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1 Introduction
Let $\varphi(q, z)$ be a r-reticular phase function on $Q\cross C^{m}$ satisfying non-degeneracy
condition”, where $Q$ is a manifold of the dimension $n$ . We call a generalized Airy-
Weber function with monodromy exponent $s$ a function deiined on $Qx\tilde{C}$“ where $\tilde{C}$ “

is the universal covering of $C^{*}=C\backslash (O)$ by

$\mathcal{A}_{s,\Gamma}^{\varphi}(q, x)=\int_{\Gamma}e^{-x\varphi(q,z)}z_{1}^{s_{1}}\ldots.z_{r}^{s_{\Gamma}}dz_{1}\ldots dz_{rr\iota}$ (0)

where
$s=(s_{1}, \ldots, s_{r})\in C^{r},$ $x=-ik$ ,

and $\Gamma$ is non-compact m- cycle of $\tilde{C}"\cross C^{m-r}$ depending continuously on Argx and
$q$ and verifying “ the Steepest descent condition” (so that the integrand decreases
exponentialy) , see [Pl]. This integral is a generalization of Airy integral (defined
by oscillatory integral having the pha,se being an universal deformation of isolated
critical point) and Weber integral (defined by oscillatory integral having the phase
being an universal deformation of function on manifold with boundary). Following
Sato’s idea, we define two C-algebras of microdifferential operators on a symplectic
manifold and a contact manifold. In this talk we give the following results:

1.1: Every lagrcmj$ian(le//endrian)$ regular$\cdot$ r-cubic confirJuration is associated to
one class of $r\cdot eticularphas\epsilon$ function satisfying a $c\zeta reticular$ nondegeneracy condi-
tion”.

*A joint work with F. Pham (see reference [DP]).
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1.2: $Ger\iota eralized$ Airy-Weber function is a solution of system of $n$ microdifferen-
tial equatio $\gamma\iota s$ with involution on a symplectic manifold and it is a solution of system
of $n+1$ microdifferential equations with involutio.n on a contact manifold.

Now instead of $s$ as in the definiton, we consider $s$ depending on $x$ . The following
result shows that a generalized Airy-Weber function with monodromy exponent
depending on the parameter $x$ is not a solution of holonomic system in variables
$(q, \xi),$ ( $q=$ variables of space, $\xi=$ variables of phase).

1.3: Solutions of microdifferential system with the the characteristic variety being
a regular r-cubic configuration on a symplectic manifold is a generalized Airy-Weber
function up to an invertible microdifferential $operator_{f}$ such that monodromy expo-
nents $s_{1}=s_{1}(x),$

$\ldots,$
$s_{7}=s_{r}(x)$ are symbols of the Gevrey $s$ class.

2 Oscillatory Integrals and Phase Functions
In the last twenty years the theory of singularities has been exceptionally closely
linked with the investigation of oscillatory integrals (i.e. integrals of the form:

$\int_{R^{rn}}e^{ik\varphi(q,y)}a(q, y)dy_{1}\ldots dy_{m}$ (1)

for large values of the real parameter $k$ , here $q$ belongs to parameter space, $\varphi$ and $a$

are smooth functions, the function $\varphi$ is called the phase and the function a is called
the amplitude). On the one hand a great many resonable problems of the theory
of singularities arose from attempts to understand the nature of the behaviors of
integrals. On the other hand much of the study of critical points has found direct
application in the study of asymptotics.

In [A], [DU], [M] they studied systematically the asymptotic behaviors of os-
cillatory integrals by associating almost every lgerm of Lagrangian (or legendrian)
smooth variety to one class of the phase germ satisfying a “nondegeneracy condition
“ in the sense of R. Thom. Hence the study of asymptotic behavior of oscillatory
integrals with nondegenerated phases reduces to the theory of singularities of germs
of functions or to the theory of singularities of germs of lagrangian (or legendrian)
submanifolds.

We remark that in [Pl] Pham gave a meaning to integrals (1) by “ Steepest
Descent method of many variables”. From now on we are interested in the complex
analytic case.

We consider a germ of lagrmgim or legendrian variety not to be smooth, for
example, a legendrian (lagrangian) analytic germ consisting of two components:

$\Lambda=\Lambda_{1}\cup\Lambda_{2}$

where $\Lambda_{1}$ and $\Lambda_{2}$ are lagrangia.$n$ (resp. legendrian) submanifolds, they intersect
along a submanifold of codiinention 1 and

$T(\Lambda_{1}\cap\Lambda_{2})=T(\Lambda_{1})\cap T(\Lambda_{2})$
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The pair $(\Lambda_{1}, \Lambda_{2})$ as above is called (by Kashiwara) a geometric regular interaction.
More generally, Let $M$ (resp. $W$ ) be a symplectic manifold (resp. contact man-

ifold) a lagrangian (resp. legendrian) regular r-cubic configuration of $M$ (resp. $W$)
is a germ $\Lambda$ (resp. $V$ ) such that in suitable symplectic (resp. Darboux) coordinate
system it can be of the form:

$\Lambda=\{(q,p)\in M:p_{1}q_{1}=\ldots=p_{r}q_{r}=p_{r+1}=\ldots=p_{n}=0\}$ (2)

resp.

$V=\{(q, p, z)\in W:z=p_{1}q_{1}=\ldots=p_{r}q_{r}=p_{r+1}=\ldots=p_{n}=0\}$ (2’)

Our problem is local. We can consider $W$ (resp. $M$ ) as $J^{1}(Q, C)$ a bundle of
l-jets of holomorphic functions from a manifold $Q$ to $C$ (resp.. $T^{*}(Q)$ a cotangent
bundle of $Q$ ), where $Q$ is a complex analytic manifold of the dimension $n$ .

The main result of this paragraph is to associate every lagrangian (legendrian)
regular r-cubic configuration to one class of the phase satisfying “ a reticular non-
degeneracy condition ( $($ (the generalization of R. Thom’s notion one).

Now we are going to give a definition of “reticular non-degeneracy condition”.
Let $Z$ be a germ of a smooth analytic variety of dimension $m\geq r$ with a divisor in
normal crossing consisting of $r$ components

$Z_{1},$
$\ldots,$

$Z_{r}$ .

For each $\sigma\subset\{1, \ldots, r\cdot\}$ we denote

$Z_{\sigma}= \bigcap_{i\in\sigma}Z_{i}$

and $Z_{\emptyset}=Z$ . A germ $Z$ with
$\underline{Z}=(Z_{\sigma})$

is called a germ of r-reticular variety.
Let $\varphi$ : $Zarrow C$ be a $gei\cdot m$ of a holomorphic function, we say that $\varphi$ is r-reticular

if $Z$ is a germ of r-reticular variety and we denote by

$\varphi:\underline{Z}arrow C$

An automorphism
$\phi:Zarrow Z$

is called an reticular automorphism if

$\phi(Z_{\sigma})=Z_{\sigma}$

for every $\sigma\subset\{1, \ldots, r\}$

Two r-reticular functions $al\cdot e\mathcal{R}$ -equivalent if there is a reticular automorphism,
which sends first to second one.
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Let
$\Psi:Q\cross Zarrow C$

be a deformation of
$\varphi:\underline{Z}arrow C$

$(i. e. \Psi(0, z)=\varphi(z))$ .
A critical set of this deformation is defined as follows:

$\Sigma=\cup\Sigma_{\sigma}$ ,

$\Sigma_{\sigma}=\{(q, z)\in Q\cross Z:\frac{\partial\Psi}{\partial z}|_{Z_{\sigma}}=0\}$ .

We say that a deformation $\Psi$ satisfies “the reticular nondegeneracy condition”
if $\partial_{z}\Psi$ is transversal to $S_{\sigma}^{1}$ for all $\sigma$ , where

$\partial_{z}\Psi:Q\cross Z\ni(q, z)arrow\partial_{z}\Psi\in T^{*}Z$

and
$S_{\sigma}^{1}=\{\zeta\in T^{*}Z:\zeta|Z_{\sigma}=0\}$ .

We see that
$\Sigma_{\sigma}=(\partial_{z}\Psi)^{-1}(S_{\sigma}^{1})$ .

Let $\chi$ be a characteric map defined as

$\chi:\Sigmaarrow J^{1}(Q, C)$

which sends $(q, z)$ to l-jet of $\Psi$ with $z$ constant and

$\chi_{\sigma}=\chi|\Sigma_{\sigma}$

We can prove that $\chi_{\sigma\alpha}$ is a legendrian immersion and

$V(\Psi)=\cup\{Im(\chi_{\sigma})\}$

is a legendrian regular r-cubic configuration. We can prove that there is an one-to-
one correspondence between legendrian regular r-cubic configuration and lagrangian
one by the $pro.|ection$

$J^{1}(Q, C)arrow T^{*}(Q)$

The $V(\Psi)$ (resp. $\Lambda(\Psi)$ the image of $V(\Psi)$ ) is called a characteristic variety of $\Psi$ on
the contact (resp. symplectic) manifold.

In [DDP], [DP] we proved that

Theorem 2.1: ([DDP], [DP])
a$)$ Let $V$ (resp. $\Lambda$ ) be a regular r-cubic configuration, such that $\Pi|_{V}$ is finite,

where $\Pi$ is the $pi\cdot ojection$ of the bundle $J^{1}(Q, C)$ , then there exists a reticular phase
function $\Psi sn$ch that $V(\Psi)=V$ $($ resp. $\Lambda(\Psi)=\Lambda)$ .
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b $)$ If $\Psi_{j}:Q\cross Z_{i}\mapsto C$ are reticular phases, then

$V(\Psi_{1})=V(\Psi_{2})\Leftrightarrow\Psi_{1}\cong\Psi_{2}$

Where $\cong$ meaiis a $\mathcal{R}$-equivalence.
c $)$ $V(\Psi)$ is stable $\Leftrightarrow\Psi$ is $\mathcal{R}^{+}$ -versal.
The notion of stable of Lagrangian (Legendrian) variety and versality of $\Psi$ can

be found in [DDP], [DP].
In next paragraphs, we try to characterize generalized Airy-Weber functions by

system of microdifferential equations that they satisfy.

3 Microdifferential operators
Following Sato, we introduce two C-algebras of microdifferential operators $\underline{\mathcal{E}}\subset \mathcal{E}$

such that their symbols of order $0$ are germs of holomorphic functions on $M$ resp.
on $W$ and by above reason we call tliese operators the M-differential operators resp.
W-differential operators.

Let $\mathcal{O}$ be a ring of germs of holomorphic functions (for example: $\mathcal{O}_{M},$ $\mathcal{O}_{W},$ $\mathcal{O}_{Q}$ ).
A x-symbol on $\mathcal{O}$ is a formal series

$\sum_{k=\infty\infty}^{m}a_{k}x^{k}$

where $a_{k}\in \mathcal{O}$ with common radius of convergence $\rho$ and satisfies the Gevrey’s
condition of order 1:

$\sum_{l=1}^{\infty}\Vert a_{-l}\Vert_{p}\frac{\xi^{l-1}}{(l-1)!}\in C\{\xi\}$ (3)

We denote the $\mathcal{O}$ -algebra of x-symbols by $\mathcal{O}((x^{-1}))_{1}$ and $\mathcal{O}[[x^{-1}]]_{1}$ its subalgebra
of x-symbols of order $\leq 0$ .

M-differential operators.
Let $\mathcal{O}=\mathcal{O}_{M}$ , we can write $a\in \mathcal{O}((x^{-1}))_{1}$ in the form:

$a(q,p)x)= \sum_{k}\sum_{\alpha\in N^{n}}a_{k,\alpha}(q)p^{\alpha}x^{k}$
(4)

Instead of [; we put $x^{-1}\partial q_{j}$ and $p^{\alpha}$ becomes $x^{-|\alpha|}\partial q^{\alpha}$ with remarking that $x$ and $\partial q$

are of order 1. This $expi\cdot ession$ is called a M-differential operator and $a$ is its total
symbol. We denote by $\underline{\mathcal{E}}$ a ring of M-differential operators.

Remark: A multiplicity rule of two M-differentia.1 operators is a extension of
multiplicity rule of two differential operators.

W-differential operators.
Let now $\mathcal{O}=\mathcal{O}_{W}$ we can $wi\cdot ite$ x-symbol in the form

$a(q,p, \xi;x)=\sum a_{k}(q,p, \xi)x^{k}$ (5)
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as above, we put $-\partial_{x}$ instead of $\xi$ with remarking that the operator $\partial_{x}$ is of order
0. This expression is called W-differential operator and its total symbol is $a$ . We
denote by $\mathcal{E}$ a ring of W-differential operators.

Remark: A formal Laplace transformation by $x\mapsto\partial_{\xi}$ and $\partial x\mapsto-\xi$ sends $\mathcal{E}$ into
the algebra of Sato’s microdifferential operators in codirection $d\xi$ of $C^{n}\cross C$ ,

$\sum a_{\alpha}(q, \xi)\partial q^{\alpha}\partial_{\xi}^{k-|\alpha|}$ (6)

with $\partial q,$ $\partial_{\xi}$ of order 1 (cf. [SKK]).
The main result of this paragraph is following:

Theorem 3.1: ([DP])
Generalized Airy-Weber function is a solution of system of $n$ M-differential equa-

tions with involution on a symplectic manifold , $i$ . $e$ :

$P_{1}u=\ldots=P_{n}u=0,$ $[P_{i}, P_{j}]u=0$ (7)

where principal symbols $\sigma(P_{1}),$
$\ldots,$

$\sigma(P_{n})$ form one system of equations of lagrangian
variety $\Lambda(\varphi)$ (a characteristic variety of $\varphi$ on the symplectic).

Moreover, it is also a solution of system of $n+1$ W-differential equations with
involution on a contact manifold, $i$ . $e$ :

$P_{0}u=P_{1}u=\ldots=P_{n}u=0,$ $[P_{i}, P_{j}]u=0$ (8)

where principal symbols $\sigma(P_{i})$ form one system of equations of legendrian variety
$V(\varphi)$ .

Idea of the proof.$\cdot$ Consider a microdifferential system

$(z_{1}\partial_{z_{1}}-s_{1})u=0,$
$\ldots,$

$(z_{r}\partial_{z}, -s_{r})u=0,$ $\partial_{z,+1}u=0,$
$\ldots,$

$\partial_{z_{m}}u=0_{2}$

resp.

$(z_{1}\partial_{z_{1}}-s_{1})u=0,$
$\ldots,$

$(z_{r}\partial_{z_{r}}-s_{r})u=0,$ $\partial_{z_{r+1}}u=0,$
$\ldots,$

$\partial_{z_{m}}u=0,$ $\partial_{x}u=0$

Let $u=z_{1}^{s}\ldots z_{r}^{s_{l\cdot}}1$ be a solution of this system and we denote $e^{-x\varphi}dz\otimes u$ by $u^{\varphi}$ . It
is enough to prove that there are epimorphisms of right $\xi$ (resp. $\mathcal{E}$ ) -modules:

$\underline{\mathcal{E}}u^{\varphi}arrow\underline{\mathcal{E}}\mathcal{A}_{s,\Gamma}^{\varphi}$

$\mathcal{E}u^{\varphi}arrow \mathcal{E}A_{s,\Gamma}^{\varphi}$

We can prove that $\underline{\mathcal{E}}u^{\varphi}$ (resp. $\mathcal{E}u^{\varphi}$ ) coincides with the direct image of $\underline{\mathcal{E}}_{z}$ (resp.
$\mathcal{E}_{z})$ -modulle $\underline{\mathcal{E}}_{z}u$ (resp. $\mathcal{E}_{z}u$ ) along $\varphi$ (we donote it by $\mathcal{Q}^{\varphi}$ (resp. $\mathcal{G}^{\varphi}$)).

We can prove the following, too:

Theorem 3.4: ([DP])
$\mathcal{G}^{\varphi}$ is stable if and only if $\varphi$ is $\mathcal{R}^{+}$ -versal.
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4Solution of M-differential system
In this $paJ^{\backslash }agraph$ we solve a M-differential system

$P_{1}\Psi=0,$
$\ldots,$

$P_{n}\Psi=0,$ $P_{1},$
$\ldots,$

$P_{n}\in\xi$ (9)

such that: a $chai\cdot acteristic$ variety of this system is a lagrangian regular r-cubic
configuration $\Lambda$ and principal symbols of the ideal generated by $P_{1},$

$\ldots,$
$P_{n}$ in $\underline{\mathcal{E}}$

form a reduced ideal in $\mathcal{O}$ defining $\Lambda$ .
The main result of this pa,ragraph is following:

Theorem 4.1 ([DP])
Solutions of the system $((J)$ are of the following form:

$\Psi=C\mathcal{A}_{s,\Gamma}$

where $C$ is an invertibJe M-differential operator, $s_{1}=s_{1}(x),$ $\ldots$ , $s_{r}=s_{r}(x)$ are
elements of $C[[x^{-1}]]_{1}$ and

$\mathcal{A}_{s,\Gamma}(q, x)=\int_{\Gamma}e^{-xS(q,\hat{q})}\hat{q}_{1}^{61}\ldots\hat{q}_{r}^{s,}d\hat{q}_{1}\ldots d\hat{q}_{n}$

Idea of the proof.$\cdot$ First we introduce a notion of meromorphic microdifferential
opreators on $M$ (see [P2], [P3]) and by using a Division Lemma for meromorphic
microdifferential operators, we can prove that:

The system (9) is equivaJent, by a change of an unknown function of the form
$\Psi=B\Phi$ ( $B$ is inverstible in $\underline{\mathcal{E}}$), to the following

$(q_{1}’\partial_{1}-s_{1})\Phi=0,$ . . $,$
$,$

$(q_{7}.\partial_{r}-s_{r})\Phi=0,$ $\partial_{r+1}\Phi=0,$
$\ldots,$

$\partial_{n}\Phi=0$ (10)

Where $(q,p)$ is a local symplectic coordinate system such that $\Lambda$ is of the form:

$p_{1}q_{1}=\ldots=p_{r}q_{\tau}=0,p_{r+1}=\ldots=1^{r_{n}=0}$ (11)

$\partial_{i}$ $:=\partial_{q:}$ and $s_{1},$ $\ldots,$
$s_{r}\in C[[x^{-1}]]_{1}$ are uniquely determined by system (9) and we

call them monodromy exponents of system (9).
Now let $S$ be a generating function of canonical $traJisformation$ which sends $\Lambda$

to the set of the form (11), this $S$ is a nondegenerated deformation of a reticular
phase uniquely deterinined up to the $\mathcal{R}$-equivalence (by the theorem 2. 1). Using a
quantized canonical transformation induced by $S$ we can prove that

$\Psi(q)x)=\int_{\Gamma}e^{-xS(q,\hat{q})}\hat{\Psi}(\hat{q}, x)d\hat{q}_{1}\ldots d\hat{q}_{r\iota}$

is the solution of $((J)$ if and only if $\hat{\Psi}$ is the solution of (10), hence by (10) we have:

$\hat{\Psi}=\hat{C}\hat{c}$ .
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Therefore $\Psi=C\mathcal{A}_{s,\Gamma}$ .
Now we assume that $\Lambda$ is stable, hence $\hat{q}\mapsto S(q,\hat{q})$ is a miniversal of $\hat{q}\mapsto S(O,\hat{q})$

therefore $\mathcal{O}_{\Lambda}$ is free over $\mathcal{O}_{Q}$ with generators 1, $p_{1},$ $\ldots,p_{n}$ and we conclude that $\underline{\mathcal{E}}A$ is
generated by $\mathcal{A},$ $\partial_{q_{1}}\mathcal{A},$

$\ldots,$
$\partial_{q_{n}}\mathcal{A}$ in $\mathcal{O}((x^{-1}))_{1}$ , where $\mathcal{A}=\mathcal{A}_{s,\Gamma}$ . We get the following:

Theorem 4.2 ([DP])
If $\Lambda$ is stable then the solution of (9) has an unique decomposition

$\Psi=c_{0}\mathcal{A}_{s,\Gamma}+c_{1}\partial_{q_{1}}\mathcal{A}_{s,\Gamma}+\ldots+c_{n}\partial_{q_{n}}\mathcal{A}_{s,\Gamma},$$c_{i}\in \mathcal{O}_{Q}((x^{-1}))_{1}$
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