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1 Introduction

We shall denote by $N$ the set $\{$ 1, $\ldots,$
$n\}$ and by $\mathcal{N}$ the family of the nonempty

subsets of $N$ . A subfamily $\{S_{i}\}_{i=1}^{p}$ of $\mathcal{N}$ is said to be bdanoed if there is a
corresponding family $\{\lambda_{i}\}_{i=1}^{p}$ of nonnegative numbers such that $\sum_{i}\lambda_{i}\chi s_{i}=$

$xN$ , where $xA$ denotes the characteristic vector of the set $A$ , i.e., $xA$ is an
n-vector whose i-the coordinate is 1 if $i\in A$ and $0$ if $i\not\in A$ .

The balancedness plays a crucial role in covering theorems of simplexes
which are basic took to prove the nonemptiness of the core of nontransferable
utiLty games. (cf. [2], [3]) We shall examine the balancedness of a subfamily
of $\mathcal{N}$ profoundly and extend the study to the case that a compact Hausdorff
space is the substitute of the finite set $N$ . The research would be expected
to be a basis of the study of infinite dimensional game theory, that is, the
game theory with infinitely many players.

We prepare mathematical background necessary for the arguments here-
after. Let $Q$ be a compact Hausdorff space and let $C(Q)$ be the Banach
space of all continuous real valued functions on $Q$ with the supremum norm
$|| \xi||=\max_{q\in Q}|\xi(q)|$ . Let $M(Q)$ be the Banach space of all regular signed
Borel measures on $Q$ with the norm $\Vert x\Vert=|x|(Q)$ , where $|x|$ denotes the
total variation of the regular signed Borel measure $x$ on $Q$ . Then we can re-
gard $M(Q)$ as the dual Banach space $C(Q)’$ of $C(Q)$ by the bijection $x\mapsto\tilde{x}$

from $M(Q)$ onto $C(Q)’$ defined by

$\tilde{x}(\xi)=\int\xi dx$ , $\xi\in C(Q)$ .

The space $M(Q)$ is equipped with the weak star topoloy throughout this
note. We shall write $x(\xi)$ in place of $\int\xi dx$ when no confusion is likely to
arise. We denote by $\Sigma$ the $\sigma- field$ of the Borel sets in $Q$ . The $s’ upport$
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$supp(x)$ of an element $x$ of $M(Q)$ is defined by

$supp(x)=Q\backslash \cup\{G;x(G)=0,$ $G$ is open $\}$ .

We introduce two binary relations $\geq$ and $\gg$ in $M(Q)$ by

$x\geq y$ if $x(A)\geq y(A)$ for all $A\in\Sigma$ ,

$x\gg y$ if $x\geq y$ and $supp(x-y)=Q$,

respectively. We shall use the symbol $\triangle$ to denote the convex subset

$\{x\in M(Q) : \Vert x||=x(1)=1\}$

of $M_{+}(Q)=\{x\in M(Q) : x\geq 0\}$ , and the symbol $\Delta++$ to denote the set
$\{x\in\Delta : x\gg 0\}$ . It may happen that the set $\Delta_{++}$ is empty. Consider
a discrete uncountably infinite space $Q$ and its one-point compactification
$Q^{*}$ . Let $x\in M(Q^{*})$ and $x\geq 0$ . Put $Q_{n}=\{q\in Q:x(\{q\})\geq 1/n\}$ . Since
$|Q_{n}|\leq n\Vert x\Vert,$ $\cup^{\infty}\sim-1Q_{n}$ is countable and there is a point $q0\in Q\backslash \cup Q_{n}$ . Thus,
$x(\{qo\})=0$ and $\{qo\}$ is open. Therefore, $\triangle_{++}$ is empty.

$Reca\mathbb{I}$ that $\Delta$ is compact and $M_{+}(Q)$ is closed. Moreover, if we corre-
spond a point $q$ in $Q$ to the mass measure $\hat{q}$ at $q$ on $Q$ , then the correspon-
dence is into-homeomorphism. For any nonempty subsets $A$ of $Q$ , let $\Delta^{A}$

be the closed convex hull of $\{\hat{q}:q\in A\}$ . We shall use the same symbok as
the finite dimensional case, but no confusion may occur.

2 Balanced families in compact spaces

We start with an examination of balanced subfamilies of $\mathcal{N}$ . It is well known
that a subfamily $\{S_{i}\}_{i=1}^{p}$ of $\mathcal{N}$ is balanced if and only if the vector $\chi_{N}/n$ is
a convex combination of the vectors $xs_{i}/|S_{i}|$ . Geometrically this means the
barycenter of the simplex $\Delta^{N}$ is contained in the polytope spanned by the
barycenters of the faces $\triangle^{S_{i}}$ .

The concept of balancedness has been characterized in terms of the spe-
cific vectors such as $xN$ or $xN/n$ , but balancedness is free from the specifi-
cation as shown in Proposition 1 below.

Let $r$ be a point of $\Delta^{N}$ such that $r\gg O$ . Define a vector $r^{S}$ for $S\in \mathcal{N}$

by

$r^{S}=\{\begin{array}{ll}r_{i}/\sum_{j\in S}r_{j} for i\in S0 otherwise.\end{array}$
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Proposition 1 For any veotor $r$ of $\Delta^{N}$ such that $r\gg 0$, a subfamdy
$\{S_{i}\}_{i=1}^{p}$ of $\mathcal{N}\dot{u}$ balanced if and only if $r\dot{w}$ a convex combination of the
points $\{r^{S_{i}}\}_{i=1}^{p}$ .

Proof. Suppose that the family $\{S_{1}\}_{i=1}^{p}$ is balanced. Then there is
a corresponding family $\{\lambda_{i}\}_{i=1}^{p}$ of nonnegative numbers such that $xN=$
$\sum_{i=1}^{p}\lambda_{i}\chi s_{i}$ . Multiply the diagonal matrix $(a_{ij})_{i_{2}j=1}^{n}$ , where $a_{ij}=r_{i}$ if $i=j$
and $a_{1j}=0$ otherwise, to both sides of the equality above. Then we have

$r= \sum_{i=1}^{p}\lambda_{i}(\sum_{j\in S_{l}}r_{j})r^{S_{i}}$

and $\sum_{1=1}^{p}\lambda_{i}(\sum_{j\in S:}r_{j})=\sum_{k=1}^{n}r_{k}=1$.
Conversely if $r$ is represented as a convex combination of $\{r^{S_{l}}\}_{i=1}^{p}$ such

as $r= \sum_{i=1}^{p}\mu ir^{S_{l}}$ , then we have the equation

$\chi N=\sum_{i=1}^{p}(\mu t/\sum_{j\in S_{i}}r_{j})\chi s_{i}$

by multiplying the diagonal matrix $(b_{ij})_{i_{1}j=1}^{n}$ , where $b_{ij}=r_{i}^{-1}$ if $i=j$ and
$b_{ij}=0$ otherwise, to both sides of the equality above. Therefore the family
$\{S_{i}\}_{i=1}^{p}$ is balanced. $\square$

Similar to the definition of $r^{S}$ , we can define an element $\overline{x}^{S}$ of $\Delta$ for any
$\overline{x}\in\Delta_{++}$ and any Borel subset $S$ of $Q$ with $\overline{x}(S)>0$ by

$\overline{x}^{S}(A)=\overline{x}(A\cap S)/\overline{x}(S)$ , $A\in\Sigma$ .

Note that $\overline{x}^{S}$ belongs to $\Delta^{S}$ and $\overline{x}^{S}(\xi)=\int_{S}\xi d\overline{x}/\overline{x}(S)$ for any $\xi\in C(Q)$ .
According to Proposition 1, we can define the balancedness of sub-

famhes of $\mathcal{N}$ by means of any vector $r$ with $r\gg 0$ . However, we cannot
expect such uniformity in the infinite dimensional spaces. See the following
example.

Exmple 1 Let $m$ be the Lebesgue measure on $[0,1]$ , and consider the
two elements $\overline{x}=m$ and $\overline{y}=m/2+\hat{1}/2$ of $\Delta\subset M([0,1])$ . Let $S=[0,1)$ ,
and consider the family $\{S\}$ . Then we have $\overline{x}=m=\overline{x}^{S}$ and $\overline{y}\neq m=\overline{y}^{S}$

in spite of the fact $\overline{x}\gg 0$ and $\overline{y}\gg 0$ .

Inspired by Proposition 1 and Example 1, we define balancedness in
compact Hausdorff spaces as follows:
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Definition 1 Let $Q$ be a compact Hausdorff space such that $\Delta_{++}$ is not
empty, and let $\Sigma$ be a Borel $\sigma- field$ of $Q$ . For an element $\overline{x}$ of $\triangle_{++}$ in $M(Q)$ ,
let $\Sigma_{\overline{x}}=\{S\in\Sigma : \overline{x}(S)>0\}$ . A subfamily $B$ of $\Sigma$ is said to be $\overline{x}$-bdanoed
if $\overline{x}$ belongs to the closed convex hull of the set $\{\overline{x}^{S} : S\in \mathcal{B}\cap\Sigma_{\overline{x}}\}$ .

We probe the balancedness just defined hereafter. The following is the
infinite dimensional version of the proposition obtained in Ich\"ushi[2].

Proposition 2 Let $\overline{x}$ be an element of $\Delta_{++}$ and $B=\{S_{1}, \ldots, S_{p}\}$ be a
finite subfamily of $\Sigma$ such that $0<\overline{x}(S_{i})<1$ for all $i=1,$ $\ldots,p$ . Then $\mathcal{B}$ is
x-balanced if and only if the family $\mathcal{B}’=\{Q\backslash S_{1}, \ldots, Q\backslash S_{p}\}$ is x-balanced.

Proof. We need to prove only the “only if” part because of the sym-
metry of the statement. There are nonnegative numbers $\lambda_{1},$

$\ldots,$
$\lambda_{p}$ such

that
$\overline{x}=\sum_{i=1}^{p}\lambda_{i}\overline{x}^{S_{i}}$ and $\sum_{i=1}^{p}\lambda_{i}=1$

$we^{t}have\overline{x}=(S_{i})\overline{x}^{S_{i}}+\overline{x}(Q\backslash S_{i})\dot{\Gamma}\overline{s}_{l}^{1};hencewehavebyhehyp_{\frac{}{x}}^{othesis.Thenwehave\sum_{\overline{x}^{Q}}\lambda_{1}(\overline{x}-\overline{x}^{S_{i}})=0}P$

. On the other hand,

$\overline{x}-\overline{x}^{S_{i}}=-\frac{\overline{x}(Q\backslash S_{1})}{\overline{x}(S_{i})}(\overline{x}-\overline{x}^{Q\backslash S_{i}})$.

Therefore we have

$\sum_{i=1}^{p}\frac{\lambda_{i}\overline{x}(Q\backslash S_{i})}{\overline{x}(S_{i})}(\overline{x}-\overline{x}^{Q\backslash S_{i}})=0$ .

If we put $\mu=\sum_{i=1}^{p}\frac{\lambda.\overline{x}(Q\backslash S_{i})}{\overline{X}(S_{i})}$ and $\mu\{=\sum_{i=1}^{p}\frac{\lambda_{i\overline{X}(Q\backslash S_{i})}}{\mu\overline{X}(S_{i})}$ , then we have the

desired result $\overline{x}=\sum_{i=1}^{p}\mu i\overline{x}^{Q\backslash S_{l}}$ . $\square$

We cannot expect the corresponding result for infinite families as shown
in the following examples.

Exmple 2 Let $N^{*}$ be the one-point compactification of the positive in-
tegers and $\overline{x}$ the Borel measure on $N^{*}$ defined by $\overline{x}(n)=1/2^{(n+1)}$ for
$n=1,2,$ $\ldots$ , and $\overline{x}(\infty)=1/2$ . Let $S_{n}=N^{*}\backslash \{n\}$ and consider the family
$\mathcal{B}=\{S_{n}:n=2,3, \ldots\}$ . Then $\mathcal{B}$ is x-balanced because $\overline{x}^{S_{n}}$ converges to $\overline{x}$ .
On the other hand, it is trivial that the family $B’=\{\{2\}, \{3\}, \ldots\}$ is not
x-balanced.
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We need the following lemma to present the next example and we shall
also use it later.

Lemma 1 Let $\{x_{\alpha}\}$ be a net in $\Delta$ and $x$ an element of $\triangle$ . Then $x_{\alpha}(A)arrow$

$x(A)$ for evew $A\in\Sigma$ implies $x_{\alpha}arrow x$ .
Proof. Let $\xi$ be an element of $C(Q)$ . Since $\xi$ is bounded, for any $\epsilon>0$ ,

there is a measurable simple function $\sigma$ on $Q$ such that $\Vert\xi-\sigma\Vert<\epsilon/3$ . Since
$x_{\alpha}(\sigma)arrow x(\sigma)$ by the hypothesis, there is $\alpha_{0}$ such that $|x_{\alpha}(\sigma)-x(\sigma)|<\epsilon/3$

for $\alpha\geq\alpha_{0}$ . Therefore, for any $\alpha\geq\alpha_{0}$ , we have

$|x_{\alpha}(\xi)-x(\xi)|$ $=$ $|x_{\alpha}(\xi)-x_{\alpha}(\sigma)|+|x_{\alpha}(\sigma)-x(\sigma)|+|x(\sigma)-x(\xi)|$

$<$ $||\xi-\sigma||+\epsilon/3+||\sigma-\xi||$

$<$ $\epsilon$ .
$\square$

E.xample 3 Consider the compact Hausdorff space $Q=\{0,1\}^{N}$ with the
product topoloy, where $N=\{1,2, \ldots.\}$ and $\{0,1\}$ has the usual topological
group structure, and let $\overline{x}$ be the Haar measure on $Q$ . For any two disjoint
finite subsets $A$ and $B$ of $N$ , define the subset $H^{A,B}$ of $Q$ by

$H^{A,B}=\{q\in Q:q(n)=0$ for $n\in A,$ $q(n)=$ lfor $n\in B\}$ .

Then it is easily seen that $\overline{x}(H^{A,B})=1/2^{|A|+|B|}$ . Define a sequence $S_{n}$ by

$S_{1}=H^{\{1\},\emptyset}$ , and $S_{n+1}=H^{\{n+1\},\{1_{1}\ldots,n\}}\cup S_{n}$ .

Then we have $\overline{x}(S_{n})=1-1/2^{n}$ and $S_{n}\nearrow Q\backslash \{(1,1, \ldots, 1, \ldots)\}$ . Therefore,
we have

$\overline{x}^{S_{n}}(A)=\frac{\overline{x}(A\cap S_{n})}{\overline{x}(S_{n})}arrow\overline{x}(A)$ for all $A\in\Sigma$ ;

and hence, $\overline{x}^{S_{n}}$ converges to $\overline{x}$ by Lemma 1. Therefore the family $\{S_{n}\}$ is $\overline{x}-$

balanced. On the other hand, since $Q\backslash S_{n}=H^{\emptyset,\{1_{1}\ldots,n\}}\subset Q\backslash S_{1}\subset H^{\emptyset,\{1\}}$ ,
$\overline{x}^{Q\backslash S_{n}}$ belongs to $\Delta^{H^{\emptyset,\{1\}}}$ , i.e. $supp(\overline{x}^{Q\backslash S_{n}})\subset H^{\emptyset,\{1\}}$ for all $n=1,2,$ $\ldots$ .
Therefore, every point of $\overline{co}\{\overline{x}^{Q\backslash S_{n}} : n=1,2, \ldots\}$ has the support in $H^{\emptyset,\{1\}}$ .
However, since $supp(\overline{x})=Q$ , we have $\overline{x}\not\in\overline{co}\{\overline{x}^{Q\backslash S_{n}} : n=1,2, \ldots\}$ and
$\mathcal{B}’=\{Q\backslash S_{n}:n=1,2, \ldots\}$ is not x-balanced.

We expect that suitable partitions of $Q$ satisfy the balancedness we have
defined. The following proposition assures us our definition of balancedness
is appropriate.
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Proposition 3 Let $\overline{x}$ be an element of $\Delta_{++}$ . Let $\{A_{i}\}$ be a countable
covering of a compact Hausdorff spaoe $Q$ such that $A_{i}\in\Sigma$ for $dli$ and
$\overline{x}(A_{i}\cap A_{j})=0$ for $i\neq j$ . Then $\{A_{i}\}\dot{w}$ x-balanced. In parlicular, any
countable partition of $Q$ consisting of Borel sets is x-balanced for any $\overline{x}\in$

$\Delta_{++}$ .

Proof. Define a disjoint countable covering $\{B_{j}\}$ of $Q$ by $B_{j}=A_{j}\backslash$

$\bigcup_{i>j}A_{i}$ . Then it is easily seen that $\overline{x}(B_{j})=\overline{x}(A_{j})$ and $\overline{x}^{B_{j}}=\overline{x}^{A_{j}}$ . There-
fore, for any $A\in\Sigma$ ,

$\overline{x}(A)$ $=$ $\sum\overline{x}(A\cap B_{j})$

$=$ $\sum\overline{x}(B_{j})\overline{x}^{B_{j}}(A)$

$=$ $\sum\overline{x}(B_{j})\overline{x}^{A_{j}}(A)$ .

Since $\{B_{j}\}$ is a disjoint covering of $Q$ , we have $\sum\overline{x}(B_{j})=1$ . If the sum is
essentially finite, then the proof is completed. Suppose the sum has infinite
terms essentially. We can assume $\overline{x}(B_{1})\neq 0$ without loss of generality.
For any $n=1,2,$ $\ldots$ , define an element $x_{n}$ of co $\{\overline{x}^{A_{j}} : j=1,2, \ldots\}$ by
$x_{n}= \sum_{j=1}^{n}(\overline{x}(B_{j})/\lambda_{n})\overline{x}^{A_{j}}$ , where $\lambda_{n}=\sum_{j=1}^{n}\overline{x}(B_{j})$ . Then we have the
equations

$:$

$\overline{x}(A)$ $=$
$( \lambda_{n}x_{n})(A)+\sum_{j>n}\overline{x}(B_{j})\overline{x}^{A_{j}}(A)$

$=$
$x_{n}(A)+( \lambda_{n}-1)x_{n}(A)+\sum_{j>n}\overline{x}(B_{j})\overline{x}^{A_{j}}(A)$

.

Therefore we have

$|\overline{x}(A)-x_{n}(A)|$ $\leq$

$(1- \lambda_{n})x_{n}(A)+\sum_{j>n}\overline{x}(B_{j})$

$\leq$ $2(1-\lambda_{n})$ .

We can conclude $x_{n}arrow\overline{x}$ from Lemma 1 since $\lambda_{n}arrow 1$ . Therefore we have
$\overline{x}\in\overline{co}\{\overline{x}^{A_{j}}:j=1,2, \ldots\}$ . $\square$

We give another example of a balanced family such that any two sets of
the family have a nonempty intersection.

Example 4 Let $N^{*}$ be the one point compactification of the positive in-
tegers, and $\overline{x}$ the element defined in Example 2 above. Consider the family

131



$\{A, B, C\}$ of the subsets of $N^{*}$ defined by $A=\{1,2\},$ $B=\{2,3, \ldots , \infty\}$ ,
and $C=\{3,4, \ldots , \infty, 1\}$ . Then the family $\{A, B, C\}$ is x-balanced.

In fact, we have

$\overline{x}^{A}(n)=\{\begin{array}{ll}2/3 for n=11/3 for n=2 ,0 otherwise\end{array}$ $\overline{x}^{B}(n)=\{\begin{array}{ll}0 for n=12/3 for n=\infty 1/(3\cross 2^{(n-1)}) otherwise\end{array}$

$\overline{x}^{C}(n)=\{\begin{array}{ll}2/7 for n=10 for n=24/7 for n=\infty 1/(7\cross 2^{(n-2)}) otherwise\end{array}$

and
$\overline{x}=\frac{3}{16}\overline{x}^{A}+\frac{3}{8}\overline{x}^{B}+\frac{7}{16}\overline{x}^{C}$ .
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