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1. InSroducSion
In this paper we deal with control problem for semilinear parabolic

type equation in Hilbert space $H$ as follows.

$($ 1.1 $)$

$\frac{d}{dt}x(t)=A_{0}x(t)+A_{1}x(t-h)+\int_{-h}^{0}a(s)A_{2}x(t+s)ds$

$+f(t, x(t))+B_{0}u(t)$ , $t\in(0,T]$ .

Let $A_{0}$ be the operator associated with a sesquilinear form defined on
$VxV$ satisfying Garding} $s$ inequality:

$(A_{0}u, v)=-a(u, v)$ , $u,$ $v\in V$

where $V$ is a Hilbert space such that $V\subset H\subset V^{*}$ Then $A_{0}$ generates
an analytic semigroup in both $H$ and $V^{\cdot}$ and so the equation (1.1) may
be considered as an equation in both $H$ and $V^{*}$ . Let the operators $A_{1}$

and $A_{2}$ be a bounded linear operators from $V$ to $V^{*}$ and $a(\cdot)$ be Holder
continous. The nonlinear operator $f$ from $\mathcal{R}xV$ to $H$ is Lipschitz
continuous.

The first part of this paper is to give wellposedness and regularity
in section 2. Our approach is closed to that in [1,2] mentioned above.
For the semilinear system (1.2), we vvill give the result by using the
intermediate property and contraction mapping principle. Next, under
more generalized the range condition of the controller than of in [6,8,9],
we establish that the approximate controllability for semilinear system
is equivalent to that of its corresponding linear system. in section 3.
This is to seek the equivalence between the reachable trajectory set of
the semilinear system and that of the associated with linear system.
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2. Wellposedness and regularity
We consider the problem of control for the following retarded func-

tional differential equation of parabolic type with nonlinear term

(2.1)

$\frac{d}{dt}x(t)=A_{0}x(t)+A_{2}x(t-h)+\int_{-h}^{0}a(s)A_{2}x(t+s)ds$

$+f(t, x(t))+B_{0}u(t)$ ,

(2.2) $x(0)=g^{0}$ , $x(s)=g^{1}(s)$ , $s\in[-h, 0)$ .

in Hilbert space i.n $H$ . Let $V$ be another Hilbert space such that $V\subset$

$H\subset V$“. The notations $|\cdot|,$ $||\cdot||$ denote the norms of $H,$ $V$ respectively
as usual. Let $a(u, v)$ be a bounded sesquilinear form defined in $VxV$
satisfying Garding’s inequality

(2.3) ${\rm Re} a(u, u)\geq c_{0}||u||^{2}-c_{1}|u|^{2}$ , $c_{0}>0$ , $c_{1}\geq 0$ .

Let $A_{0}$ be the operator associated with a sesquilinear form

(2.4) $(A_{0}u, v)=-a(u, v)$ , $u,$ $v\in V$.

Then the operator $A_{0}$ is a bounded linear from $V$ to $V$ The opera-
tors $A_{1}$ and $A_{2}$ are bounded linear operators from $V$ to $V^{*}$ such that
they map $D(A_{0})$ into $H$ . We may assume that $(D(A_{0}), H)_{1\int 2,2}=V$

satisfying

(2.5) $||u||\leq C_{1}||u||_{D(A_{0})}^{1/2}|u|^{1/2}$

for some a constant $C_{1}>0$ where $(D(A_{0}), H)_{\theta,p}$ denotes the real inter-
polation space between $D(A_{0})$ and $H$ . The function $a(\cdot)$ is assumed to
be a real valued H\"older continous in $[-h, 0]$ and the controller operator
$B_{0}$ is a bounded linear operator from some Banach space $U$ to $H$ . Let
$f$ be a nonlinear mapping from $\mathcal{R}xV$ into $H$ . We assume that for any
$x_{1},$ $x_{2}\in V$ there exists a constant $L>0$ such that

(2.6) $|f(t, x_{1})-f(f, x_{2})|\leq L||x_{1}-x_{2}||$

(2.7) $f(t, 0)=0$ .

Assume that (2.3) holds for $c_{1}=0$ . Noting that $A_{0}+c_{1}$ is an isomor-
phism from $V$ to $V$ if $c_{1}\neq 0$ .
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reachable set of semilinear retarded control system

THEOREM 2.1. Under the above $ass$ umptioiis for the $n$ online$ar$ map-
pin$gf_{2}$ then th $ere$ exis$ts$ a unique solution $x$ of (2.1) and (2.2) such
that

$x\in L^{2}(0, T;V)\cap W^{1,2}(0, T;V^{*})\subset C([0, T];H)$ .

for any $g=(g^{0}, g^{1})\in Z=HxL^{2}(-h, 0_{J}V)$ . Moreover, theoe exis $ts$ a
constant $C\epsilon uch$ that

$||x||_{L^{2}(0,T;V)\cap W^{1,2}(0,T;V^{r})}\leq C(|g^{0}|+||g^{1}||_{L^{2}(-h,O;V)}+||u||_{L^{2}(0,T;U)}))$

where

$|| \cdot||_{L^{2}(0_{y}I’;V)\cap W^{1,2}(0,T;V^{r})}=\max\{||\cdot||_{L^{2}(0,T;V)}, ||\cdot||_{W^{1,2}(0_{2}T;V)}\}$.

The proof will be shown a little later on. From now on, we consider
the estimate of a solution of the problem (2.1) and (2.2) in accordance
with the result of theorem 3.3 of [1] if it exists. For $T>0$ it is easily
seen that by interpolation theory

$H= \{x\in V^{*}:\int_{0}^{T}||A_{0}e^{tA_{0}}x||^{2}dt<\infty\}$ ,

where $||\cdot||_{r}$ is the norm of the element of $V^{\cdot}$

Identifying the antidual of $H$ with $H$ we may consider V C $H\subset V$

The realization of $A_{0}$ in $H$ which is the restriction of $A_{0}$ to

$D(A_{0})=\{u\in V:A_{0}u\in H\}$

is also denoted by $A_{0}$ . It is known that $A_{0}$ generates an analytic
semigroup in both $H$ and $V^{*}$ Replacing intermediate space $F$ in the
paper [1] with the space $H$ , we can derive the results of G. Blasio, K.
Kunisch and E. Sinestrari [1] regarding term by term to deduce the
following result.

PROPOSITION 2.1. Le$tg=(g^{0}, g^{1})\in Z=HxL^{2}(-h, 0;V)$ and
$f\in L^{2}(0, T;V^{*})$ . Then for each $T>0_{f}$ a solu tion $x$ of the equation
(2.1) and (2.2) belongs to

$L^{2}(0, T, V)\cap W^{1,2}(0, T;V^{*})\subset C([0, T];H)$ .
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Moreover, for some constant $C_{T}$ we have

$||x||_{L^{2}(0,T;V)\cap W^{1_{*}2}(0,T;V^{*})}\leq C_{T}(|g^{0}|+||g^{1}||_{L^{2}(-h,0;V)}$

$+||f||_{L^{2}(0,T;V^{*})}+||u||_{L^{2}(0,T;U)})$ .

The Proof of Theorem 2.1. Let us fix $T\in(0, h)$ such that

(2.8) $C_{1}C_{T}L(\tau/\gamma_{2)^{L}}2<1$ .

For $i=12$, we consider the following equation.

$\frac{d}{dt}yi(t)=A0yi(t)+A_{1}yi(t-h)+\int_{-h}^{0}a(s)A_{2}yi(t+s)ds$

$+f(t, x_{i}(t))+B_{0}u(t)$ , $t\in(0,T]$

$yi(0)=g^{0}$ , $yi(s)=g^{1}(s)$ , $s\in[-h, 0)$ .

Then

$\frac{d}{dt}(y_{1}(t)-y_{2}(t))=A_{0}(y_{1}(t)-y_{2}(t))+A_{1}(y_{1}(t-h)-y_{2}(t-h))$

$+ \int_{-h}^{0}a(s)A_{2}(y_{1}(t+s)-y_{2}(t+s))ds$

$+f(t, x_{1}(t))-f(t, x_{2}(t))$ , $t\in(0,T]$

$y_{1}(0)-y_{2}(0)=0$, $y_{1}(s)-y_{2}(s)=0$ , $s\in[-h,0)$ .

From Theorem 3.3 of [1] and (2.6) it follows that

$||y_{1}-y_{2}||_{L^{2}(0,T;D(A_{0}))\cap W^{t,2}(0_{y}T;H)}\leq C_{T}||f(\cdot, x_{1})-f(\cdot)x_{2})||_{L^{2}(0_{2}T;H))}$

$||f(\cdot, x_{1})-f(\cdot, x_{2})||_{L^{2}(0_{2}T;H)}\leq L||x_{1}-x_{2}||_{L^{2}(0_{I}T;V)}$ .

Using the H\"older inequality we also obtain that

(2.9)

$||y_{1}-y_{2}||_{L^{2}(0,T;H)}= \{\int_{0}^{T}|y_{1}(t)-y_{2}(t)|^{2}dt\}^{L}2$

$\leq\{\int_{0}^{\tau}t\int_{0}^{t}|\dot{y}_{1}(\tau)-\dot{y}_{2}(\tau)|^{2}d\tau dt\}^{L}2$

$\leq\frac{\sqrt{T}}{2}||y_{1}-y_{2}||_{W^{1,2}(0,T;H)}$ .
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reachable set of semilinear retarded control system

Therefore, in terms of (2.5) and (2.9) we have

$||y_{1}-y2||_{L^{2}(0_{2}\tau;V)}\leq C_{1}||y_{1}-y_{2}||_{L^{2}(0_{1}T;D(A_{0}))}^{2}||y_{1}-y_{2}||_{L^{2}(O.T;H)}^{2}\iota\iota$

$\leq C_{1}C_{T}(\frac{T}{\gamma_{2}})^{L}2||f(\cdot, x_{1})-f(\cdot, x_{2})||_{L^{2}(0,T:H)}$

$\leq C_{1}C_{T}L(\frac{T}{\sqrt{2}})^{L}2||x_{1}-x_{2}||_{L^{2}(0,T;V)}$ .

So by virtue of the condition (2.8) the contraction principle gives that
the equation of (2.1) and (2.2) has a unique solution in $[-h,T]$ .

Let $x(\cdot)$ be a solution of (2.1) and (2.2) and $y(\cdot)$ be a solution of
following equation.

$\frac{d}{dt}y(t)=A_{0}y(t)+A_{1}y(t-h)\int_{-h}^{0}a(s)A_{2}y(t+s)ds$

$+B_{0}u(t)$ , $t\in(0, T]$

$y(0)=g^{0}$ , $y(s)=g^{1}(s)$ , $s\in[-h, 0)$ .

Consider the following problem:

$\frac{d}{dt}(x(t)-y(t))=A_{0}(x(t)-y(t))+A_{1}(x(t-h)-y(t-h))$

$+ \int_{-h}^{0}a(s)A_{2}(x(t+s)-y(t+s))ds+f(t, x(t))$ ,

$x(0)-y(0)=0$, $x(s)-y(s)=0$ $s\in[-h,0)$ .

In virtue of Theorem 3.3 of [1] we have

$||x-y||_{L^{2}(0,T;D(A_{0}))\cap W^{1,2}(0,T;H)}\leq C_{T}||f(\cdot, x)||_{L^{2}(0,T;H)}$

$\leq C_{T}L||x||_{L^{2}(0T:V)})$

$\leq C_{T}L(||x-y||_{L^{2}(0,T;V)}+||y||_{L^{2}(0,T;V)})$ .

Combining (2.5), (2.9) and above inequality we have

$||x-y||_{L^{2}(0,T;V)}\leq C_{1}||x-y||_{L^{2}(0,T;D(A_{0}))}^{L}2||x-y||_{L^{2}(0_{l}T;H)}^{L}2$

$\leq C_{1}(\frac{T}{\sqrt{2}})^{L}2C_{T}L(||x-y||_{L^{2}(0_{2}T;V)}+||y||_{L^{2}(0,T;1’)})$.
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Therefore, we have

$||x-y||_{L^{2}(0,T;V)} \leq\frac{C_{1}C_{T}L(T\tau 2)^{L}2}{1-C_{1}C_{T}L(T\tau_{2})^{\frac{1}{2}}}||y||_{L^{2}(O,T;V)}$ ,

(2.10)

$||x||_{L^{2}(0,T;V)} \leq\frac{1}{1-C_{1}C_{T}L(T\tau 2)^{L}2}||y||_{L^{2}(0_{J}T;V)}$ .

Combining Proposition 2.1 and (2.10) we obtain

$||x||_{L^{2}(0.T;V)\cap W^{1,2}(0,T;V^{r})}\leq C_{T}(|g^{0}|+||g^{1}||_{L^{2}(0,T;V)}+L||x||_{L^{2}(0_{2}T;V)}$

$+||u||_{L^{2}(0,T;U)})$

$\leq C_{T}(|g_{0}|+||g^{1}||_{L^{2}(0_{2}T;V)}+||u||_{L^{2}(0_{2}T:U)}$

$+ \frac{L}{1-C_{1}C_{T}L(T)}||y||_{L^{2}(0,T;V)})$

$\leq C_{T}(|g_{0}|+||g^{1}||_{L^{2}(0T;V)}\rangle+||u||_{L^{2}(0_{2}T:U)})$

$+ \frac{LC_{T}}{1-C_{1}C_{T}L(\gamma_{2})z}(|g^{0}|+||g^{1}||_{L^{2}(0,T;V)}$

$+||u||_{L^{2}(0_{2}T:U)})$

$\leq C(|g_{0}|+||g^{1}||_{L^{2}(0,T;V)}+||u||_{L^{2}(0,T:U)})$ .

Since the condition (2.8) is independent of initial value, the solution
of (2.1) and (2.2) can be extended to the interval $[-h, nT]$ for $n$ is a
natual number, and so the proof is complete.

3. Approximate controllabih$ky$ for linear syst $em$

In this section we consider the approximate controllability of re-
tarded system with nonmlinea.$r$ term. The fundamental solution $W(t)$

of the equation (2.1) and (2.2) is defined as follows:

$\frac{d}{dt}W(t)=A_{0}W(t)+A_{1}W(t-h)+\int_{-h}^{0}a(s)A_{2}W(t+s)ds,$ $t>0$ ,

$W(0)=I$, $W(s)=0,$ $s\in[-h, 0)$ .
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reachable set of semilinear retarded control system

Since we are assuming that $a(\cdot)$ is H\"older continuous, as is seen in [13]
the fundamental solution exists. It also is known that $W(t)$ is strongly
continuous and $AW(t)$ and $dW(t)/dt$ are strongly continuous except
at $t=nr,$ $n=0,1,2$ , .... Therefore we may assume that

$|W(t)|\leq AI$, $t\geq 0$

where $M$ is a constant. The solution of (2.1) and (2.2) is expressed by

$x(t)=W(t)g^{0}+ \int_{-h}^{0}U_{t}(s)g^{1}(s)ds+l^{t}W(t-\tau)f(\tau, x(\tau))d\tau$,

$U_{t}(s)=W(t-s-h)A_{1}+ \int_{-h}W(t-s+\sigma)a(\sigma)A_{2}d\sigma$

(cf. S. Nakagiri [10]).

LEMMA 3.1. Let $f\in L^{2}(0,T;H)$ an$dx(t)=\int_{0}^{t}W(t-s)f(s)ds$ .
Then there $exi\epsilon t\epsilon$ a constan$tC$ such that

$||x||_{L^{2}(0,T;V)}\leq c\sqrt{T}||f||_{L^{2}(0,T;H)}$ .

$p_{\sqrt oof}$. By the similary way of Theorem 2.3 of [1] it holds that

(3.1) $||x||_{L^{2}(0,T;D(A_{0}))}\leq C_{T}’||f||_{L^{2}(0,T;H)}$ .

By using H\"older inequality,

$||x||_{L^{2}(0,T;H)}^{2}= \int_{0}^{T}|\int_{0}^{t}W(t-s)f(s)ds|^{2}dt$

$\leq M^{2}\int_{0}^{T}(\int_{0}^{t}|f(s)|ds)^{2}dt$

$\leq M^{2}\int_{0}^{T}t\int_{0}^{2}|f(s)|^{2}dsdt$

$\leq M^{2}\frac{T^{2}}{2}\int_{0}^{t}|f(s)|^{2}ds$ .

39



Therefore

(3.2) $||x||_{L^{2}(0,Z’;H)}\leq MT||f||_{L^{2}(0T;H)})$ .

Combining (3.1) and (3.2) we have that

$||x||^{2}\leq C_{T}MT||f|[2$ .

Let $Z=HxL^{2}(-h, 0;V)$ be the state space and be a product
Hilbert space with the norm

$||g||z=(|g^{0}|^{2}+ \int_{-h}^{0}||g^{1}(s)||^{2}ds)^{L}2$ , $g=(g^{0})g^{1})\in 7_{1}$.

Let $g\in Z$ and $x(t;g, f,B_{0}u)$ be a solution of the equation (2.1) and
(2.2) associated with nonlinear term $f$ and control $B_{0}u$ at time $t$ . In
view of the result of Theorem 2.1, we can define the solution semigroup
for the problem (2.1) and (2.2) as follows:

$S(t)g=(x(t;g, 0,0), x_{t}(\cdot;g)0,0))$

where $g=(g^{0}, g^{1})\in Z,$ $x(t;g, 0,0)$ is the solution of (2.1) and (2.2)
with $f(t, x)=0$ and $B_{0}=0$ and $x_{t}(s;g, 0,0)=x(t+s;g, 0,0)$ defined
in $[-h, 0]$ . Then we have the following proposition which can show just
as Theorem 4.2 of [1].

PROPOSITION 3.1. (i) The operator $S(t)i\epsilon$ a $C_{0^{-}}semign)up$ on $Z$ .
(ii) The intini $te\epsilon imal$ generator $A$ of $S(t)$ is $ch$aracterize $d$ by

$D(A)=\{g=(g^{0},g^{1}):g^{0}\in H,$ $g^{1}\in L^{2}(-h, 0;V)$ ,

$g^{1}(0)=g^{0_{1}}A_{0}g^{0}+A_{1}g^{1}(-h)+ \int_{-h}^{0}a(s)A_{2}g^{1}(s)ds\in H\}$ ,

$Ag=(A_{0}g^{0}+A_{1}g^{1}(-h)+ \int_{-h}^{0}a(s)A_{2}g^{1}(s)ds,\dot{g}^{1})$ .

Note that $a(\cdot)$ need not be H\"older continuous for the above results
to hold. It has only to belong to $L^{2}(-h, 0)$ .
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$rea\mathfrak{r}hable$ set of semihnear retarded control system

For the sake of simplicity, we assume that $S(t)$ is uniformly bounded,
that is, there exists a constant $M\geq 1$ such that

$||S(t)||_{Z}\leq M$.

As is seen in [7], the equation (2.1) and (2.2) can be transformed into
an abstract equation

$($3.3 $)$ $z(t)=Az(t)+F(z(t))+Bu(t)$ ,
(3.4) $z(0)=g$ ,

where $z(t)=(x(t), x_{t}(\cdot))$ belongs to the Hilbert space $Z$ and $g=$
$(g^{0},g^{1})\in Z$ . The operator $A$ is the infinitesimal generator of $C_{0^{-}}$

semigroup $S(t),$ $F(z(t))=(f(t, x(t)), 0)$ and $Bu=(B_{0}u, 0)$ . The mild
solution of initial problem (3.3) and (3.4) is the following form:

$z(t;g, f,B u)=S(t)g+\int_{0}^{t}S(t-s)F(z(s))ds+\int_{0}^{t}S(t-s)Bu(s)ds$ .

LEMMA 3.2. Let $z_{u}(t)=z(t;g, f.u)$ . Then for $0<t<T$ theoe
exists a constant $C$ suclz that

(1) $||F(z_{u})||_{L^{2}(0,T;Z)}\leq C(||g||z+||u||_{L^{2}(0_{2}T;U)}))$

(2)

$||F(z_{u_{1}})-F(z_{u_{2}})||_{L^{2}(0_{2}T;Z)}(=||f(\cdot, x_{u_{1}})-f(\cdot, x_{u_{2}})||_{L^{2}(0_{3}T;H)})$

$\leq Lc\sqrt{T}/(1-Lc\Gamma\tau)||B(u_{1}-u_{2})||_{L^{2}(0,T;U)}$ .

Proof (1) Rom Theorem 2.1 it follows that

$||F(z_{u})||_{L^{2}(O_{2}T;Z)}=||f(t, x(t))||_{L^{2}(0,T;H)}$

$\leq L||x||_{L^{2}(0_{1}T;V)}$

$\leq LC(||g||z+||u||_{L^{2}(0_{2}T;U)})$.
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(2) From Lemma 3.1 it follows that

$||F(z_{u_{1}})-F(z_{u_{2}})||_{L^{2}(0,T;Z)}=||f(\cdot, x_{u_{1}})-f(\cdot, x_{u_{2}})||_{L^{2}(0_{y}T;H)}$

$\leq L||x_{u_{1}}-x_{u_{2}}||_{L^{2}(0_{y}T;V)}$

$\leq L||\int_{0}^{t}W(t-s)\{f(s, x_{u_{1}}(s))-f(s, x_{u_{2}}(s))\}ds||_{L_{\triangleleft}^{2}(0_{1}T;V)}$

$+L|| \int_{0}^{t}W(t-s)B\{u_{1}(s)-u_{2}(s)\}ds||_{L_{1}^{2}(0_{1}T;V)}$

$\leq Lc\Gamma\tau||f(\cdot, x_{u_{1}})-f(\cdot, x_{u}2)||_{L^{2}(0_{2}T;H)}$

$+Lc\Gamma\tau||B(u_{1}-u_{2})||_{L^{2}(0_{2}\mathcal{I};U)}$

where we set $||f(t)||_{L_{l}^{2}(0,T;V)}=||f||_{L^{2}(0_{2}T;V)}$ . Since $||f(\cdot, x_{u})||_{L^{2}(0,T;H)}$

$=||F(z_{u})||_{L^{2}(0,T;Z)}$ the proof is complete.

We define reachable sets for the system (3.3) and (3.4) as follows:

$D_{T}(g)=\{z(T;g, 0,Bu):u\in L^{2}(0,T;U)\}$ ,
$R_{q}(g)=\{z(T;g_{7}f, Bu) : u\in L^{2}(0, T;U)\}$ .

It is known that $L_{T}(0)$ is independent of $T$ (see Lemma 7.4.1 in [12]).
We denote the bounded linear operator $L^{2}(0,T, Z)$ to $Z$ by

$\hat{S}p=\int_{0}^{T}S(T-s)p(s)ds$

for $p\in L^{2}(0,T;Z)$ . The system (3.3) and (3.4) is approximately con-
trollable on $[0, T]$ if $\overline{R_{T}(g)}=Z$ , that is, for any $\epsilon>0$ and $z\in Z$ there
exists a control $u\in L^{2}(0, T;U)$ such that

$||z-S(T)g-\hat{S}F(z_{u})-\hat{S}Bu||<\epsilon$

where $||$ $||$ is a norm on $Z$ .
We need the following hypothesis:

(B)
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reachable set of semihnear retarded control $sys8em$

For any $\epsilon>0$ and $p^{0}\in L^{2}(0, T;H)$ there exists a $u\in L^{2}(0, T;U)$

such that

$||\hat{S}(p^{0},0)-\hat{S}Bu||<\epsilon$ ,
$||Bu||_{L^{2}(0,T;Z)}(=||B_{0}u||_{L^{2}(0,T;H)})\leq q_{1}||p^{o}||_{L^{2}(0,T;H)}$ .

where $q_{1}$ is a constant independent of $p$ .

It is easily seen that if the range of the operator $B$ is dense in $Z$

then the condition is satisfied. Our concem is based on more general
assumption than that in [6,8,9]. In [8, Example 2] it is introduced a
simple example of the control operator $B$ that satisfies assumption (B).

THEOREM 3.1. Let us $assume$ hypothesis $(B)$ . Then we have that
$\overline{R_{T}(g)}=\overline{L_{T}(g)}$ .

Proof. Under assumption (B) it is known that $\overline{L_{T}(0)}=Z$ (see K.
Naito [8, Lemma 2] $)$ . Therefore, we have that $S(T)g\in\overline{L_{T}(0)}$ and
hence, $\overline{L_{T}(0)}=\overline{L_{T}(g)}$ for any initial value $g\in Z$ . Now we will show
that $\overline{L_{T}(g)}\subset\overline{R_{T}(g)}$. Let $z_{T}\in\overline{L_{T}(g)}$. Then for any given $\epsilon>0$ there
exists $u\in L^{2}(0, T, U)$ such that

(3.5) $||z_{T}-S(T)g- \hat{S}Bu||\leq\frac{\epsilon}{2^{3}}$.

Let $v_{1}\in L^{2}(0, T;U)$ is arbitrarily fixed. By assumption (B) there exists
$v_{2}\in L^{2}(0, T;U)$ such that

$|| \hat{S}(B_{0}u-f(\cdot, x_{v_{1}}))-\hat{S}B_{0}v_{2}||\leq\frac{\epsilon}{2^{3}}$ .

Since $B_{0}u-f(\cdot, x_{v_{1}})\in L^{2}(0, T;H)$ is the first component of the $Bu-$
$F(z_{v_{1}})\in L^{2}(0, T;Z)$ , we have

(3.6) $|| \hat{S}(Bu-F(z_{v_{1}}))-\hat{S}Bv_{2}||\leq\frac{\epsilon}{2^{3}}$ .

From $($ 3.5 $)$ and $($ 3.6 $)$ it follows that

(3.7) $||z_{T}-S(T)g- \hat{S}F(z_{v_{1}})-\hat{S}Bv_{2}||\leq\frac{\epsilon}{2^{2}}$ .
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We can choose $w_{2}\in L^{2}(0, T;U)$ such that

(3.8) $|| \hat{S}(F(x_{1’ 2})-F(z_{z_{1}},))-\hat{S}Bw_{2}||\leq\frac{\epsilon}{2^{3}}$ .

Therefore, from Lemma 3.2 it obtains that

$||Bw_{2}||_{L^{2}(O,T;Z)}\leq q_{1}||F(x_{v_{2}})-F(z_{v_{1}})||_{L^{2}(O,T;Z)}$

$\leq q_{1}\frac{LC\Gamma\tau}{1-LC\Gamma\tau}||Bv_{2}-Bv_{1}||_{L^{2}(0_{1}T;Z)}$ .

Let us define $v_{3}=v_{2}-w_{2}$ in $L^{2}(0, T;U)$ . Then from (3.7) and (3.8)

$||z_{T}-S(T)g- \hat{S}F(z_{w_{2}})-\hat{S}Bv_{3}||\leq(\frac{1}{2^{2}}+\frac{1}{2^{3}})\epsilon$.

Define $v_{n}=v|l-1-w_{n-1}$ by induction. Then we have

$||z_{T}-S(T)g- \hat{S}(F(z_{V_{\hslash}})-Bv_{n+1}||\leq(\frac{1}{2^{2}}+ ... +\frac{1}{2^{n+1}})\epsilon\leq\frac{1}{2}\epsilon$

and

$||Bv_{n+1}-Bv_{n}||_{L^{2}(0,T;Z)}$

$\leq q_{1}\frac{LC\sqrt{T}}{1-LC\Gamma\tau}||Bv_{n}-Bv_{n-1}||_{L^{2}(0,T;Z)}$ .

For sufficiently small $T$ such that $LC \Gamma\tau<\min\{1/2,1/(q_{1}+1)\}$ , the
sequence $\{Bv_{n}\}$ is Cauchy sequence and hence converges in $L^{2}(0, T;Z)$ .
Thus theoe exists some integer $N$ such that for all $n\geq N$ we have that

$|| \hat{S}Bv_{n+1}-\hat{S}Bv_{n}||\leq\frac{1}{2}$ .

Therefore it follows that
$||z_{2}-S(T)g-\hat{S}F(z_{1_{h}},)-\hat{S}Bv_{n}||$

$\leq||z_{t}-S(T)g-\hat{S}F(z_{v_{n}})-\hat{S}Bv_{n+1}||$

$+||\hat{S}Bv_{n+1}-\hat{S}Bv_{n}||$

$\leq\frac{1}{2}\epsilon+\frac{1}{2}\epsilon\leq\epsilon$

for all $n\geq N$. Hence for sufficiently small $T_{1}$ we have proof that
$\overline{L_{T}(g)}\subset\overline{R_{T}(g)}$. But since $\overline{L_{T}(g)}$ is independent of the time $T$ and
initial value $g$ , we conclude that $L_{T}(g)=\overline{R_{Z’}(g)}$.
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