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REACHABLE SET OF SEMILINEAR RETARDED
CONTROL SYSTEM
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(PusaN NATIONAL UNIVERSITY OF TECHNOLOGY, KOREA)

1. Introduction

In this paper we deal with control problem for semilinear parabolic
type equation in Hilbert space H as follows.

(1.1)
-g%-a:(t) =Aoz(t) + Azt — h) + /_h a(s)Axz(t + s)ds
+ f(t, () + Bou(t), 1€ (0,T]

Let Ay be the operator associated with a sesquilinear form defined on
V x V satisfying Garding’s inequality:

(Aou,v) = —a(u,v), u, vEV

where V is a Hilbert space such that V' C H C V*. Then Ag generates
an analytic semigroup in both H and V* and so the equation (1.1) may
be considered as an equation in both H and V*. Let the operators A,
and Az be a bounded linear operators from V to V* and a(-) be Holder
continous. The nonlinear operator f from R x V to H is Lipschitz
continuous. :

The first part of this paper is to give wellposedness and regularity
in section 2. Our approach is closed to that in [1,2] mentioned above.
For the semilinear system (1.2), we will give the result by using the
intermediate property and contraction mapping principle. Next, under
more generalized the range condition of the controller than of in [6,8,9],
we establish that the approximate controllability for semilinear system
is equivalent to that of its corresponding linear system. in section 3.
This is to seek the equivalence between the reachable trajectory set of
the semilinear system and that of the associated with linear system.



2. Wellposedness and regularity

We consider the problem of control for the following retarded func-
tional differential equation of parabolic type with nonlinear term

(2.1) |
g;m(t) =Aoz(t) + A2z(t — h) + /_h a(s)A2x(t + s)ds

+ £(t, 2(1)) + Bou(t),
22)  o(0)=¢" o(s)=g'(s), s€[-h,0).

in Hilbert space in H. Let V be another Hilbert space such that V C
H C V*. The notations |-|, ||-|| denote the norms of H, V respectively
as usual. Let a(u,v) be a bounded sesquilinear form defined in V x V
satisfying Garding’s inequality

(2.3) Re a(u,u) > collull? —clul’), >0, ¢ >0.
Let Ay be the operator associated with a sesquilinear form
(2.4) (Aou,v) = —a(u,v), u, veV.

Then the operator Ay 1s a bounded linear from V to V*. The opera-
tors A; and Az are bounded linear operators from V to V* such that
they map D(4o) into H. We may assume that (D(Ao), H)j22 = V
satisfying

(2.5) llull < CillullPea, lul*’?

for some a constant C; > 0 where (D(Ag), H)y,, denotes the real inter-
polation space between D(Ag) and H. The function a(-) is assumed to
be a real valued Holder continous in [—A, 0] and the controller operator
By is a bounded linear operator from some Banach space U to H. Let
f be a nonlinear mapping from R x V into H. We assume that for any
T1, To € V there exists a constant L > 0 such that

(2.6) |f(t,21) = f(f, 22)| < L2y — 22|
(2.7) f(t,0)=0.

Assume that (2.3) holds for ¢; = 0. kNoting that Ag + ¢; is an isomor-
phism from V to V* if ¢; # 0.
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reachable set of semilinear retarded control system

THEOREM 2.1. Under the above assumptions for the nonlinear map-
ping f, then there exists a unique solution z of (2.1) and (2.2) such
that ' ' ‘

z € L*0,T; V)n WY%(0,T;V*) Cc C([0,T); H). -

for any g = (¢°,9") € Z = H x L?*(—h,0; V). Moreover, there exists a
constant C such that

||37||L2(0,T;V)nW1-2(o,T;V*) < C(|90| + ”91”L2(-h,o;V) + “u”LZ(O,T;U));

where

|| - ||L2(0,T;V)nW1»2(O,T;V') = max {||- ||L2(0,T;V); Il ||W1:2(0,T;V‘)}~

The proof will be shown a little later on. From now on, we consider
the estimate of a solution of the problem (2.1) and (2.2) in accordance
with the result of theorem 3.3 of [1] if it exists. For T > 0 it is easily
seen that by interpolation theory

T
H={zeV"*: / [|doe? ||2dt < 0},
0

where || - ||+ is the norm of the element of V*.
Identifying the antidual of H with H we may consider V C H C V*.
The realization of Ag in H which 1s the restriction of 4, to

D(4p)={u€eV:A4uecH}

1s also denoted by Ag. It is known that Ao generates an analytic
semigroup in both H and V*. Replacing intermediate space F' in the
paper [1] with the space H, we can derive the results of G. Blasio, K.
Kunisch and E. Sinestrari [1] regarding term by term to deduce the
following result.

PROPOSITION 2.1. Let ¢ = (¢°,¢*) € Z = H x L?*(—h,0,V) and
f € L*(0,T;V*). Then for each T > 0, a solution z of the equation
(2.1) and (2.2} belongs to

L*(0,T; V) A W™*(0,T; V*) C C([0, T); H).
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Moreover, for some constant Cp we have

‘ia’"‘lL’(O,T;V)ﬂW‘-z(O,T;V‘) SCT(IQOI + Hgl”L?(—k,o;V)
+ [ fllz2 0,7 %) + llullz2o,50))-
The Proof of Theorem 2.1. Let us ix T € (0, h) such that
(2.8) C1Cr L(T[V2)F < 1.

For ¢+ =1 2, we consider the following equation.

%ys(t) =Aoyi(t) + A1i(t — h) + /; ha(S)Azy.‘(t+ s)ds
| + F(t,i(2)) + Bou(t), te(0,T]
u(0) =¢°, w(s)=g'(s), s €[-h,0).
Then

2 (10 = 1a(8)) =40(1(8) = 10)) + s(r (¢ = ) = a(t — )

+ ] @(S)Ag(yl(t + S) -_ yg(t + 8))d8
A

£t (1) — £t 22(2), te (0,T]
y1(0) — 42(0) =0,  y1(s) —y2(s) =0, s € [-h,0).

From Theorem 3.3 of [1] and (2.6) it follows that

lly1 — 2llz2(0,7;00a0 ynw t2(0,7;m) < CF( 21) = £ @2)lle20,25m),
WfCz1) = FC 222078y £ Lo — 22llpz(o,r;vy-

Using the Holder inequality we also obtain that

(2.9)

T
lly1 — 92llz2(0,7;8) = {/ |y1 (t) — y2(2))?dt} *
0

: T ? : '
<1 / t / 192(r) = ga(7) Pdrdt}¥
VT

T .
< —5—”!}1 — Yallwr.2(0,7;8)-
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" Therefore, in terms of (2.5) and (2.9) we have

L ' L
lly2 — w2llz2(o,zv) £ Callys — wallz2(0.7,p (a0 ll¥1 — ¥2llz2 0,7, 7

T
< CICT(_\/—E)%”J!(T;‘UI) — [, 22)llr2(0,7:m)
T L
< C1(J'.'rll("\/—":z')2 llz1 — z2|lz2¢0,7;v)-

So by virtue of the condition (2.8) the contraction principle gives that
the equation of (2.1) and (2.2) has a unique solution in [—A, T].

Let z(-) be a solution of (2.1) and (2.2) and y(-) be a solution of
following equation.

d ~ °
T =Aoy(t) + Ary(e = B) [ ala)ag(e + 9)ds

+ Bou(t), | t e (0, T’]
y(0) =¢°, y(s)=g'(s), s € [-A,0).

Consider the following problem:
& (#() ~ 9()) =Ao(a (1) — 4(0) + Ar((t— )~ y(t — h))
+ [ a)a(oe+9) -yt + )ds + 18,50,
2(0) = (0) =0, (s)— y(s) = 0 s € [=h,0).
In virtue of Theorem 3.3 of [1] we have

llz = yllz2(0,7;0 a0 pnw 20,738y < Crllf( @) L2(0,7;m)
< CrLl|zl|z20,7v)
L CrL(|lz— y”ﬂ(n,T;V) + ”y”L"’(O,T;V))'

Combining (2.5), (2.9) and above inevquality we have

¥ :
llz — y”L?(O,T;V) < Cillz - y”z,?(o,T;D(Ao))””" - 19”1;2(0,7’;5)

T
< cl<—\/;)z*cTL<um — yllzao vy + WWllzzory)-
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Therefore, we have

C:CrL( )T
1 clcTL(T)

lle — yllz2o,75v) < —llyllz: (0 )

(2.10)

1 .
LAITR by L = . 2 RIAY
llz]lz (0,7;V) & 1 C]CTL(%);;”y”L (0,T;V)

Combining Proposition 2.1 and (2.10) we obtain

||$'||L2(0T nw2orv+) SCr(lg°l + llg'lz20,7v) + Lllellr2075v)
+ |lullzz0,7;0))
<Cr(lgol + llg*llz20,7v ) + Nullz2o,7:0)

+
1 C1CTL(7-)1 ||y||L (o:rv))

<Cr(|go| + Hg ||L2(0,T;V) + ““”L?(O,T:U))

+ (lg” + llg" He2(o,75v
1 - G CrL(&)t (©,T5V)

+ |lullzz(o,7:0))
<C(lgol + ”9’1|IL2(0,T;V) + H“”Lﬂ(o,T:U))-

Since the condition (2.8) is independent of initial value, the solution
of (2.1) and (2.2) can be extended to the interval [—h,nT] for n is a
natual number, and so the proof is complete.

3. Approximate controllability for linear system

In this section we consider the approximate controllabiliAty of re-
tarded system with nonmlinear term. The fundamental solution W (¢)
of the equation (2.1) and (2.2) is defined as follows:

' 0
%W(t) = 4W(t)+ AW (t—h)+ / a(s)AW(t + s)ds, t > 0,
-k

WO0)=1, W(s)=0, s€[-h,0).
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Since we are assuming that a(-) is Holder continuous, as is seen in [13]
the fundamental solution exists. It also is known that W(t) is strongly
- continuous and AW (t) and dW (t)/dt are strongly continuous except
att=mnr, n=0, 1, 2, .... Therefore we may assume that

W <M, 20
where M is a constant. The solution of (2.1) and (2.2) is expressed by
| 0 C
o(t) =Wt + [ Vi) )ds + [ Wit r)s(r,a(r))dr,
—h ) - Jo v

Ui(3) = W(t‘—’ 5 — h)A; + /1 W(t — 8+ 0)a(o)Aqxdo

(cf. S. Nakagiri [10]).

LEMMA 3.1. Let f € L*(0,T;H) and o(t) = [ W(t — s)f(s)ds.
Then there exists a constant C such that

<l 22 0,75v) < CVT|fllp2(0,7;m)-

‘Proof. By the similary way of Theorem 2.3 of [1] it holds that

(3.1) Hellzzc0,7;:0(40)) < Crllfllzz(o,7;m)-

By using Holder inequality,

T i |
”.3'“?:2(0,’_1’;}1) =/0 |/0 W (t — s)f(s)ds|*dt |
T 1
<o [ ([ 1l
T 1
§M2/ t/ |7(s)Pdsdt
0 3]

2T2 ! 2
<M?— [ |f(s)Pds.
]



Therefore

(3.2) lellz20,7;8) < MT || fllz2(0,7;m)-

Combining (3.1) and (3.2) we have that

”a"“%?(O,T;V) < CTMT”f”%?(o,T;H)-

Let Z = H x L?(—h,0;V) be the state space and be a product
Hilbert space with the norm

0
llgllz = (Ig°1” + /,, llg* ()II*ds)%, g =(s"9") € 2.

Let g € Z and x(t; g, f, Bou) be a solution of the equation (2.1) and
(2.2) associated with nonlinear term f and control Bou at time ¢. In
view of the result of Theorem 2.1, we can define the solution semigroup
for the problem (2.1) and (2.2) as follows:

S(t)g = ((¢;9,0,0),24(; 9,0,0))

where g = (¢°,g*) € Z, z(t;g,0,0) is the solution of (2.1) and (2.2)
with f(t,z) = 0 and By = 0 and z,(s;¢,0,0) = z(t + 5;4,0,0) defined
in [~h,0]. Then we have the following proposition which can show just
as Theorem 4.2 of [1].

PROPOSITION 3.1. (i) The operator S(t) is a Cy-semigroup on Z.
(ii) The intinitesimal generator A of S(t) is characterized by

D(A)={g=(¢%¢"):¢" € H, g’ € L*(—h,0;V),
0
g'(0) = g° Aog’ + Arg'(—h)+ / a(s)A2g"(s)ds € H},
-k

0
Ag =(Aog° + A,9'(—h) + / ':z(s)Aggl(s)d.',',g1 ).
—h

Note that a(-) need not be Holder continuous for the above results
to hold. It has only to belong to L?(—h,0).
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For the sake of simplicity, we assume that §(t) is uniformly bounded,
that is, there exists a constant M > 1 such that

ILS@)llz < M.

As is seen in [7], the equation (2.1) and (2.2) can be transformed into
an abstract equation

(33) 2(t) = Az(t) + F(2(t)) + Bu(t),
(3.4) 2(0) =g,

where 2(t) = (z(t), #:(-)) belongs to the Hilbert space Z and g =
(¢°, ¢g") € Z. The operator A is the infinitesimal generator of Cp-
semigroup S(t), F(z(t)) = (f(t,z(t)),0) and Bu = (Bou,0). The mild
solution of initial problem (3.3) and (3.4) is the following form:

1

2(t;g,f,Bu) = S(t)g + /(; S(t — s)F(z(s))ds + A S(t— s)Bu(s)d.s..

LEMMA 3.2. Let 2,(t) = 2(t;g, fu). Then for 0 < t < T there
exists a constant C such that

(1) WE ()2 0,752y < Cllgllz + lullz2o,7:09),
(2) ,

I (2u, ) = F(2u:)llz2(0,7:2)(= 1 (5 2u0) = £C Tuy )|z2(0,7;8))
< LCVT (1 — LCVT)||B(ur — u2)l|L2(o,7,0)-

Proof. (1) From Theorem 2.1 it follows that

||F(3u)l|L2(o,T;z) = “f(t: x(t))”LZ(O,T;H)
< Lilz||z2(0,7;v)
< LC(llgllz + llullzzqo,r vy)-



(2) From Lemma 3.1 it follows that
”F(zth ) _‘F(z‘uz )”LZ(O,T;Z) = “f() Ty ) - f() Ty, )HLZ(O,T;H) B
< Ll|zy, — zu, “L‘z(O,T;V) ‘

<1 / W(t — 8} (5 Tur (8)) = F(s) Zus ()}l 5207 )

1
+ LJ| / W(t — s)B{u1(s) — ua(s)}ds||z2(0,7;v)
) |
< LOVT|If (-, %uy) = (> %uy)lz2o,7;m)
+ LC\/CI—’HB(u] - uz)“L2(o,T;U)

where we set ||f(t)||L2(0T vy = ||f||L2(0T ;v)- Since ||f( zu )llz2(0,7; H)
= “F(Zu)llz,z(oT ;z) the proof is complete.

We define reachable sets. for the system (3.3) and (3.4) as follows:

Lr(g) = {z(T;g,O,Bu)' ©u € L*(0,T;U)},
Ry(g) = {#(T; 9, f, Bu): w€ L*(0,T;U)}.

It is known that L7 (0) is independent of T (see Lemma 7.4.1 in [12]).
We denote the bounded linear operator L?(0,T; Z) to Z by

T
Sp = L S(T — s)p(s)ds

for p € L*(0,T; Z). The system (3.3) and (3.4) is approximately con-
trollable on [0, T] if Rr(g) = Z, that is, for any ¢ > 0 and 2 € Z there
exists a control u € L?(0,T;U) such that

Iz — S(T)g — SF(2,) — SBul| < €

where.|| - || 1s a norm on Z. |
We need the following hypothesis:

(B)
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For any ¢ > 0 and p° € L?(0,T; H) there exists a u € L?(0, T, U)
such that

15(»°, 0) — SBul| <,
HBullzz(0,r;2)(= [1Boullz2(0,7;m)) < a2 (o,7;m0)-

where ¢; is a constant independent of p.

It is easily seen that if the range of the operator B is dense in Z
then the condition is satisfied. Our concern is based on more general
assumption than that in [6,3,9]. In [8; Example 2] it is introduced a
simple example of the control operator B that satisfies assumption (B).

THEOREM 3.1. Let us assume hypothesis (B). Then we have that
Rr(g) = Lz(g)-

Proof. Under assumption (B) it is known that Ly (0) = Z (see K.
Naito [8; Lemma 2]). Therefore, we have that S(T)g € Lr(0) and
hence, L7 (0) = Lz(g) for any initial value g € Z. Now we will show

that Lr(g) C Rp(g). Let 27 € Lr(g). Then for any given € > 0 there
exists u € L?(0,T;U) such that

A €
(3.5) lor — S(T)g - $Bull <

Let vy € L?(0,T;U) is arbitrarily fixed. By assumption (B) there exists
vy € L?(0, T;U) such that

~ ) - €
[|S(Bou — f(:,%v,)) — SBova|| < 7

Since Bou — f(-, 2y, ) € L?(0, T; H) is the first component of the Bu —
F(z, )€ L?(0,T; Z), we have

. . €
(36) 15(Bu - F(,)) - $Buall <
From (3.5) and (3.6) it follows that

A . €
(3.7) llzx — S(T)g — SF(2,,) — SBvs|| £ 5
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We can choose w; € L2(0, T;U) such that

. . €
(3.8) IS(F(zv,) = F(2v,)) = SBuwa|| < o
Therefore, from Lemma 3.2 it obtains that

[Bwallz2(0,7;2) < qillF(zv,) — F (20, )lz2(0,7;2)

LCVT

< Bva — By
| S 1— LC\/—” 2 1llz2(0,7;2)-
Let us define v3 = v — wa in L?(0,T;U). Then from (3.7) and (3.8)
& A 1 1
llzr — S(T)g — SF(24,) — SBus|| < (5'2' + -2-;)6

Define v, = v,,_; — w,—; by induction. Then we have

o 1
llex = $(T)g — S(F(2,) = Bapall S (5 + - +

a_nd

2n+1 )6 S ‘26

1BYn41 — Bvrllz2(0,7;2)

LCJT

Bv, — By, _ 7).
1—LC\/_” 1”L7(0,T,Z)

44

For sufficiently small T such that LCVT < min{1/2,1/(q1 + 1)}, the

sequence { Bv,, } is Cauchy sequence and hence converges in L?(0, T; Z).
Thus there exists some integer N such that for all n > N we have that

o - 1
”SB'U,H.] - SB’U,;” S 5
Therefore it follows that
Iz« = S(T)g — SF(2,,) — $Bua|
< ”zi - S(T)g - §F(zvn) - Lé\u?'un+1”
+||SBvy 41 — SBu,||
< 16 + L L€
=3T3

for all » > N. Hence for sufficiently small T, we have proof that
Lr(g) C Rr(g). But since Lr(g) is independent of the time T and
initial value g, we conclude that Lz(g) = Rzr(g).
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