0000000000
08980 19950 104-112 104

On Instability in Geometric Evolution Equations

Yoshikazu Giga* and Kazuyuki Yama-uchi
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

ABSTRACT. A general parabolic evolution equation is considered for a closed hypersurface in
Euclidean space. All stationary solutions are shown to be Lyapunov unstable if the normal
velocity of a hypersurface depends only on its normal and second fundamental form and is
independent of its position. Instability of time periodic solution is also discussed.

1. Introduction
This is a preliminary note. We consider the initial value problem of an evolution of a closed

hypersurface I'; in R™
V = f(n,—A). (1)

Here n is an inward unit normal vector field on I'; and V' is normal velocity in the direction
of n; A = — dn denotes the second fundamental form. We shall prove that all stationary
solutions S of (1) is Lyapunov unstable provided that (1) is (nondegenerate) parabolic.
This generalized a recent work of Ei and Yanagida [EY] where they assumed that f defends
on A only through its mean curvature. Their method is completely different from ours.
They linearized equation around stationary solution and appeal to spectral analysis. Their
method applies to the equation depending on space variable but invariant under transla-
tion. We simply use a distance function of S and appeals to the maximum principle. We
believe our proof is simpler than theirs for this problem.

Our method also applies to instability of the periodic solution of
V = f(t,n,—A). (2)

where f is time periodic; We show that periodic solutions S; are unstable unless second

fundamental form vanishes somewhere on S; for all ¢.
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2. Parabolic evolution equations
We formulate our equations as in [GG1]. Let E be a bundle over the sphere $"~1 of the

form

E ={(p,Qp(X)) € "' x Su; X € S}

with Q3 X) = RzX Ry and Ry = I — P ® P; Ry is the projection orthogonal to p. Here S,
denotes the space of the n X n real symmetric matrices. By the standard Euclidean metric
the bundle E is identified with the tensor bundle T $"~! ® T* S®~! over S™~!. Let f be
a function from [0,00) X E to R. We shall always assume that f is at least continuous.
Suppose that a hypersurface I' is given as a zero level set of 4 in R™ such that the gradient
Vu # 0 on I' and n = Vu/|Vu|. Then as in [GG1], the second fundamental form (in the

direction of n) is of the form
A = —Qx(V?u)/|Vu| ~ with p = Vu/|Vul, . (3)

where V?u denotes the Hessian of « in space variables.

We recall the notion of parabolicity of the equation
V= f(ta n, _A) ) (4)
for evolving hypersurface I';. It is convenient to introduce the level set equation

ug + Fy(t, Vu, Viu) =0 (5)

with  Fy(t,p, X) = |p|f(¢,p/|pl, @5(X)/Ip]). (6)

This equation is uniquelydetermined if each level set of u moves by (4) and a super level
set u > c¢ is “inside” the level set u = ¢. Sign in (6) are different from those in [CGG]
because our convention of n is opposite.

We say (4) is strictly parabolic (uniformly in ¢ ) if for each M > 0 there is g > 0 such
that

Fe(t,p, X +Y) — Fp(t,p, X) < —ptrace(Q(Y)) (7)
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foralY >0, |X| < M, |p| =1, t € [0,00), where |X| is the operator norm of X as a
selfadjoint operator. If (7) holds for u = 0 we say (4) is (degenerate) parabolic. A level set

method [CGG), [ES] provides a unique global generalized solution. The following version
is taken from [GG1].

2.1. Unique ‘globa‘l existence. Suppose that (4) is parabolic. Let Ty be the boundary
of a bounded open set in R™. Then there is a unique generalized solution {T';},>0 of (4)
starting from T'y.

If f and T’y are smooth enough and (4) is parabolic, there is a local-in -time classical solu-
tion ¥, (see e.g. [GG2]). Moreover X; agrees with I'; as far as the former exists [G\GQ] (see
also [ES] for the mean curvature flow). So our generalized solution is a natural ektention

of classical solution.

3. Instability of stationary solution

We say that C? hypersurface S is stationary for
V = f(n,-A) | ®)
if f(n,—A)=0o0n S. Let U(«) denote a tubqlar neighborhood of S of the form
U(a) = {z € R"; dist(z, S) < al,

where dist denotes the distance. We say that S is Lyapunov stable for (8) if for each € > 0
there is § > 0 such that a (generalized) solution I'y with initial data I'y stays in U(6) for all
t > 0 provided that I'y is contained in U(e). If not, S is called unstable. If « is a supremum

of o' such that every point of U(a') has a unique nearest point on S, « is called the reach

of S and dented by reach S.

3.1. Instability Theorem.Suppose that (8) is strictly parabolic. Let S be a stationary
C? hypersurface of (8) such that S = 8D for some open set D in R™.. Suppose that
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reach S = ap > 0, infs|A| =0 > 0 and that |A| 1s bounded on S (if S is not compact).
For 0 < a < aq let

I'* = {z € D;dist(z,S) = a}. (9)

LetT'Y be a (generalized) solution of (8) starting from I'®. Then there are a; (0 < a1 < ap
) and ¢y = co(f,0,S) >0 such that

dist(T'y,S) > (a+cot) Aoy for allt >0 (10)

where a A'b = min(a,b). The same inequality holds if D in (9) is replaced by its comple-

ment.

3.2. Corollary. Suppose that S 1s a stationary C? closed hypersurface for (8) with non-
vanishing second fundamental form. Then S is (Lypunov) unsteble provided that (8) is

strictly parabolic.

Of course Lyapunov instability follows from (10).

3.3. Remark on noncompact surface.Following formula for distance function is a key

for the proof of Theorem 3.1. Let v be the signed distance function of S, z.e.,

dist(z,S) forz € D
v(z) = {

—dist(z,S) otherwise.

If S is C?, then so is d which is proved in [GT; §14].
Even for a non bounded open set generalized solution can be constructed by levelset

method; see Ilmanen [I] and Ishiiand Souganidis [IS].
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3.4. Lemma.For a general C? hypersurface S = 8D with an open set D
V2o(y)(I —v(y)V?u(y)) ™' = V?u(z), y=z+vn, z€S

for |v] < reach S.

This is also a key in [GG2], where the local existence of classical solution is proved for

(2) by a level set method.

3.5. Proof of Theorem 3.1. We set
w(t,z) = v(z) — p(t) with p(t) = a + cot.
Our goal is to take cg > 0 so that w is a supersolution of the level set equation of (8):
us + F(Vu, Vi) = d, F = Fy
in a set Ut (1) \ Uy (a/2), where
Ut(a) = {z € D;dist(z, S) < a}.

If such a ¢y exists, comparison principle ([CGG], [GG1]) implies that I'? is contained in
{w > 0}. This yields (10).

Since S is stationary, we see
F(Vv,V?*)=0 onS.
By Lemma 3.4 this yields
F(Vv, V(I —vV?0) ™) =0 in U(ay).
This implies

wy + F(Vw, Viw) = —co + F(p,X) — F(p, X(I —vX)™) in Uy(ag). (11)
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with p= Vv, X = V2.
We take a; > 0 small so that
V20| > /2 in Uy (ar) (by inf A]) (12)
(I —vV20)™ 1 >1/2 inUg(ay). (13)
Since Xp® p = 0 by |Vv| = 1, we see
Q(X2(I—-rX) ' =X¥(I-rX)? = —%(X— X(I-vX)™Y)
By parabolicity
F(p,X)~ F(p,X(I —vX)™") > pvtrace Q[ X*(I — rX)™]
| =pvtrace X*(I —rX)™'  on Uy(ay).
with M = supy, (o,) [V?v|. Using (12), (13) we see
trace X2(I —rX)™! > % (%)2 =c
which yields
F(p,X) — F(p, X(I —vX)™") 2 perv  on Uy(an).
If we set ¢g = peya /2, ffom (11) it follows that w is a classical supersolution of the level
set equation of (8) in Uy(ay) \ Us(a/2).

The proof for the last statement is parallel so is omitted.

3.6. General instability Theorem. For (8) there is no stable stationary C? closed
hypersurface provided that (8) is strictly parabolic and that f is C*.

Proof. By Corollary 2.2 we may assume that there is a point on at which
(n,A) = (po, 0), f(n,A) = (p,0)
for some py € S*~1. Since S is stationary,
f(Po,0) =0.
The following lemma implies the nonexistence of closed stationary solution, so the proof

is complete.
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3.7. Nonexistence Lemma. Suppdse that (8) is. strictly parabolic and f is C1. Suppose
that f(py,0) = O for some py € S™~ 1. Then there is no stationary C? closed hypersurface
for (8)

Proof. Let S be a stationary C? closed hypersurface. Since S is compact, there is a half
space H such that |

H={z+ceR", z:-py>0}, SCHwithceS.

Note that OH is a stationary solution of (8) since f(po,O0) = 0 }. Since (8) is strictly
parabolic and f is C! we may apply the strong maximum principle and conclude S cannot

touch 0H for t > 0. This contradicts the existence of stationay closed hypersuface S.

3.8. Remark.If f is C' in A , the parabolicty is equivalent to say that 8f/9A is positive
definite.

4. Instability of periodic solutions

We consider
V = f(t,n,—A), (14)

where f : [0,T] x E — R is continuous and T-periodic, i.e. f(¢t,p,—A) = f(t+T,p,—A).
We say S;(—o0o < t < 00) is a T-periodic C?! solution of (14) such that S; = S;;7 where
C?! implies that C? in space and C! in time. Note that the signed distance function v of
S, is now a C?%! function.

Let U(a,t) denote the a-tubular neighborhood of S;. We say S; is Lyapunov stable for
(14) if for each € > 0 there is § > 0 such that a generaiized solution I’y with I'y|4=¢, = T
always stays in Ul(e,t) for all t > to provided that 'y, C U(§, tg).

In some cases Sy is called S is called T-periodic even if S; is T-periodic up to T-periodié

translation a(t), i.e., Sy = Sy + a(t). Here a(t)v‘is' asuumed to have the form

a(t) = b(t + T) — b(t)
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for some C! function b(t). If we set
Et = St - b(t)

then ¥, = ¥4 and ¥, solves

V =f+n-b(t)

Thus by T-periodic solution we shall always mean T-periodic with no ambiguity of trans-

lation.

4.1. Instability Theorem.Suppose that (14) is strictly parabolic. Let S; be a T-periodic
C? solution of (8) of closed hypersurfaces surrounding an bounded open set D in R™.
Suppose that infg, |A| = a(t) # 0. Let ap > 0 denote the minimum of reach S; in ¢. For
0<a<ats€R

I'* = {z € D; dist(z, S, =a} fort>t,.

Let T'¢ be a (generalized) solution of (14) with T'¢ = I'* at ¢ = t,. Then there are
- a1(S5¢) (0 < a1 < ap) and nonnegative T-periodic function c¢o(t)(# 0) depending only on
f, a, St such that

t
dist(I'¢, S¢) > (e + / co(r)d7)Aay forallt>0.
0

The same inequality holds if D in the definition of I'* replaced by R™ \ D.

Proof. As in the proof of Theorem 3.1 we set

w(z,t) =v(z,t) = p(t), p(t)= c()/0 a(r)? dT,v

and choose ¢j > 0 in suitable way so that w is a supersolution of the level set equation of

(14). Here v denotes the signed distance function of S;.
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4.2. Corollary.Suppose that (14) is strictly parabolic. If Sy is a T-periodic C*1solution "
of (14) consisting of closed hypersurfaces, then Sy 1s Lyapunov unstable if infg, |A| £ 0 as
a function of time. |

This is an imediate from Theorem 4.1.
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