Spectrum and connectivity of graphs

A．E．Brouwer
（talk in Kyoto，931119）

Problem Let Γ be a nice graph．Show that Γ is very connected．
In this talk I would like to give three examples of results about the con－ nectivity of a graph that follow by considering its spectrum．

Three measures of connectivity play a rôle here：
（i）is Γ connected or not？
（ii）$\kappa(\Gamma)$ ，the vertex connectivity of Γ ，that is，the minimum number of vertices that one has to remove in order to disconnect Γ ．
（iii）$t(\Gamma)$ ，the toughness of Γ ，is defined as

$$
\min _{S} \frac{|S|}{c(\Gamma \backslash S)}
$$

where S runs over all sets of vertices such that $\Gamma \backslash S$ is disconnected，and $c(\Gamma \backslash S)$ is its number of connected components．

The graph K_{0} without vertices is not connected（we have $c\left(K_{0}\right)=0$ ， while $c(\Gamma)=1$ for connected graphs Γ ）but I shall leave undefined whether it is disconnected，and hence do not define $\kappa(\Gamma)$ and $t(\Gamma)$ when Γ is complete．

For example，for the Petersen graph we find $\kappa(\Gamma)=3$ and $t(\Gamma)=\frac{4}{3}$ ．More generally，we clearly have $\kappa(\Gamma) \leq k(\Gamma)$ if $k(\Gamma)$ is the（minimal）valency of Γ ． One may also ask about the size of＇nonlocal＇cut sets．For example，
（1）（＇unimodality＇）Is it true that if S is a cut set of Γ ，with separation $\Gamma \backslash S=A+B$ ，then $\min (|\Gamma(S) \cap A|,|\Gamma(S) \cap B|) \leq|S|$ ？（Here $\Gamma(S)$ denotes the set of all vertices adjacent to some vertex of S ．）
[Jack Koolen remarks that some condition is necessary: for each $i, 0 \leq$ $i \leq 17$, the Biggs-Smith graph has a cut set S of size 17 such that $|\Gamma(S) \cap A|=$ $17+i,|\Gamma(S) \cap B|=34-i$.
(2) Show that $|S|$ is substantially larger than k when S is nonlocal (say, given a lower bound on the size or the minimum valency of each component of $\Gamma \backslash S$).

1 The connectivity of strongly regular graphs

Theorem 1.1 (Brouwer \& Mesner [4]) Let Γ be strongly regular of valency k. Then $\kappa(\Gamma)=k$, and the only cut sets of size k are the point neighbourhoods.

Open problems are for example:
(3) Prove the above result for distance-regular graphs.
(4) Let Γ be strongly regular with parameters (v, k, λ, μ), and let S be a disconnecting set not containing any point neighbourhood $\Gamma(x)$. Show that $|S| \geq 2 k-2-\lambda$.
(5) Let S be a disconnecting set such that $|S \cap \Gamma(x)| \leq \alpha k$ for some fixed $\alpha, 0<\alpha<1$, and all vertices x of Γ. Prove a superlinear (in k) lower bound for $|S|$.

Note (added July '94): Brouwer \& Mulder [5] showed $\kappa(\Gamma)=k$ for graphs with the property that any two distinct vertices have either 0 or 2 common neighbours. This settles (3) in the case $\lambda \in\{0,2\}, \mu=2$.

2 The connectedness of generic pieces of generalized polygons

Theorem 2.1 (Brouwer [2]) Let Γ be the point graph or the flag graph of a finite generalized polygon. Then the subgraph Δ of Γ induced on the set of all vertices far away from ('in general position w.r.t.') a point or flag is connected, except in the cases $G_{2}(2),{ }^{2} F_{4}(2)$ and (for the flag graph) $B_{2}(2)$, $G_{2}(3)$. A similar result holds more generally for the complement of a geometric hyperplane.

Open problems:
(6) Generalize this to near polygons.
(7) Generalize this to distance-regular graphs.

It is very easy to see that in a strongly regular graph the subgraph on the vertices far away from a point is connected (except when the graph is complete multipartite).

3 The toughness of a regular graph

Theorem 3.1 (Alon-Brouwer, cf. [1, 3]) Let Γ be a graph on v vertices, regular of valency k, and with eigenvalues $k=\theta_{1} \geq \theta_{2} \geq \ldots \geq \theta_{v}$. Put

$$
\lambda:=\max _{2 \leq j \leq v}\left|\theta_{j}\right| .
$$

Then

$$
t(\Gamma)>\frac{k}{\lambda}-2 .
$$

Open problems:
(8) Prove $t(\Gamma) \geq \frac{k}{\lambda}-1$. (I conjecture that this is the right bound.)
(9) Prove $t(\Gamma)=\frac{k}{\lambda}$ in many cases.

Examples We have bipartite graphs of small toughness, so the ' -1 ' would be best possible. The Delsarte-Hoffman bound for cocliques C in strongly regular graphs states

$$
|C| \leq \frac{v}{1+k /\left(-\theta_{v}\right)} .
$$

If equality holds, and $\lambda=-\theta_{v}$ (as is often the case), then we find with $S=\Gamma \backslash C: t(\Gamma) \leq(v-|C|) /|C|=\frac{k}{\lambda}$.

4 Tools

How are these results proved? Essentially, only interlacing (cf. Haemers [6]) is used. Interlacing comes in two main forms:
(i) If Δ is an induced subgraph of a graph Γ, then the eigenvalues η_{j} $(1 \leq j \leq u)$ of Δ interlace the eigenvalues $\theta_{i}(1 \leq i \leq v)$ of Γ : we have $\theta_{i} \geq \eta_{i}(1 \leq i \leq u)$ and $\eta_{u-j} \geq \theta_{v-j}(0 \leq j \leq u-1)$.
(ii) Given a partition Π of the index set of a symmetric matrix A, let $B=\left(B_{R, S}\right)_{R, S \in \Pi}$ be the matrix of average row sums of the corresponding submatrices of A. Then the eigenvalues of B interlace those of A.

Examples

Lemma 4.1 The average valency of a graph is not more than its largest eigenvalue.

Proof: Use a partition with 1 part.
Lemma 4.2 Let Γ be regular of valency k on v vertices, and let the graph induced on the r-set R have average valency k_{R}. Then

$$
\theta_{2} \geq\left(v k_{R}-r k\right) /(v-r) \geq \theta_{v}
$$

(and hence

$$
r \leq v\left(k_{R}-\theta_{v}\right) /\left(k-\theta_{v}\right)
$$

For $k_{R}=0$ we find the Delsarte-Hoffman bound).
Proof: Use a partition with 2 parts.
Lemma 4.3 Let Γ and R be as before. Put $\lambda=\max \left(\left|\theta_{2}\right|,\left|\theta_{v}\right|\right)$. Then

$$
\sum_{x}\left(|\Gamma(x) \cap R|-\frac{r k}{v}\right)^{2} \leq \lambda^{2} r(v-r) / v
$$

Proof: Use a partition with 2 parts, and apply to A^{2}, the square of the adjacency matrix of Γ.

5 Proofs of the results in sections 1,2,3

Let Γ have eigenvalues $k=\theta_{1} \gg \theta_{2} \geq \ldots$. If Δ is a disconnected subgraph, then its spectrum is the union of the spectra of its components. Each component has a largest eigenvalue at least as large as its average degree, and by interlacing it follows that all components except perhaps one have average degree at most θ_{2}, but this is much too small (except when Γ is very small).

This proves the results of Sections 1 and 2. For those of Section 3, use the above three Lemmata and compute.

References

[1] Noga Alon, Tough Ramsey graphs without short cycles, preprint, 1993.
[2] A.E. Brouwer, The complement of a geometric hyperplane in a generalized polygon is usually connected, pp. 53-57 in: Finite geometry and combinatorics - Proc. Deinze 1992, F. De Clerck et al. (eds), London Math. Soc. Lect. Note Ser. 191, Cambridge Univ. Press, 1993.
[3] A.E. Brouwer, Toughness and spectrum of a graph, preprint, 1993.
[4] A.E. Brouwer \& D.M. Mesner, The connectivity of strongly regular graphs, Europ. J. Combin. 6 (1985) 215-216.
[5] A.E. Brouwer \& H.M. Mulder, The vertex connectivity of a $\{0,2\}$-graph equals its valency, preprint, 1994.
[6] W.H. Haemers, Eigenvalue techniques in design and graph theory, Reidel, Dordrecht, 1980.

