Solutions to a Singular Diffusion Equation

陳 蘊剛（Yun－Gang Chen）
儀我 美一（Yoshikazu Giga）
佐藤 剛（Koh Sato）

§1．Introduction

We consider the following equation

$$
\begin{array}{ll}
u_{t}=\left|u_{x}\right|^{-\alpha} u_{x x}, & (t, x) \in(0, T) \times(0,1) \\
u(t, 0)=u(t, 1)=0, & t \in[0, T] \\
u(0, x)=u_{0}(x), u_{0}(x) \geq 0, & 0<x<1 \tag{E3}
\end{array}
$$

where $\alpha \geq 0$ and u_{0} is a smooth function on $(0,1)$ ．We may recognize this equation as a diffusion equation whose diffusion coefficient is $\left|u_{x}\right|^{-\alpha}$ ． So if there is a point where u_{x} is close to 0 ，then we can guess that very strong diffusion would be happen at that point．This is a simple example of p－Laplace equations．We refer to［EDB］for general regularity properties of solutions．

If we differentiate both sides of（E1）（with respect to x ），and set $v=u_{x}$ ， then the equation would be described as follows

$$
\begin{equation*}
v_{t}=c\left(|v|^{p-2} v\right)_{x x} \tag{P}
\end{equation*}
$$

where $p=2-\alpha$ and c is a certain constant．The property of the equation depends on p ．If $p>2$ ，this equation is called porous medium equation which presents a model of the diffusion in porous media．In the case of $1<p<2$ ，the equation is called plasma equation since it was derived from the model describing the behavior of the plasma in strong magnetic field．The later case（which corresponds to the case of $0<\alpha<1$ in （E1）），Berryman and Holland showed that all positive solution to the equation（ P ）vanishes in finite time（i．e．$\exists t_{*}$ such that $v(t, \cdot) \rightarrow 0$ as $t \rightarrow t_{*}$ ）under the Dirichlet boundary condition．Furthermore，the profile of each solution tends to that of a certain separable solution as $t \rightarrow t_{*}$ （［B］，［BH1］）．

But those results on（P）can not be applied directly to our prob－ lem．Because boundary conditions are different and another restriction $\left(\int_{0}^{1} v(x) d x=0\right)$ is required（so $v(x)$ must be negative in some interval）．

We first look for non-negative separable solutions of (E1)-(E2) (§2), then we construct a stable difference scheme which approximates (E1) (§3). The result of the numerical experiment gives us a hint that the solutions to (E1)-(E3) also vanishes in finite time (We shall prove this fact in our forthcoming paper [OS]). We apply a rescaling technique to the scheme to obtain more precise value of the vanishing time and the asymptotic profile of the solutions ($\S 4$).

§2. Separable Solution

First, we look for a non-negative separable solution $u(t, x)=U(x)$. $T(t)$ of

$$
\begin{equation*}
u_{t}\left|u_{x}\right|^{\alpha}=u_{x x} \tag{2.1}
\end{equation*}
$$

which is derived from (E1), where $U(x)$ and $T(t)$ are assumed to be nonnegative C^{2} functions. Thus we get the following equations,

$$
\begin{equation*}
T^{\alpha-1}(t) T^{\prime}(\underline{t})=U^{-1}(x)\left|U^{\prime}(x)\right|^{-\alpha} U^{\prime \prime}(x)=-c \tag{S}
\end{equation*}
$$

where $c>0$, since $U^{\prime \prime}(x) \leq 0$ can be obtained from $U(0)=U(1)=0$ and $U \geq 0$.

Then we are led to the following equations for $U(x)$ and $T(t)$

$$
\begin{align*}
& T(t)^{\alpha-1} \cdot T^{\prime}(t)=-c \tag{S1}\\
& U^{\prime \prime}(x)=-c U(x)\left|U^{\prime}(x)\right|^{\alpha} . \tag{S2}
\end{align*}
$$

Note if we assume $\tilde{U}(x)=\beta U(x)$ and $\tilde{T}(t)=\beta^{-1} T(t)$ where β is a positive constant, then $U(x) T(t)=\tilde{U}(x) \tilde{T}(t)$ and

$$
\tilde{T}^{\alpha-1}(t) \tilde{T}^{\prime}(t)=\tilde{U}^{-1}(x)\left|\tilde{U}^{\prime}(x)\right|^{-\alpha} \tilde{U}^{\prime \prime}(x)=-\beta^{-\alpha} c
$$

Now, we may assume $c=1 / \alpha$ without loss of generality. Then from (S1), we can easily see that the separable solution can be written as follows

$$
u(t, x)=\left(t_{*}-t\right)^{1 / \alpha} U(x)
$$

where $t_{*}>0$ is the vanishing time and $U(x)$ is a solution of the following equation

$$
\begin{align*}
& U^{\prime \prime}(x)=-\frac{1}{\alpha} U(x)\left|U^{\prime}(x)\right|^{\alpha}, \quad U(x)>0, \quad 0<x<1 \tag{D1}\\
& U(0)=U(1)=0 \tag{D2}
\end{align*}
$$

Thus, we can find $U(x)$ from (D1), (D2) by the following way. Proposition. Suppose $V(x) \geq 0$ satisfies the following equations

$$
\begin{align*}
& V^{\prime \prime}(x)=-\frac{1}{\alpha} V(x)\left(V^{\prime}(x)\right)^{\alpha}, V^{\prime}(x) \geq 0,0 \leq x \leq 1 / 2 \tag{V1}\\
& V(0)=0 \tag{V2}\\
& V^{\prime}(1 / 2)=0 \tag{V3}
\end{align*}
$$

Then

$$
U(x)= \begin{cases}V(x), & 0 \leq x \leq 1 / 2 \\ V(1-x), & 1 / 2<x \leq 1\end{cases}
$$

is a symmetric solution of (D1), (D2).
Proof. Multiply both sides of (V1) by $\left(V^{\prime}(x)\right)^{1-\alpha}$ and integrate them from 0 to x. Then with a standard calculation, we can obtain the following

$$
\begin{equation*}
V^{\prime}(x)=\left(V^{\prime}(0)^{2-\alpha}-c_{\alpha} V(x)^{2}\right)^{\frac{1}{2-\alpha}} \tag{2.2}
\end{equation*}
$$

where $c_{\alpha}=\frac{2-\alpha}{2 \alpha}$, and get

$$
V(x)=V^{\prime}(0)^{1-\frac{\alpha}{2}} c_{\alpha}^{-\frac{1}{2}} W^{-1}\left(V^{\prime}(0)^{\frac{\alpha}{2}} c_{\alpha}^{\frac{1}{2}} x\right)
$$

Here $W^{-1}(x)$ is the inverse function of a non-decreasing function W such that

$$
W(y):=\int_{0}^{y}\left(1-s^{2}\right)^{-\frac{1}{2-\alpha}} d s, 0 \leq y \leq 1
$$

We note that the integral is convergent at $y=1$ and we put $W(1)=$ $M_{\alpha}(<\infty)$. But this solution only satisfies (V1) and (V2) in a certain interval not necessarily $[0,1 / 2]$. To satisfy (V3), V has to attain its maximum value at $x_{*} \leq 1 / 2$. We can express the x_{*} at which $V(x)$ attains its maximum as follows

$$
x_{*}=V^{\prime}(0)^{-\alpha / 2} c_{\alpha}^{-1 / 2} M_{\alpha} .
$$

And if $V^{\prime}(0)$ is sufficiently large so that $x_{*} \leq 1 / 2$, we can write the solution to (V1)-(V3) as follows

$$
V(x)= \begin{cases}V^{\prime}(0)^{1-\frac{\alpha}{2}} c_{\alpha}^{\frac{1}{2}} W^{-1}\left(V^{\prime}(0)^{\frac{\alpha}{2}} c_{\alpha}^{\frac{1}{2}} x\right), & 0 \leq x \leq x_{*} \\ V^{\prime}(0)^{1-\alpha / 2} c_{\alpha}^{1 / 2}, & x_{*}<x \leq 1 / 2\end{cases}
$$

Moreover, since $V^{\prime}\left(x_{*}\right)=V^{\prime \prime}\left(x_{*}\right)=0$ (because $\frac{d}{d x} W^{-1}(M)=0$), we obtain $U(x) \in C^{2}(0,1)$. Obviously $U(x)$ satisfies (D1) in ($0,1 / 2$) and $U(x)$ satisfies (D2). Since the following equations

$$
\frac{d}{d x} V(1-x)=-V^{\prime}(1-x), \frac{d^{2}}{d x^{2}} V(1-x)=V^{\prime \prime}(1-x)
$$

hold, $U(x)$ satisfies (D1) also in $(1 / 2,1)$.
Remark. $U(x)$ can be the profile of the separable solution of (E1)-(E2) (not (2.1)) only if $V(x)$ attains its unique maximum value at $x=1 / 2$. We can show this, for instance, by using the theory of viscosity solution.

§3 Difference Scheme

To calculate the numerical solution of (E), we introduce a modified equation (E^{\prime}) to overcome the difficulty in computing which occurs when the value of the u_{x} in (E1) reaches 0 .

$$
u_{t}=\left|u_{x}^{2}+\delta\right|^{-\alpha / 2} u_{x x}, \quad(t, x) \in(0, T) \times(0,1)
$$

This equation is an approximation of (E1).
Now we introduce our difference scheme for (E^{\prime}).

$$
\begin{align*}
& \frac{u_{j}^{n+1}-u_{j}^{n}}{\tau}=\left\{\left(\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}\right)^{2}+\delta\right\}^{-\alpha / 2} \cdot \frac{u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}}{h^{2}}, \tag{3.1}\\
& u_{0}^{n}=u_{N}^{n}=0, \tag{3.2}\\
& u_{j}^{0}=u_{0}(j h), \tag{3.3}\\
& 1 \leq j \leq N-1, n \geq 0,
\end{align*}
$$

where N is the number of meshes, $h=1 / N$ is the mesh size, $\tau>0$ is the discrete time increment, and u_{j}^{n} is the value of the numerical solution at net point $(n \tau, j h) \in[0, T] \times[0,1]$.

We can show that the difference scheme (3.1)-(3.3) has L^{∞}-stability.
Proposition. (Stability of the scheme) Let $\left\{u_{j}^{n}\right\}$ be the solution of (3.1)-(3.3). Then $\left\|u^{n}\right\|_{\infty} \leq\left\|u^{0}\right\|_{\infty}$ for $\forall n>0$ where $\left\|u^{n}\right\|_{\infty}=\max _{j}\left|u_{j}^{n}\right|$.

Proof. We prove it by showing the following inequalities hold.

$$
\begin{align*}
\max _{j} u_{j}^{n} & \leq \max _{j} u_{j}^{0} \tag{3.4}\\
\min _{j} u_{j}^{n} & \geq \min _{j} u_{j}^{0} . \tag{3.5}
\end{align*}
$$

First, we rewrite (3.3) as follows

$$
-\lambda_{j}^{n} u_{j+1}^{n+1}+\left(1+2 \lambda_{j}^{n}\right) u_{j}^{n+1}-\lambda_{j}^{n} u_{j-1}^{n+1}=u_{j}^{n}
$$

where

$$
\lambda_{j}^{n}=\left\{\left(\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}\right)^{2}+\delta\right\}^{-\alpha / 2} \cdot \frac{\tau}{h^{2}} .
$$

Suppose for a fixed $n, u_{m}^{n}=\max _{j} u_{j}^{n}$. Then we can easily see that

$$
\begin{aligned}
\sup _{j} u_{j}^{n} & =u_{m}^{n} \\
& \leq-\lambda_{m}^{n-1} u_{m+1}^{n}+\left(1+2 \lambda_{m}^{n-1}\right) u_{m}^{n}-\lambda_{m-1}^{n-1} u_{m-1}^{n} \\
& =u_{m}^{n-1} \\
& \leq \sup _{j} u_{j}^{n-1}
\end{aligned}
$$

and thus we can obtain (3.4). (3.5) can be shown in the same way.
Such a stability results is proved in [CGHH] for a singular equation related to a level set method for geometric evolutions in [CGG]. However our equation (E1) is not included in [CGHH].

§4 Rescaling

We computed the numerical solution for (3.1)-(3.3) with several cases of (E1). From the computation, we can see that the solution to (E1)-(E3) vanishes in finite time. So we tried to calculate $u(t, x)$ more accurately especially when it vanishes, by using a "rescaling" approach for u and variable time increment τ in the following way.

Suppose

$$
\begin{equation*}
v(t, x)=M u\left(M^{-\alpha} t, x\right) \tag{3.6}
\end{equation*}
$$

It is easy to see that if $u(t, x)$ satisfies (2.1) then so does $v(t, x)$. So we observe the value of $\left\|u^{n}\right\|_{\infty}$ at every time step. If the value become smaller than the given threshold (for instance 1/2), then we rescale u and τ by (3.6) with $M=\left\|u^{n}\right\|_{\infty}^{-1}$ (i.e. multiply u_{j}^{n} by M and τ by $M^{-\alpha}$), and continue to calculate the values of the solution for the next time step, watching in the same way. Thus, we can keep the value of δ small enough compared with u, and τ would get smaller and smaller as t_{n} gets close to the vanishing time.

In this way, we can obtain more accurate value of u and its vanishing time numerically.

For semilinear heat equations, such a rescaling technique is applied in [Ch].

§5. Result of Numerical Experiment

We computed the asymptotic behavior of the solutions to (E1)-(E3) by the scheme (3.1)-(3.3) with $h=1 / 64 \quad(N=64), \tau=2.5 \cdot h^{2}$ and $\delta=10^{-100}$. Note that we took 0.5 as a threshold of the rescaling, so if $\|u(t, \cdot)\|_{\infty}<1 / 2$ then rescaling would be done, so the $u(t, \cdot)$ would be magnified and the value of τ becomes smaller. We present rescaled profiles of u for 3 different initial data with $\alpha=0.5$ (Figure 1-3). Each figure contains its initial data u_{0} (labeled to), and rescaled profile of $u(t, \cdot)$ (labeled $\mathrm{t} 1-\mathrm{t} 5$). The profile $\mathrm{t} j$ is obtained by rescaling j times of original picture. The time T_{j} of the profile $\mathrm{t} j$ is displayed below the each figures.

Initial data for each figures are as follows.
Figure 1. $u_{0}(x)=\sin \pi x$
Figure 2. $u_{0}(x)=\frac{64}{27} x^{3}(1-x)$
Figure 3. $u_{0}(x)=\frac{16}{15} \mu(\mu(x))$ where $\mu(x)=\frac{15}{4} x(1-x)$.
The rescaled profile of numerical solutions to (E1)-(E3) can be seen to approach asymptotically to a certain profile.

All computed asymptotic profiles of u with different initial data (plotted in Figure 1-3) coincide, at least in plotting resolution as shown in Figure 4.

Furthermore, the asymptotic profile (labeled pde) also coincide with the numerical solution for (D1)-(D2) (labeled ode) obtained by solving (V1) - (V3) by shooting method (Figure 5).

Reference

[B] J.G.Berryman, Evolution of a stable profile for a class of nonlinear diffusion equations with fixed boundaries, Journal of Mathematical Physics, 18(1977),2108-2115.
[BH1] J.G.Berryman and C.J.Holland, Evolution of a stable profile for a class of nonlinear diffusion equations II, Journal of Mathematical Physics, 19(1978),2476-2480.
[Ch] Y.-G. Chen, Asymptotic behaviors of blowing-up solutions for finite difference analogue of $u_{t}=u_{x x}+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 33(1986), 541-574.
[CGG] Y.-G. Chen, Y. Giga and S.Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Journal of Differential Geometry, 33(1991),749-786.
[CGHH] Y.-G. Chen, Y. Giga, T.Hitaka and M. Honma A stable Difference Scheme for Computing Motion of Level Surfaces by the Mean Curvature, preprint.
[EDB] E.DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, 1993.
[OS] M. Ohnuma and K. Sato, Remarks on Degenerate Parabolic Equations, in preparation.

Hokkaido Tokai University
Sapporo 005, Japan
and

Department of Mathematics
Hokkaido University
Sapporo 060, Japan
u

Figure 1.

$$
\begin{aligned}
& T_{0}=0 \\
& T_{1}=0.04516602 \\
& T_{2}=0.08173087 \\
& T_{3}=0.107 S 69 \mathrm{~S} \\
& T_{4}=0.1262 S i 2 \\
& T_{5}=0.1392649
\end{aligned}
$$

Figure 2.

$$
\begin{aligned}
& T_{0}=0 \\
& T_{1}=0.02868652 \\
& T_{2}=0.06010765 \\
& T_{3}=0.08589717 \\
& T_{4}=0.1042857 \\
& T_{5}=0.1170933
\end{aligned}
$$

Figure 3.

$$
\begin{aligned}
& T_{0}=0 \\
& T_{1}=0.02624512 \\
& T_{2}=0.06630449 \\
& T_{3}=0.09247656 \\
& T_{4}=0.1109373 \\
& T_{5}=0.1239462
\end{aligned}
$$

u

Figure 4. The asymptotic profiles of Figure 1-3 (labeled $\mathrm{ft1}$ - ft). They coincide with in plotting resolution.
u

Figure 5. The asymplotic profiles of Figure 1-3 (labeled pde) and rescaled profile of separable solution obtained by solving (V1)-(V3) numerically. They alose coincide with in plotting resolution.

