Spectrum and connectivity of graphs

A.E. Brouwer

(talk in Kyoto, 931119)

Problem Let Γ be a nice graph. Show that Γ is very connected.

In this talk I would like to give three examples of results about the connectivity of a graph that follow by considering its spectrum.

Three measures of connectivity play a rôle here:

(i) is Γ connected or not?

(ii) $\kappa(\Gamma)$, the vertex connectivity of Γ , that is, the minimum number of vertices that one has to remove in order to disconnect Γ .

(iii) $t(\Gamma)$, the toughness of Γ , is defined as

$$\min_{S} \ \frac{|S|}{c(\Gamma \setminus S)}$$

where S runs over all sets of vertices such that $\Gamma \setminus S$ is disconnected, and $c(\Gamma \setminus S)$ is its number of connected components.

The graph K_0 without vertices is not connected (we have $c(K_0) = 0$, while $c(\Gamma) = 1$ for connected graphs Γ) but I shall leave undefined whether it is disconnected, and hence do not define $\kappa(\Gamma)$ and $t(\Gamma)$ when Γ is complete.

For example, for the Petersen graph we find $\kappa(\Gamma) = 3$ and $t(\Gamma) = \frac{4}{3}$. More generally, we clearly have $\kappa(\Gamma) \leq k(\Gamma)$ if $k(\Gamma)$ is the (minimal) valency of Γ . One may also ask about the size of 'nonlocal' cut sets. For example,

(1) ('unimodality') Is it true that if S is a cut set of Γ , with separation $\Gamma \setminus S = A + B$, then $\min(|\Gamma(S) \cap A|, |\Gamma(S) \cap B|) \leq |S|$? (Here $\Gamma(S)$ denotes the set of all vertices adjacent to some vertex of S.)

[Jack Koolen remarks that some condition is necessary: for each $i, 0 \le i \le 17$, the Biggs-Smith graph has a cut set S of size 17 such that $|\Gamma(S) \cap A| = 17 + i$, $|\Gamma(S) \cap B| = 34 - i$.]

(2) Show that |S| is substantially larger than k when S is nonlocal (say, given a lower bound on the size or the minimum valency of each component of $\Gamma \setminus S$).

1 The connectivity of strongly regular graphs

Theorem 1.1 (Brouwer & Mesner [4]) Let Γ be strongly regular of valency k. Then $\kappa(\Gamma) = k$, and the only cut sets of size k are the point neighbourhoods.

Open problems are for example:

(3) Prove the above result for distance-regular graphs.

(4) Let Γ be strongly regular with parameters (v, k, λ, μ) , and let S be a disconnecting set not containing any point neighbourhood $\Gamma(x)$. Show that $|S| \ge 2k - 2 - \lambda$.

(5) Let S be a disconnecting set such that $|S \cap \Gamma(x)| \leq \alpha k$ for some fixed α , $0 < \alpha < 1$, and all vertices x of Γ . Prove a superlinear (in k) lower bound for |S|.

Note (added July '94): Brouwer & Mulder [5] showed $\kappa(\Gamma) = k$ for graphs with the property that any two distinct vertices have either 0 or 2 common neighbours. This settles (3) in the case $\lambda \in \{0, 2\}, \mu = 2$.

2 The connectedness of generic pieces of generalized polygons

Theorem 2.1 (Brouwer [2]) Let Γ be the point graph or the flag graph of a finite generalized polygon. Then the subgraph Δ of Γ induced on the set of all vertices far away from ('in general position w.r.t.') a point or flag is connected, except in the cases $G_2(2)$, ${}^2F_4(2)$ and (for the flag graph) $B_2(2)$, $G_2(3)$. A similar result holds more generally for the complement of a geometric hyperplane. Open problems:

(6) Generalize this to near polygons.

(7) Generalize this to distance-regular graphs.

It is very easy to see that in a strongly regular graph the subgraph on the vertices far away from a point is connected (except when the graph is complete multipartite).

3 The toughness of a regular graph

Theorem 3.1 (Alon-Brouwer, cf. [1, 3]) Let Γ be a graph on v vertices, regular of valency k, and with eigenvalues $k = \theta_1 \ge \theta_2 \ge ... \ge \theta_v$. Put

$$\lambda := \max_{2 \le j \le v} |\theta_j|.$$

Then

$$t(\Gamma) > rac{k}{\lambda} - 2.$$

Open problems:

(8) Prove $t(\Gamma) \ge \frac{k}{\lambda} - 1$. (I conjecture that this is the right bound.)

(9) Prove $t(\Gamma) = \frac{k}{\lambda}$ in many cases.

Examples We have bipartite graphs of small toughness, so the '-1' would be best possible. The Delsarte-Hoffman bound for cocliques C in strongly regular graphs states

$$|C| \leq \frac{v}{1+k/(-\theta_v)}.$$

If equality holds, and $\lambda = -\theta_v$ (as is often the case), then we find with $S = \Gamma \setminus C$: $t(\Gamma) \leq (v - |C|)/|C| = \frac{k}{\lambda}$.

4 Tools

How are these results proved? Essentially, only interlacing (cf. Haemers [6]) is used. Interlacing comes in two main forms:

(i) If Δ is an induced subgraph of a graph Γ , then the eigenvalues η_j $(1 \leq j \leq u)$ of Δ interlace the eigenvalues θ_i $(1 \leq i \leq v)$ of Γ : we have $\theta_i \geq \eta_i$ $(1 \leq i \leq u)$ and $\eta_{u-j} \geq \theta_{v-j}$ $(0 \leq j \leq u-1)$. (ii) Given a partition Π of the index set of a symmetric matrix A, let $B = (B_{R,S})_{R,S\in\Pi}$ be the matrix of average row sums of the corresponding submatrices of A. Then the eigenvalues of B interlace those of A.

Examples

Lemma 4.1 The average valency of a graph is not more than its largest eigenvalue.

Proof: Use a partition with 1 part.

Lemma 4.2 Let Γ be regular of valency k on v vertices, and let the graph induced on the r-set R have average valency k_R . Then

$$heta_2 \geq (vk_R - rk)/(v-r) \geq heta_{m{v}},$$

(and hence

$$r \leq v(k_R - \theta_v)/(k - \theta_v).$$

For $k_R = 0$ we find the Delsarte-Hoffman bound).

Proof: Use a partition with 2 parts.

Lemma 4.3 Let Γ and R be as before. Put $\lambda = \max(|\theta_2|, |\theta_v|)$. Then

$$\sum_{\boldsymbol{x}} (|\Gamma(\boldsymbol{x}) \cap R| - rac{rk}{v})^2 \leq \lambda^2 r(v-r)/v.$$

Proof: Use a partition with 2 parts, and apply to A^2 , the square of the adjacency matrix of Γ .

5 Proofs of the results in sections 1,2,3

Let Γ have eigenvalues $k = \theta_1 \gg \theta_2 \ge \dots$ If Δ is a disconnected subgraph, then its spectrum is the union of the spectra of its components. Each component has a largest eigenvalue at least as large as its average degree, and by interlacing it follows that all components except perhaps one have average degree at most θ_2 , but this is much too small (except when Γ is very small).

This proves the results of Sections 1 and 2. For those of Section 3, use the above three Lemmata and compute.

References

- [1] Noga Alon, Tough Ramsey graphs without short cycles, preprint, 1993.
- [2] A.E. Brouwer, The complement of a geometric hyperplane in a generalized polygon is usually connected, pp. 53-57 in: Finite geometry and combinatorics - Proc. Deinze 1992, F. De Clerck et al. (eds), London Math. Soc. Lect. Note Ser. 191, Cambridge Univ. Press, 1993.
- [3] A.E. Brouwer, Toughness and spectrum of a graph, preprint, 1993.
- [4] A.E. Brouwer & D.M. Mesner, The connectivity of strongly regular graphs, Europ. J. Combin. 6 (1985) 215-216.
- [5] A.E. Brouwer & H.M. Mulder, The vertex connectivity of a $\{0,2\}$ -graph equals its valency, preprint, 1994.
- [6] W.H. Haemers, Eigenvalue techniques in design and graph theory, Reidel, Dordrecht, 1980.