the results are very simple mathematically, but they seem to be very fundamental
and applicable widely for general linear transforms. Moreover, the results will contain
several new ideas for linear transforms, themselves.

We shall formulate a (linear transform “ as follows:

$h(t,p)$

(1) $f(p)= \int_{T}F(t)\overline{h(t,p)}dm(t)$ , $p\in E$ .

Here, the input $F(t)$ (source) is a function on a set $T,$ $E$ is an arbitrary set, $dm(t)$ is a
$\sigma- fi$nite positive measure on the $dm$ measurable set $T$, and $h(t,p)$ is a function on $TxE$
which determines the transform of the system.

This formulation will give a generalized form of a linear transform:

$L(aF_{1}+bF_{2})=aL(F_{1})+bL(F_{2})$ .

Indeed, following the Schwartz kernel theorem, we see that very general linear transforms
are realized as integral transforms as in the above (1) by using generalized functions as
the integral kernels $h(t,p)$ .
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We shall assume that $F(t)$ is a member of the Hilbert space $L_{2}(T, dm)$ satisfying

(2) $\int_{T}|F(t)|^{2}dm(t)<\infty$ .

The space $L_{2}(T, dm)$ whose norm gives an energy integral will be the most fundamental
space as the input function space. In other spaces we shall modify them in order to
meet to our situation, or as a prototype caae we shall consider primarily or, as the first
stage, the linear transform (1) in our situation.

As a natural result of.our basic assumption (2), we assume that

(3) for any fixed $p\in E$ , $h(t,p)\in L_{2}(T, dm)$

for the existence of the integral in (1).
We shall consider the two typical linear transforms:
We take $E=\{1,2\}$ and let $\{e_{1}, e_{2}\}$ be some orthonormal vectors of $\mathbb{R}^{2}$ . Then, we

shall consider the linear transform from $\mathbb{R}^{2}$ to $\{x_{1}, x_{2}\}$ as follows:

(4) $xarrow\{\begin{array}{l}x_{1}=(x, e_{1})x_{2}=(x, e_{2}).\end{array}$

For $F\in L_{2}(\mathbb{R}dx)$ we shall consider the integral transform

(5) $u(x,t)= \frac{1}{\sqrt{4\pi t}}\int_{-\infty}^{\infty}F(\xi)e^{-\llcorner x}-\ell\neq 2d\xi$ ,

which gives the solution $u(x,t)$ of the heat equation

(6) $u_{xx}(x,t)=u_{t}(x, t)$ on $\mathbb{R}x\{t>0\}$

subject to the initial condition

(7) $u(x, 0)=F(x)$ on $\mathbb{R}$.

3. IDENTIFICATION OF THE IMAGES
OF LINEAR TRANSFORMS

We formulated linear transforms as the integral transforms (1) satisfying (2) and
(3) in the framework of IIilbert spaces. In this general situation, we can identify the
space of output functions $f(p)$ and we can characterize completely the output functions
$f(p)$ . For this fundamental idea, it seems that our mathematical community does still
not realize this important fact, since the papers (Saitoh [15, 16]) have been published
about ten years ago.
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One reason why we do not have the idea of the identification of the images of linear
transforms will be baaed on the definition itself of linear transforms. A linear transform
is, in general, a linear mapping from a linear space into a lmear space, and so, the image
space of the linear mapping will be considered as a, a priori, given one. For this, our
idea will show that the image spaces of linear transforms, in our situation, form the
uniquely determined and intuitive ones which are, in general, different from the image
spaces stated in the definitions of linear transforms.

Another reason will be based on the fact that the very fundamental theory of
reproducing kernels by Aronszajn is still not popularized. The general theory seems to
be a very fundamental one in mathematics, as in the theory of Hilbert spaces.

Recall the paper of (Schwartz [21]) for this fact which extended globally the theory
of Aronszajn. –Our basic idea for linear transforms is very simple, mathematically, but
it is, at first, found from the theory of Schwartz using the direct integrak of reproducing
kemel Hilbert spaces. See (Saitoh [19]) for the details.

In order to identify the image space of the integral transform (1), we consider the
Hermitian form

(8) $K(p, q)= \int_{T}h(t, q)\overline{h(t,p)}dm(t)$ on $ExE$.

The kemel $K(p, q)$ is apparently a positive matrix on $E$ in the sense of

$\sum_{j=1j}^{n}\sum_{=1}^{n}C_{j}\overline{C_{j’}\cdot}K(pj’,pi)\geqq 0$

for any finite points $\{pj\}$ of $E$ and for any complex numbers $\{C_{j}\}$ . Then, following the
fundamental theorem of Aronszajn-Moore, there exists a uniquely determined Hilbert
space $H_{K}$ comprising of functions $f(p)$ on $E$ satisfying

(9) for any fixed $q\in E,$ $K(p, q)$ belongs to $H_{K}$ as afunction in $p$ ,

and

(10) for any $q\in E$ and for any $f\in H_{K}$

$(f(p), K(p, q))_{H_{K}}=f(q)$ .

Then, the point evaluation $f(p)(p\in E)$ is continuous on $H_{K}$ and, conversely, a func-
tional Hilbert space such that the point evaluation is continuous admits the reproducing
kemel $K(p, q)$ satisfying (9) and (10). Then, we obtain

Theorem 1. The images $f(p)$ of the integral transform (1) for $F\in L_{2}(T, dm)$ form
precisely the Hilbert space $H_{K}$ admitting the reproducing kernel $K(p, q)$ in (8).
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In Example (4), we can deduce naturally using Theorem 1 that

$||\{x_{1}, x_{2}\}||_{H_{K}}=\sqrt{x_{1}^{2}+x_{2}^{2}}$

for the image.
In Example (5), we deduce naturally the very surprising result that the image

$u(x,t)$ is extensible analytically onto the entire complex $z=x+iy$ plane and when we
denote its analytic extension by $u(z,t)$ , we have

(11) $||u(z,t)||_{H_{K}}^{2}= \frac{1}{\sqrt{2\pi t}}\iint_{C}|u(z,t)|^{2}e$-ISi $dxdy$

(Saitoh [17]).
The images $u(x,t)$ of (5) for $F\in L_{2}(\mathbb{R}, dx)$ are characterized by (11); that is, $u(x, t)$

are entire functions in the form $u(z, t)$ with finite integrak (11).
In 1989, we deduced that (11) equals to

(12) $\sum_{j=0}^{\infty}\frac{(2t)^{j}}{j!}\int_{-\infty}^{\infty}(\dot{\theta}_{x}u(x,t))^{2}dx$

by using the property that $u(x,t)$ is the solution of the heat equation (6) with (7)
(Hayashi and Saitoh [7]). Hence, we see that the images $u(x, t)$ of (5) are also charac-
terized by the property that $u(x,t)\in C^{\infty}$ with finite integrals (12).

4. RELATIONSHIP BETWEEN MAGNITUDES
OF INPUT AND $OUTPUT^{\backslash }$ FUNCTIONS

–A GENERALIZED PYTHAGORAS THEOREM

Our second Theorem is,

Theorem 2. In the integral transform (1), we have the inequality

$||f||_{H_{K}}^{2} \leqq\int_{T}|F(t)|^{2}dm(t)$ .

Furthermore, there exist the functions $F^{*}$ with the minimum norms satisfying (1), and
we have the isometrical identity

$||f||_{H_{K}}^{2}= \int_{T}|F^{*}(t)|^{2}dm(t)$ .

In Example (4), we have, surprisingly enough, the Pythagoras theorem

$||x||^{2}=x_{1}^{2}+x_{2}^{2}$ .
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In Example (5), we have the isometrical identity

(13) $\int_{T}|F(x)|^{2}dx=\frac{1}{\sqrt{2\pi t}}\iint_{C}|u(z,t)|^{2}e^{-g_{i}^{2}}dxdy$ ,

whose integrals are independent of $t>0$ . –At this moment, we will be able to say
that by the general principle (Theorems 1 and 2) $k)r$ linear transforms we can prove the
Pythagoras (B. C. 572-492) theorem apart from the idea of “orthogonality”, and we can
understand Theorem 2 as a generalized theorem of Pythagoras in our general situation
of linear transforms.

By using the general principle, we derived miscellaneous Pythagoras type theorems
in many papers over 30. We shall refer to one typical example (Saitoh [18]).

For the solution $u(x,t)$ of the most simple wave equation

$u_{tt}(x, t)=c^{2}u_{xx}(x,t)$ ($c>0$ : constant)

subject to the initial conditions

$u_{t}(x, t)|_{t=0}=F(x)$ , $u(x, 0)=0$ on $\mathbb{R}$

for $F\in L_{2}(\mathbb{R}, dx)$ , we obtain the isometrical identity

(14) $\frac{1}{2}\int_{-\infty}^{\infty}|F(x)|^{2}dx=\frac{2\pi c}{t}\int_{-\infty}^{\infty}l.i.m_{Narrow\infty}\int_{-N^{u(x,t)\exp(\frac{ix\xi}{2\pi ct})d_{X}\frac{d\xi}{(\sin\tau^{i})^{2}}}}^{N^{2}}$,

whose integrals are independent of $t>0$ .
Recall here the conservative law of energy

(15) $\frac{1}{2}\int_{-\infty}^{\infty}|F(x)|^{2}dx=\frac{1}{2}\int_{-\infty}^{\infty}(u_{t}(x, t)^{2}+c^{2}u_{x}(x,t)^{2})dx$ .

To compare the two integrals (14) and (15) will be very interesting, because (15)
contains the derived functions $u_{t}(x, t)$ and $u_{x}(x, t)$ , meanwhile (14) contains the values
$u(x,t)$ only.

In the viewpoint of the conservative law of energy in (14) and (15), could we give
some physical interpretation of the isometrical identities in (13) and (12) whose integrals
are independent of $t>0$ in the heat equation ?

5. INVERSION FORMURAS FOR LINEAR TRANSFORMS

In our Theorem 3, we establish the inversion formula

(16) $f$ $arrow$ $F^{*}$
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of the integral transform (1) in the sense of Theorem 2.
The basic idea to derive the inversion formula (16) is, first, to represent $f\in H_{K}$ in

the space $H_{K}$ in the form
$f(q)=(f(p), K(p, q))_{H_{K}}$ ,

secondly, to consider as follows:

$f(q)=(f(p), \int_{T}h(t, q)\overline{h(t,p)}dm(t))_{H_{K}}$

$= \int_{T}(f(p),\overline{h(t,p)})_{H_{K}}\overline{h(t,q)}dm(t)$

$= \int_{T}F^{*}(t)\overline{h(t,q)}dm(t)$

and, finally, to deduce that

(17) $F^{*}(t)=(f(p),\overline{h(t,p)})_{H_{K}}$ .

In these arguments, however, the integral kernel $h(t,p)$ does, in general, not belong
to $H_{K}$ as a function of $p$ and so, (17) is, in general, not valid.

For this reason, we shall realize the norm in $H_{K}$ in terms of a $\sigma- finite$ positive
measure $d\mu$ in the form

$||f||_{H_{K}}^{2}= \int_{E}|f(p)|^{2}d\mu(p)$ .

Then, for some suitable exhaustion $\{E_{N}\}$ of $E$ , we obtain, in general, the inversion
formula

(18) $F^{*}(t)=s- \lim_{Narrow\infty}\int_{E_{N}}f(p)h(t,p)d\mu(p)$

in the sense of the strong convergence in $L_{2}(T, dm)$ (Saitoh [19]).
Note that $F^{*}$ is a member of the visible component of $L_{2}(T, dm)$ which is the

orthocomplement of the null space (the invisible component)

$\{F_{O}\in L_{2}(T, dm);\int_{T}F_{0}(t)\overline{h(t,p)}dm(t)=0 on E\}$

of $L_{2}(T, dm)$ . Therefore, our inversion formula $\langle$ 16) will be considered as a very natural
one.

By our Theorem 3, for example, in Example (5) we can establish the inversion
formulas

$u(z,t)arrow F(x)$

and
$u(x, t)arrow F(x)$
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for any fixed $t>0$ (Saitoh [17], and Byun and Saitoh [5]).
Our inversion formula will give a new viewpoint and a new method for integral

equations of Fredholm of the first kind which are fundamental in the theory of integral
equations. The characteristics of our inversion formula are as follows:

(i) Our inversion formula is given in terms of the reproducing kernel Hilbert space $H_{K}$

which is intuitively determined as the image space of the integral transform (1).
(ii) Our inversion formula gives the visible component $F^{*}$ of $F$ with the minimum

$L_{2}(T, dm)$ norm.
(iii) The inverse $F^{*}$ is, in general, given in the sense of the strong convergence in

$L_{2}(T, dm)$ .
(iv) Our integral equation (1) is, in general, an ill-posed problem, but our solution $F^{*}$ is

given as a solution of a well-posed problem in the sense of Hadamard (1902, 1923).

At this moment, we can see a reason why we meet to ill-posed problems; that is,
because we do consider the problems not in the natural image spaces $H_{K}$ , but in some
artificial spaces.

6. DETERRNG OF THE SYSTEM BY INPUT
AND OUTPUT FUNCTIONS

In our Theorem 4, we can construct the integral kemel $h(t,p)$ conversely, in
terms of the isometrical mapping $\tilde{L}$ from a reproducing kernel Hilbert space $H_{K}$ onto
$L_{2}(T, dm)$ and the reproducing kemel $K(p, q)$ in the form

(19) $h(t,p)=\tilde{L}K(\cdot,p)$ .

7. GENERAL APPLICATIONS

Our basic assumption for the integral transform (1) is (3). When this assumption
is not valid, we will be able to apply the following techniques to meet our assumption
(3).
(a) We restrict the aets $E$ or $T$ , or we exchange the set $E$ .
(b) We multiply a positive continuous function $\rho$ in the form $L_{2}(T, \rho dm)$ .

For example, in the Fourier transform

(20) $\int_{-\infty}^{\infty}F(t)e^{-itx}dt$ ,

we consider the integral transform with the weighted function such that

$\int_{-\infty}^{\infty}F(t)e^{-itx}\frac{dt}{1+t^{2}}$ .
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(c) We integrate the integral kernel $h(t,p)$ .
For example, in the Fourier transform (20), we consider the integral transform

$\int_{-\infty}^{\infty}F(t)(\int_{0}^{\hat{x}}e^{-:tx}dx)dt=\int_{-\infty}^{\infty}F(t)(\frac{e^{-it\hat{x}}-1}{-it})dt$ .

By these techniques we can apply our general method even for integral transforms
with integral kemels of generalized functions. Furthermore, for the integral transforms
with the integral kernels of

miscellaneous Green’s functions,
Cauchy’s kemel,

and
Poiaeon’s kemel

and also for even the cases of Fourier transform and Laplace transform, we could derive
new results. See Saitoh [19] for the detaik, for example.

Recall the Whittaker-Kotelnikov-Shannon sampling theorem:
In the integral transform

$f(t)=. \frac{1}{\sqrt{2\pi}}\int_{-\pi}^{\pi}F(\omega)e^{i_{d}}{}^{t}d\omega$

for functions $F(\omega)$ satisfying
$\int_{-\pi}^{\pi}|F(\omega)|^{2}d\omega<\infty$ ,

we have the expression formula

$f(t)= \sum_{n=-\infty}^{\infty}f(n)\frac{\sin\pi(n-t)}{\pi(n-t)}$ on $(-\infty, \infty)$ .

All the signals $f(t)$ are expressible in terms of the discrete data $f(n)$ ( $n$ : integers)
only, and so many scientiests are interested in this theorem and this theorem is applied
in miscellaneous fields. Furthermore, very interesting relations between fundamental
theorems and formulas of signal analysis, of analytic number theory and of applied
analysis are found recently (Klusch [9]).

In our general situation (1), the essence of the sampling theorem is given clearly
and simply as follows:

For a sequence of points $\{p_{n}\}$ of $E$ , if $\{h(t,p_{n})\}_{n}$ is a complete orthonormal system
in $L_{2}(T, dm)$ , then for any $f\in H_{K}$ , we have the sampling theorem

$f(p)= \sum_{n}f(p_{n})K(p,p_{n})$ on $E$ .
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Meanwhile, the theory of wavelets is developing enormously in both mathematical
sciences and pure mathematics which was created by (Morlet [10, 11]) about ten years
ago. The theory is applicable in signal analysis, numerical analysis and many other fields
as in Fourier transforms. Since the theory is that of integral transforms in the framework
of Hilbert spaces, our general theory for integral transforms will be applicable to the
wavelet theory, globally, in particular, our method will give a good understanding, as a
unified one, for the wavelet transform, framae, multiresolution analysis and the sampling
theory in the theory of wavelets (Saitoh [19]).

8. ANALYTIC EXTENSION FORMULAS

The equality of the two integrals (11) and (12) means that a $C^{\infty}$ function $g(x)$

with a finite integral

$\sum_{j=0}^{\infty}\frac{(2t)^{j}}{j!}\int_{-\infty}^{\infty}|\partial_{x}^{j}g(x)|^{2}dx<\infty$ ,

is extensible analytically onto $C$ and when we denote its analytic extension by $g(z)$ , we
have the identity

(21) $\sum_{j=0}^{\infty}\frac{(2t)^{j}}{j!}\int_{-\infty}^{\infty}|f\dot{fl}_{x}g(x)|^{2}dx=\frac{1}{\sqrt{2\pi t}}\int\int_{C}|g(z)|^{2}\exp\{-\frac{y^{2}}{2t}\}dxdy$.

In this way, we derived miscellaneous analytic extension formulas in many papers
over 15 with H. Aikawa and N. Hayashi, and the analytic extension formulas are applied
to the investigation of analyticity of solutions of nonlinear partial differential equations.
See, for example (Hayashi and Saitoh [7]).

One typical result of another type is obtained from the integral transform

$v(x,t)= \frac{1}{t}\int_{0}^{t}F(\xi)\frac{x\exp[\frac{-x^{2}}{4(t-\zeta)-\xi)}]}{2\sqrt{\pi}(t2a}\xi d\xi$

in connection with the heat equation

$u_{t}(x,t)=u_{xx}(x,t)$ for $v(x,t)=tu(x,t)$

satisfying the conditions
u(O,t) $=$ tF $($$ $)$ on $t\geqq 0$

and
$u(x, 0)=0$ on $x\geqq 0$ .

Then, we obtain:
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Let $\triangle(\frac{\pi}{4})$ denote the sector $\{|argz|<\frac{\pi}{4}\}$ . For any analytic function $f(z)$ on $\triangle(\frac{\pi}{4})$

with a finite integral

$\int\int_{\Delta(}|f(z)|^{2}dxdy<\infty$ ,

we have the identity

(22) $\int\int_{\Delta(\yen)}|f(z)|^{2}dxdy=\sum_{j=0}^{\infty}\frac{2^{j}}{(2j+1)!}\int_{0}^{\infty}x^{2j+1}|f\dot{fl}_{x}f(x)|^{2}dx$.

Conversely, for any smooth function $f(x)$ with a finite integral in (22) on $(0, \infty)$ ,
there exits an analytic extension $f(z)$ onto $\Delta(\frac{\pi}{4})$ satisfying (22) (Aikawa, Hayashi and
Saitoh [1] $)$ .

9. BEST APPROXIMATION FORMULAS

As we saw, when we consider linear transforms in the framework of Hilbert spaces,
we get naturally the idea of reproducing kernel Hilbert spaces. As a natural extension
of our theorems, we have the fundamental theorems for approximations of functions in
the framework of Hilbert spaces (Byun and Saitoh [5]).

For a function $F$ on a set $X$ , we shall look for a function which is the nearest one
to $F$ among some family of functions $\{f\}$ . In order to formulate the “nearest” precisely,
we shall consider $F$ as a member of some Hilbert space $H(X)$ comprising of functions
on $X$ . Meanwhile, as the family $\{f\}$ of approximation functions, we shall consider some
reproducing kernel Hilbert space $H_{K}$ comprising of functions $f$ on, in general, a set
$E$ containing the set $X$ . Here the reproducing kernel Hilbert space $H_{K}$ as a family of
approximation functions will be considered as a natural one, since the point evaluation
$f(p)$ is continuous on $H_{K}$ .

We shall also set the natural assumptions for the relation between the two Hilbert
spaces $H(X)$ and $H_{K}$ :

(23) for the restriction $f|_{X}$ of the members $f$ of $H_{K}$ to the set $X$ ,
$f|_{X}$ belongs to the Hilbert space $H(X)$ ,

and

(24) the linear operator $Lf=f|_{X}$ is continuous from $H_{K}$ into $H(X)$ .

In this natural situation, we can discuae the best approximation problem

$inf||Lf-F||_{H(X)}$
$f\in H_{K}$
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for a member $F$ of $H(X)$ .
For the sake of the nice propertiae of the restriction operator $L$ and its adjoint $L^{*}$ ,

we can obtain “algorithms” to decide whether the baet approximations $f^{*}$ of $F$ in the
sense of

$inf||Lf-F||_{H(X)}=||Lf^{*}-F||_{H(X)}$
$f\in H_{K}$

exist. Further, when there exist the best approximations $f^{*}$ , we can give “algorithms”
obtaining constructively them. Moreover) we can give the representations of $f^{*}$ in terms
of the given function $F$ and the reproducing kernel $K(p, q)$ . Meanwhile, when the best
approximations $f^{*}$ do not exist, we can construct the sequence $\{f_{n}\}$ of $H_{K}$ satisfying

$\inf_{f\in K}||Lf-F||_{H(X)}=\lim_{narrow\infty}||Lf_{n}-F||_{H(X)}$ .

As one example (Byun and Saitoh [6]), for an $L_{2}(\mathbb{R}, dx)$ function $h(x)$ , we shall
approximate it by the family of functions $u_{F}(x, t)$ for any fixed $t>0$ which are the
solutions of the heat equation (6) with (7) for $F\in L_{2}(\mathbb{R}, dx)$ .

Then, we can see that there exists a member $F$ of $L_{2}(\mathbb{R}dx)$ such that

$u_{F}(x, t)=h(x)$ on $\mathbb{R}$

if and only if

$\iint_{C}|\int_{-\infty}^{\infty}h(\xi)\exp\{-\frac{\xi^{2}}{8t}+\frac{\xi z}{4t}\}d\xi|^{2}\exp\{\frac{-3x^{2}+y^{2}}{12t}\}dxdy<\infty$ .

If this condition is not valid for $h$ , then we can constmct the sequence $\{F_{n}\}$ satis-
fying

$\lim_{narrow\infty}\int_{-\infty}^{\infty}|u_{F_{n}}(x,t)-h(x)|^{2}dx=0$;

that is, for any $L_{2}(\mathbb{R}, dx)$ function $h(x)$ , we can constmct the initial functions $\{F_{n}\}$

whose heat distributions $u_{F_{n}}(x, t)$ of $t$ time later converge to $h(x)$ .

10. APPLICATIONS TO RANDOM FIELDS ESTIMATIONS

We assume that the random field is of the form

$u(x)=s(x)+n(x)$ ,

where $s(x)$ is the uaeful signal and $n(x)$ is noise. Without loss of generality, we can
assume that the mean values of $u(x)$ and $n(x)$ are zero. We assume that the covariance
functions

$R(x, y)=\overline{u(x)u(y)}$
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and
$f(x, y)=\overline{u(x)s(y)}$

are known. We shall consider the general form of a linear estimation $\hat{u}$ of $u$ in the form

$\hat{u}(x)=\int_{T}u(t)h(x,t)dm\backslash (t)$

for an $L_{2}(T, dm)$ space and for a function $h(x,t)$ belonging to $L_{2}(T, dm)$ for any fixed
$x\in E$ . For a desired information $As$ for a linear operator $A$ of $\epsilon$ , we wish to determine
the function $h(x,t)$ satisfying

$\inf$ (\^u-As)2

which gives the minimum of variance by the least square method. Many topics in filter-
ing and estimation theory in signal, image processing, underwater acoustics, geophysics,
optical filtering etc., which are initiated by N. Wiener (1894-1964), will be given in this
framework. Then, we aee that the linear transform $h(x,t)$ is given by the integral
equation

$\int_{T}R(x’,t)h(x,t)dm(t)=f(x’, x)$

(Ramm [12]). Therefore, our random fields estimation problems will be reduced to find
the inversion formula

$f(x’, x)arrow h(x,t)$

in our framework. So, our general method for integral transforms will be applied to
these problems. For this situation and another topics and methods for the inversion
formulas, see (Ramm [12]) for the details.

11. APPLICATIONS TO SCATTERING AND
INVERSE PROBLEMS

Scattering and inverse problems will be considered as the problems determining
unobservable quantities by observable quantities. These problems are miscellaneous
and are, in general, difficult. In many cases, the problems are reduced to some integral
equations of IiYedholm of the first kind and then, our method will be applicable to the
equations. Meanwhile, in many cases, the problems will be reduced to determine the
inverse $F^{*}$ from the data $f(p)$ on some subset of $E$ in our integral transform (1). See,
for example, Ramm [13].

In each case, we shall state a typical example.
We shall consider the Poisson equation

(25) $\Delta u=-\rho(r)$ $on$
$\mathbb{R}^{3}$

13



for real-valued $L_{2}(\mathbb{R}^{3}, dr)$ source functions $p$ whose supports are contained in a sphere
$f<a’(|r|=r)$ . By using our method to the integral transform

$u( r)=\frac{1}{4\pi}\int_{<a}\frac{1}{|r-r’|}\rho(r’)dr’$ ,

we can get the characteristic property and natural representation of the potentials $u$ on
the outside of the sphere $\{r<a\}$ . Furthermore, we can obtain the surprisingly simple
representations of $\rho^{*}$ in terms of $u$ on any sphere $(a’, \theta’, \varphi’)(a<a’)$ , which have the
minimum $L_{2}(\mathbb{R}^{3}, dr)$ norms among $p$ satisfying (25) on $f>a$ , in the form:

$\rho^{*}(r, \theta, \varphi)=\frac{1}{4\pi}\sum_{n=0}^{\infty}\frac{(2n+1)^{2}(2n+3)}{a^{2n+3}}r^{n}a^{\prime n+1}$

$x\sum_{m=0}^{n}\frac{\epsilon_{m}(n-m)!}{(n+m)!}P_{n}^{m}(\cos\theta)\int_{0}^{\pi}\int_{0}^{2\pi}u(a’, \theta’, \varphi’)$

$xP_{n}^{m}(\cos\theta’)\cos m(\varphi’-\varphi)\sin\theta’d\theta’d\varphi’$.

Here, $\epsilon_{m}$ is the Neumann factor $\epsilon_{m}=2-\delta_{m0}$ .
Next, we shall consider an analytical real inversion formula of the Laplace transform

$f(p)= \int_{0}^{\infty}e^{-pt}F(t)dt$ , $p>0$ ;

$\int_{0}^{\infty}|F(t)|^{2}dt<\infty\sim$

For the polynomial of degree $2N+2$

$P_{N}( \xi)=\sum_{0\leqq\nu\leqq n\leqq N}\frac{(-1)^{\nu+1}(2n)!}{(n+1)!\nu!(n-\nu)!(n+\nu)!}\xi^{n+\nu}$

. $\{\frac{2n+1}{n+\nu+1}\xi^{2}-(\frac{2n+1}{n+\nu+1}+3n+1)\xi+n(n+\nu+1)\}$ ,

we set
$F_{N}(t)= \int_{0}^{\infty}f(p)e^{-pt}P_{N}(pt)dp$ .

Then, we have
$\lim_{Narrow\infty}\int_{0}^{\infty}|F(t)-F_{N}(t)|^{2}dt=0$.

Furthermore, the estimation of the error of $F_{N}(t)$ is also given (Byun and Saitoh [4]).
Compare our formula with (Boas and Widder [3], 1940), and with (Ramm [13],

p.221, 1992):
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For the Laplace transform

we have

$F(t)= \frac{2tb^{-1}d}{\pi du}\int_{0}^{u}\frac{G(v)}{(u-v)^{1}2}dv;u=t^{2}b^{-2}$

$G(v)=v^{-\xi} \frac{2}{\pi}\int_{0}^{\infty}dy\cos(y\cosh^{-1}v^{-1})\cosh\pi y$

$x\int_{0}^{\infty}dz$ cos(zy) $($ cosh $z)^{-i} \int_{0}^{\infty}dpf(p)J_{0}(p\frac{b}{(\cosh z)^{\iota}2})$ .

In this very complicated formula, unfortunately, the characteristic properties of the both
functions $F$ and $f$ making hold the inversion formula are not given.

12. NONHARMONIC TRANSFORMS

In our general transform (1), suppoae that $\varphi(t,p)$ is near to the integral kernel
$h(t,p)$ in the following sense:

For any $F\in L_{2}(T, dm)$ ,

$\int_{T}F(t)\overline{(h(t,p)-\varphi(t,p))}dm(t)\Vert_{H_{K}}^{2}\leqq\omega^{2}\int_{T}|F(t)|^{2}dm(t)$

where $0<\omega<1$ and $\omega$ is independent of $F\in L_{2}(T, dm)$ .
Then, we can see that for any $f\in H_{K)}$ there exists a function $F_{\varphi}^{*}$ belonging to the

visible component of $L_{2}(T, dm)$ in (1) such that

(26) $f(p)= \int_{T}F_{\varphi}^{*}(t)\overline{\varphi(t,p)}dm(t)$ on $E$

and

$(1- \omega)^{2}\int_{T}|F_{\varphi}^{*}(t)|^{2}dm(t)\leqq||f||_{H_{K}}^{2}$

$\leqq(1+\omega)^{2}\int_{T}|F_{\varphi}^{*}(t)|^{2}dm(t)$ .

The integral kernel $\varphi(t,p)$ will be considered as a perturbation of the integral kernel
$h(t,p)$ . When we look for the inversion formula of (26) following our general method,
we must calculate the kernel form

$K_{\varphi}(p, q)= \int_{T}\varphi(t,q)\overline{\varphi(t,p)}dm(t)$ on $ExE$.
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We will, however, in general, not able to calculate this kernel.
Suppose that the image $f(p)$ of (26) belongs to the known space $H_{K}$ . Then, we

can construct the inverse $F_{\varphi}^{*}$ by using our inversion formula in $H_{K}$ repeately and by
constructing some approximation of $F_{\varphi}^{*}$ by our inverses.

In particular, for the reproducing kemel $K(p, q)\in H_{K}(q\in E)$ we construct (or we
get, by some other method or directly) the function $\hat{\varphi}(t,p)$ satisfying

$K(p, q)= \int_{T}\hat{\varphi}(t, q)\overline{\varphi(t,p)}dm(t)$ on $ExE$,

where $\hat{\varphi}(t, q)$ belongs to the visible component of $L_{2}(T, dm)$ in (26) for any fixed $q\in E$ .
Then, we have an idea of “nonharmonic integral transform” and we can formulate the
inversion formula of (26) in terms of the kemel $\hat{\varphi}(t, q)$ and the space $H_{K}$ , globally
(Saitoh [19], chapter 7).

13. NONLINEAR TRANSFORMS

Our generalized isoperimetric inequality will mean that for an analytic function
$\varphi(z)$ on $\overline{G}$ satisfying

$\int_{\partial G}|\varphi(z)|^{2}|dz|<\infty$,

the image of the most simple nonlinear transform

$\varphi(z)arrow\varphi(z)^{2}$

belongs to the space of analytic functions satisfying

$\int\int_{G}|\varphi(z)|^{4}dxdy<\infty$

and we have the norm inequality

$\frac{1}{\pi}\int\int_{G}|\varphi(z)^{2}|^{2}dxdy\leqq\{\frac{1}{2\pi}\int_{\partial G}|\varphi(z)|^{2}|dz|\}^{2}$

We established in Theorem 1 the method of the identification of the images of linear
transforms, and also we will be able to look for some Hilbert spaces containing the image
spaces of nonlinear transforms. In these cases, however, the spaces will be too large for
the image spaces, as in the generalized isoperimetric inequality. Sae Saitoh [14, 19]
for the detaik. So, the inversion formulas for nonlinear transforms will be, in general,
very involved eaeentially. In many nonlinear transforms of reproducing kemel Hilbert
spaces, however, there exist some norm inequalities as in the generalized isoperimetric
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inequality. See Saitoh [19] for some examples. We shall state one example in the strongly
nonlinear transform

$f(x)$ $arrow$ $e^{f(x)}$

which is obtained recently in (Saitoh [20]):
For an absolutely continuous real-valued function $f$ on $(a, b)(a>0)$ satisfying

$f(a)=0$,

$\int_{a}^{b}f’(x)^{2}xdx<\infty$ ,

we obtain the inequality

$1+a \int^{b}|(e^{f(x)})’|^{2}dx\leqq e^{\int_{n}^{b}f’(x)^{2}xdx}$

Here, we should note that the equality holds for many functions $f(x)$ .

14. EPILOGUE

The author believae we could show the importance of our Theorems 1-4. These
theorems were applied in many papers over 30, and our fundamental theorems and
their applications were partially published in the raeearch book (Saitoh [19]) in 1988,
happily. The author hopes, however, that our theorems should be more popular in
mathematical sciences and should be applied to many fields, more widely.

At the last, the author would like to say that the core of the originality in this
expositive paper is not in mathematical results but to show clearly the importance of
our Theorems 1-4 for linear transforms.
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