Balanced Families in Compact Spaces

Hidetoshi Komiya（小官英敏）
Faculty of Business and Commerce，Keio University
Kouhoku－ku，Yokohama 223，Japan

1 Introduction

We shall denote by N the set $\{1, \ldots, n\}$ and by \mathcal{N} the family of the nonempty subsets of N ．A subfamily $\left\{S_{i}\right\}_{i=1}^{p}$ of \mathcal{N} is said to be balanced if there is a corresponding family $\left\{\lambda_{i}\right\}_{i=1}^{p}$ of nonnegative numbers such that $\sum_{i} \lambda_{i} \chi_{S_{i}}=$ χ_{N} ，where χ_{A} denotes the characteristic vector of the set A ，i．e．，χ_{A} is an n－vector whose i－the coordinate is 1 if $i \in A$ and 0 if $i \notin A$ ．

The balancedness plays a crucial role in covering theorems of simplexes which are basic tools to prove the nonemptiness of the core of nontransferable utility games．（cf．［2］，［3］）We shall examine the balancedness of a subfamily of \mathcal{N} profoundly and extend the study to the case that a compact Hausdorff space is the substitute of the finite set N ．The research would be expected to be a basis of the study of infinite dimensional game theory，that is，the game theory with infinitely many players．

We prepare mathematical background necessary for the arguments here－ after．Let Q be a compact Hausdorff space and let $C(Q)$ be the Banach space of all continuous real valued functions on Q with the supremum norm $\|\xi\|=\max _{q \in Q}|\xi(q)|$ ．Let $M(Q)$ be the Banach space of all regular signed Borel measures on Q with the norm $\|x\|=|x|(Q)$ ，where $|x|$ denotes the total variation of the regular signed Borel measure x on Q ．Then we can re－ gard $M(Q)$ as the dual Banach space $C(Q)^{\prime}$ of $C(Q)$ by the bijection $x \mapsto \tilde{x}$ from $M(Q)$ onto $C(Q)^{\prime}$ defined by

$$
\tilde{x}(\xi)=\int \xi d x, \quad \xi \in C(Q)
$$

The space $M(Q)$ is equipped with the weak star topology throughout this note．We shall write $x(\xi)$ in place of $\int \xi d x$ when no confusion is likely to arise．We denote by $\boldsymbol{\Sigma}$ the σ－field of the Borel sets in Q ．The support
$\operatorname{supp}(x)$ of an element x of $M(Q)$ is defined by

$$
\operatorname{supp}(x)=Q \backslash \bigcup\{G: x(G)=0, G \text { is open }\}
$$

We introduce two binary relations \geq and \gg in $M(Q)$ by

$$
\begin{aligned}
& x \geq y \text { if } x(A) \geq y(A) \text { for all } A \in \mathbf{\Sigma} \\
& x \gg y \text { if } x \geq y \text { and } \operatorname{supp}(x-y)=Q
\end{aligned}
$$

respectively. We shall use the symbol Δ to denote the convex subset

$$
\{x \in M(Q):\|x\|=x(1)=1\}
$$

of $M_{+}(Q)=\{x \in M(Q): x \geq 0\}$, and the symbol Δ_{++}to denote the set $\{x \in \Delta: x \gg 0\}$. It may happen that the set Δ_{++}is empty. Consider a discrete uncountably infinite space Q and its one-point compactification Q^{*}. Let $x \in M\left(Q^{*}\right)$ and $x \geq 0$. Put $Q_{n}=\{q \in Q: x(\{q\}) \geq 1 / n\}$. Since $\left|Q_{n}\right| \leq n\|x\|, \cup_{n=1}^{\infty} Q_{n}$ is countable and there is a point $q_{0} \in Q \backslash \cup Q_{n}$. Thus, $x\left(\left\{q_{0}\right\}\right)=0$ and $\left\{q_{0}\right\}$ is open. Therefore, Δ_{++}is empty.

Recall that Δ is compact and $M_{+}(Q)$ is closed. Moreover, if we correspond a point q in Q to the mass measure \widehat{q} at q on Q, then the correspondence is into-homeomorphism. For any nonempty subsets A of Q, let Δ^{A} be the closed convex hull of $\{\widehat{q}: q \in A\}$. We shall use the same symbols as the finite dimensional case, but no confusion may occur.

2 Balanced families in compact spaces

We start with an examination of balanced subfamilies of \mathcal{N}. It is well known that a subfamily $\left\{S_{i}\right\}_{i=1}^{p}$ of \mathcal{N} is balanced if and only if the vector χ_{N} / n is a convex combination of the vectors $\chi_{S_{i}} /\left|S_{i}\right|$. Geometrically this means the barycenter of the simplex Δ^{N} is contained in the polytope spanned by the barycenters of the faces $\Delta^{S_{i}}$.

The concept of balancedness has been characterized in terms of the specific vectors such as χ_{N} or χ_{N} / n, but balancedness is free from the specification as shown in Proposition 1 below.

Let r be a point of Δ^{N} such that $r \gg 0$. Define a vector r^{S} for $S \in \mathcal{N}$ by

$$
r^{S}= \begin{cases}r_{i} / \sum_{j \in S} r_{j} & \text { for } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 1 For any vector r of Δ^{N} such that $r \gg 0$, a subfamily $\left\{S_{i}\right\}_{i=1}^{p}$ of \mathcal{N} is balanced if and only if r is a convex combination of the points $\left\{r^{S_{i}}\right\}_{i=1}^{p}$.

Proof. Suppose that the family $\left\{S_{i}\right\}_{i=1}^{p}$ is balanced. Then there is a corresponding family $\left\{\lambda_{i}\right\}_{i=1}^{p}$ of nonnegative numbers such that $\chi_{N}=$ $\sum_{i=1}^{p} \lambda_{i} \chi_{S_{i}}$. Multiply the diagonal matrix $\left(a_{i j}\right)_{i, j=1}^{n}$, where $a_{i j}=r_{i}$ if $i=j$ and $a_{i j}=0$ otherwise, to both sides of the equality above. Then we have

$$
r=\sum_{i=1}^{p} \lambda_{i}\left(\sum_{j \in S_{i}} r_{j}\right) r^{S_{i}}
$$

and $\sum_{i=1}^{p} \lambda_{i}\left(\sum_{j \in S_{i}} r_{j}\right)=\sum_{k=1}^{n} r_{k}=1$.
Conversely if r is represented as a convex combination of $\left\{r^{S_{i}}\right\}_{i=1}^{p}$ such as $r=\sum_{i=1}^{p} \mu_{i} r^{S_{i}}$, then we have the equation

$$
\chi_{N}=\sum_{i=1}^{p}\left(\mu_{i} / \sum_{j \in S_{i}} r_{j}\right) \chi_{S_{i}}
$$

by multiplying the diagonal matrix $\left(b_{i j}\right)_{i, j=1}^{n}$, where $b_{i j}=r_{i}^{-1}$ if $i=j$ and $b_{i j}=0$ otherwise, to both sides of the equality above. Therefore the family $\left\{S_{i}\right\}_{i=1}^{p}$ is balanced.

Similar to the definition of r^{S}, we can define an element \bar{x}^{S} of Δ for any $\bar{x} \in \Delta_{++}$and any Borel subset S of Q with $\bar{x}(S)>0$ by

$$
\bar{x}^{S}(A)=\bar{x}(A \cap S) / \bar{x}(S), \quad A \in \mathbf{\Sigma}
$$

Note that \bar{x}^{S} belongs to Δ^{S} and $\bar{x}^{S}(\xi)=\int_{S} \xi d \bar{x} / \bar{x}(S)$ for any $\xi \in C(Q)$.
According to Proposition 1 , we can define the balancedness of subfamilies of \mathcal{N} by means of any vector r with $r \gg 0$. However, we cannot expect such uniformity in the infinite dimensional spaces. See the following example.

Example 1 Let m be the Lebesgue measure on $[0,1]$, and consider the two elements $\bar{x}=m$ and $\bar{y}=m / 2+\hat{1} / 2$ of $\Delta \subset M([0,1])$. Let $S=[0,1)$, and consider the family $\{S\}$. Then we have $\bar{x}=m=\bar{x}^{S}$ and $\bar{y} \neq m=\bar{y}^{S}$ in spite of the fact $\bar{x} \gg 0$ and $\bar{y} \gg 0$.

Inspired by Proposition 1 and Example 1, we define balancedness in compact Hausdorff spaces as follows:

Definition 1 Let Q be a compact Hausdorff space such that Δ_{++}is not empty, and let $\boldsymbol{\Sigma}$ be a Borel σ-field of Q. For an element \bar{x} of Δ_{++}in $M(Q)$, let $\boldsymbol{\Sigma}_{\bar{x}}=\{S \in \boldsymbol{\Sigma}: \bar{x}(S)>0\}$. A subfamily \mathcal{B} of $\boldsymbol{\Sigma}$ is said to be \bar{x}-balanced if \bar{x} belongs to the closed convex hull of the set $\left\{\bar{x}^{S}: S \in \mathcal{B} \cap \Sigma_{\bar{x}}\right\}$.

We probe the balancedness just defined hereafter. The following is the infinite dimensional version of the proposition obtained in Ichiishi[2].

Proposition 2 Let \bar{x} be an element of Δ_{++}and $\mathcal{B}=\left\{S_{1}, \ldots, S_{p}\right\}$ be a finite subfamily of Σ such that $0<\bar{x}\left(S_{i}\right)<1$ for all $i=1, \ldots, p$. Then \mathcal{B} is \bar{x}-balanced if and only if the family $\mathcal{B}^{\prime}=\left\{Q \backslash S_{1}, \ldots, Q \backslash S_{p}\right\}$ is \bar{x}-balanced.

Proof. We need to prove only the "only if" part because of the symmetry of the statement. There are nonnegative numbers $\lambda_{1}, \ldots, \lambda_{p}$ such that

$$
\bar{x}=\sum_{i=1}^{p} \lambda_{i} \bar{x}^{S_{i}} \quad \text { and } \quad \sum_{i=1}^{p} \lambda_{i}=1
$$

by the hypothesis. Then we have $\sum_{i=1}^{p} \lambda_{i}\left(\bar{x}-\bar{x}^{S_{i}}\right)=0$. On the other hand, we have $\bar{x}=\bar{x}\left(S_{i}\right) \bar{x}^{S_{i}}+\bar{x}\left(Q \backslash S_{i}\right) \bar{x}^{Q} \overline{\bar{S}_{i}} ;$ hence we have

$$
\bar{x}-\bar{x}^{S_{i}}=-\frac{\bar{x}\left(Q \backslash S_{i}\right)}{\bar{x}\left(S_{i}\right)}\left(\bar{x}-\bar{x}^{Q \backslash S_{i}}\right) .
$$

Therefore we have

$$
\sum_{i=1}^{p} \frac{\lambda_{i} \bar{x}\left(Q \backslash S_{i}\right)}{\bar{x}\left(S_{i}\right)}\left(\bar{x}-\bar{x}^{Q \backslash S_{i}}\right)=0
$$

If we put $\mu=\sum_{i=1}^{p} \frac{\lambda_{i} \bar{x}\left(Q \backslash S_{i}\right)}{\bar{x}\left(S_{i}\right)}$ and $\mu_{i}=\sum_{i=1}^{p} \frac{\lambda_{i} \bar{x}\left(Q \backslash S_{i}\right)}{\mu \bar{x}\left(S_{i}\right)}$, then we have the desired result $\bar{x}=\sum_{i=1}^{p} \mu_{i} \bar{x}^{Q \backslash S_{i}}$.

We cannot expect the corresponding result for infinite families as shown in the following examples.

Example 2 Let N^{*} be the one-point compactification of the positive integers and \bar{x} the Borel measure on N^{*} defined by $\bar{x}(n)=1 / 2^{(n+1)}$ for $n=1,2, \ldots$, and $\bar{x}(\infty)=1 / 2$. Let $S_{n}=N^{*} \backslash\{n\}$ and consider the family $\mathcal{B}=\left\{S_{n}: n=2,3, \ldots\right\}$. Then \mathcal{B} is \bar{x}-balanced because $\bar{x}^{S_{n}}$ converges to \bar{x}. On the other hand, it is trivial that the family $\mathcal{B}^{\prime}=\{\{2\},\{3\}, \ldots\}$ is not \bar{x}-balanced.

We need the following lemma to present the next example and we shall also use it later.

Lemma 1 Let $\left\{x_{\alpha}\right\}$ be a net in Δ and x an element of Δ. Then $x_{\alpha}(A) \rightarrow$ $x(A)$ for every $A \in \mathbf{\Sigma}$ implies $x_{\alpha} \rightarrow x$.

Proof. Let ξ be an element of $C(Q)$. Since ξ is bounded, for any $\varepsilon>0$, there is a measurable simple function σ on Q such that $\|\xi-\sigma\|<\varepsilon / 3$. Since $x_{\alpha}(\sigma) \rightarrow x(\sigma)$ by the hypothesis, there is α_{0} such that $\left|x_{\alpha}(\sigma)-x(\sigma)\right|<\varepsilon / 3$ for $\alpha \geq \alpha_{0}$. Therefore, for any $\alpha \geq \alpha_{0}$, we have

$$
\begin{aligned}
\left|x_{\alpha}(\xi)-x(\xi)\right| & =\left|x_{\alpha}(\xi)-x_{\alpha}(\sigma)\right|+\left|x_{\alpha}(\sigma)-x(\sigma)\right|+|x(\sigma)-x(\xi)| \\
& <\|\xi-\sigma\|+\varepsilon / 3+\|\sigma-\xi\| \\
& <\varepsilon
\end{aligned}
$$

Example 3 Consider the compact Hausdorff space $Q=\{0,1\}^{N}$ with the product topology, where $N=\{1,2, \ldots\}$ and $\{0,1\}$ has the usual topological group structure, and let \bar{x} be the Haar measure on Q. For any two disjoint finite subsets A and B of N, define the subset $H^{A, B}$ of Q by

$$
H^{A, B}=\{q \in Q: q(n)=0 \text { for } n \in A, q(n)=1 \text { for } n \in B\}
$$

Then it is easily seen that $\bar{x}\left(H^{A, B}\right)=1 / 2^{|A|+|B|}$. Define a sequence S_{n} by

$$
S_{1}=H^{\{1\}, \varnothing}, \text { and } S_{n+1}=H^{\{n+1\},\{1, \ldots, n\}} \cup S_{n}
$$

Then we have $\bar{x}\left(S_{n}\right)=1-1 / 2^{n}$ and $S_{n} \nearrow Q \backslash\{(1,1, \ldots, 1, \ldots)\}$. Therefore, we have

$$
\bar{x}^{S_{n}}(A)=\frac{\bar{x}\left(A \cap S_{n}\right)}{\bar{x}\left(S_{n}\right)} \rightarrow \bar{x}(A) \quad \text { for all } A \in \mathbf{\Sigma}
$$

and hence, $\bar{x}^{S_{n}}$ converges to \bar{x} by Lemma 1 . Therefore the family $\left\{S_{n}\right\}$ is \bar{x} balanced. On the other hand, since $Q \backslash S_{n}=H^{\emptyset,\{1, \ldots, n\}} \subset Q \backslash S_{1} \subset H^{\emptyset,\{1\}}$, $\bar{x}^{Q \backslash S_{n}}$ belongs to $\Delta^{H^{\varnothing,\{1\}}}$, i.e. $\operatorname{supp}\left(\bar{x}^{Q \backslash S_{n}}\right) \subset H^{\emptyset,\{1\}}$ for all $n=1,2, \ldots$. Therefore, every point of $\overline{\operatorname{co}}\left\{\bar{x}^{Q \backslash S_{n}}: n=1,2, \ldots\right\}$ has the support in $H^{\varnothing,\{1\}}$. However, since $\operatorname{supp}(\bar{x})=Q$, we have $\bar{x} \notin \overline{\operatorname{co}}\left\{\bar{x}^{Q \backslash S_{n}}: n=1,2, \ldots\right\}$ and $\mathcal{B}^{\prime}=\left\{Q \backslash S_{n}: n=1,2, \ldots\right\}$ is not \bar{x}-balanced.

We expect that suitable partitions of Q satisfy the balancedness we have defined. The following proposition assures us our definition of balancedness is appropriate.

Proposition 3 Let \bar{x} be an element of Δ_{++}. Let $\left\{A_{i}\right\}$ be a countable covering of a compact Hausdorff space Q such that $A_{i} \in \Sigma$ for all i and $\bar{x}\left(A_{i} \cap A_{j}\right)=0$ for $i \neq j$. Then $\left\{A_{i}\right\}$ is \bar{x}-balanced. In particular, any countable partition of Q consisting of Borel sets is \bar{x}-balanced for any $\bar{x} \in$ Δ_{++}.

Proof. Define a disjoint countable covering $\left\{B_{j}\right\}$ of Q by $B_{j}=A_{j} \backslash$ $\bigcup_{i>j} A_{i}$. Then it is easily seen that $\bar{x}\left(B_{j}\right)=\bar{x}\left(A_{j}\right)$ and $\bar{x}^{B_{j}}=\bar{x}^{A_{j}}$. Therefore, for any $A \in \boldsymbol{\Sigma}$,

$$
\begin{aligned}
\bar{x}(A) & =\sum \bar{x}\left(A \cap B_{j}\right) \\
& =\sum \bar{x}\left(B_{j}\right) \bar{x}^{B_{j}}(A) \\
& =\sum \bar{x}\left(B_{j}\right) \bar{x}^{A_{j}}(A)
\end{aligned}
$$

Since $\left\{B_{j}\right\}$ is a disjoint covering of Q, we have $\sum \bar{x}\left(B_{j}\right)=1$. If the sum is essentially finite, then the proof is completed. Suppose the sum has infinite terms essentially. We can assume $\bar{x}\left(B_{1}\right) \neq 0$ without loss of generality. For any $n=1,2, \ldots$, define an element x_{n} of $\operatorname{co}\left\{\bar{x}^{A_{j}}: j=1,2, \ldots\right\}$ by $x_{n}=\sum_{j=1}^{n}\left(\bar{x}\left(B_{j}\right) / \lambda_{n}\right) \bar{x}^{A_{j}}$, where $\lambda_{n}=\sum_{j=1}^{n} \bar{x}\left(B_{j}\right)$. Then we have the equations

$$
\begin{aligned}
\bar{x}(A) & =\left(\lambda_{n} x_{n}\right)(A)+\sum_{j>n} \bar{x}\left(B_{j}\right) \bar{x}^{A_{j}}(A) \\
& =x_{n}(A)+\left(\lambda_{n}-1\right) x_{n}(A)+\sum_{j>n} \bar{x}\left(B_{j}\right) \bar{x}^{A_{j}}(A)
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\left|\bar{x}(A)-x_{n}(A)\right| & \leq\left(1-\lambda_{n}\right) x_{n}(A)+\sum_{j>n} \bar{x}\left(B_{j}\right) \\
& \leq 2\left(1-\lambda_{n}\right)
\end{aligned}
$$

We can conclude $x_{n} \rightarrow \bar{x}$ from Lemma 1 since $\lambda_{n} \rightarrow 1$. Therefore we have $\bar{x} \in \overline{\operatorname{co}}\left\{\bar{x}^{A_{j}}: j=1,2, \ldots\right\}$.

We give another example of a balanced family such that any two sets of the family have a nonempty intersection.

Example 4 Let N^{*} be the one point compactification of the positive integers, and \bar{x} the element defined in Example 2 above. Consider the family
$\{A, B, C\}$ of the subsets of N^{*} defined by $A=\{1,2\}, B=\{2,3, \ldots, \infty\}$, and $C=\{3,4, \ldots, \infty, 1\}$. Then the family $\{A, B, C\}$ is \bar{x}-balanced.

In fact, we have

$$
\begin{gathered}
\bar{x}^{A}(n)=\left\{\begin{array}{ll}
2 / 3 & \text { for } n=1 \\
1 / 3 & \text { for } n=2 \\
0 & \text { otherwise }
\end{array}, \quad \bar{x}^{B}(n)= \begin{cases}0 & \text { for } n=1 \\
2 / 3 \\
1 /\left(3 \times 2^{(n-1)}\right) & \text { for } n=\infty \\
\text { otherwise }\end{cases} \right. \\
\bar{x}^{C}(n)= \begin{cases}2 / 7 & \text { for } n=1 \\
0 & \text { for } n=2 \\
4 / 7 & \text { for } n=\infty \\
1 /\left(7 \times 2^{(n-2)}\right) & \text { otherwise }\end{cases}
\end{gathered}
$$

and

$$
\bar{x}=\frac{3}{16} \bar{x}^{A}+\frac{3}{8} \bar{x}^{B}+\frac{7}{16} \bar{x}^{C} .
$$

References

[1] Choquet, G.: Lectures on Analysis. London: W.A. Benjamin 1969
[2] Ichiishi, T.: Alternative version of Shapley's theorem on closed coverings of a simplex. Proc. Amer. Math. Soc. 104, 759-763 (1988)
[3] Shapley, L.S.: On balanced games without side payments. In: Hu T.C. and Robinson S.M. (eds): Mathematical programming. New York: Academic Press 1973

