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1 Introduction.

This is a joint work with Prof. Giga of Hokkaido University.

We consider the quasilinear parabolic equation

$u_{t}=u^{2}(u_{xx}+u-f)$ $in$ $K$, (1)

where $K=(R/2\pi Z)\cross(R/TZ)$ with $T>0$ and $f$ is a positive function on $K$ . The

purpose of this paper is to prove the following result.

Theorem 1. If $f$ is a positive continuous function on $K$ with $f_{t}\in C(K)$ such that

$\int_{0}^{2\pi}f(x, t)e^{ix}dx=0$ for all $t$ , (2)

then there exists a positive solution $u \in\bigcap_{p>1}W_{p}^{2,1}(K)$
of the equation (1) satisfying the

condition
$\int_{0}^{2\pi}\frac{e^{ix}}{u(x,t)}dx=0$ for all $t\in R$ . (3)

We remark that the assumption (2) is necessarily satisfied provided that there is a

positive solution of (1) satisfying (3). In fact, multiplying $u^{-2}e^{ix}$ with (1) and integrating

over $(0,2\pi)$ yields
$- \frac{d}{dt}\int_{0}^{2\pi}\frac{e^{ix}}{u}dx=-\int_{0}^{2\pi}fe^{ix}dx$ .

If $u$ satisfies the constraint (3), $f$ must satisfy (2).

Our main result yields the existence of a periodic-in-time solution (up to transla-

tion)for an evolution equation of curves whose normal speed equals the curvature minus
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a given time periodic function depending on curves through its normals. Let $\{\Gamma_{t}\}$ be a

smooth one parameter family of closed, embedded curves in a plane bounding a bounded

domain. Let $n$ denote the inward unit normal vector field on $\Gamma_{t}$ . Let $V$ denote the nor-

mal velocity of $F_{t}$ in the direction of $n$ . We consider an equation for $\Gamma_{t}$ of the form

$V=k-q(n, t)$ , (4)

where $k$ is the inward curvature and $q$ is a given function. The equation (4) is an example

of curvature flow equation with anisotoropy ([13]). If $\Gamma_{t}$ is convex, one can parameterize

$\Gamma_{t}$ by $a$ .Gauss map by introducing $\theta,$ $0\leq\theta\leq 2\pi$ such that $n=(\cos\theta’\sin\theta)$ . The

evolution of curvature $k$ is expressed as

$k_{t}=k^{2}(V_{\theta\theta}+V)$

if we use $\theta$ -cordinates ([13]). Applying this identity to (4) yields an evolution equation

of curvature

$k_{t}=k^{2}(k_{\theta\theta}+k-(Q_{\theta\theta}+Q))$ with $Q(\theta, t)=q(\cos\theta, \sin\theta, t)$ , (5)

where $k$ and $Q$ are $2\pi$ -periodic in $\theta$ . We next recover (4) form (5). For $k$ a curve

parametrized by the Gauss map is given by

$Z( \theta, t)=(\int_{0}^{\theta}\frac{\sin\sigma}{k(\sigma,t)}d\sigma, -\int_{0}^{\theta}\frac{\cos\sigma}{k(\sigma,t)}d\sigma)$ .

If $k$ solves (5), then integarating by parts yields
$\partial Z$

$–=((k-Q)\cos\theta-(k_{\theta}-Q_{\theta})\sin\theta-(k-Q)|_{\theta=0},$ $(k-Q)\sin\theta+(k_{\theta}-Q_{\theta})\cos\theta-(k_{\theta}-Q_{\theta})|_{\theta=}|$
$\partial t$

Translate $Z$ by

$X_{0}(t)=( \int_{0}^{t}(k-Q)(O, \tau)d\tau, \int_{0}^{t}(k_{\theta}-Q_{\theta})(O, \tau)d\tau)$ ,

so that new curve $X(\theta, t)=Z(\theta, t)+X_{0}(t)$ fulfills

$V= n\cdot\frac{\partial X}{\partial t}=(\cos\theta, \sin\theta)\cdot\frac{\partial X}{\partial t}=k-q$.
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We thus obtained the curve

$\Gamma_{t}=\{X(\theta, t):0\leq\theta\leq 2\pi\}$

satisfying (4). The equation (4) and (5) are equivalent through $X$ . However to be $\Gamma_{t}$ is

closed we need $X(O, t)=X(2\pi, t)$ which is equivalent to the constraint

$\int_{0}^{2\pi}\frac{e^{ix}}{k(\theta,t)}d\theta=0$ .

If we set $u=k,$ $x=\theta$ , this is nothing but the constraint (3). Since the condition (2) is

automatically satisfied for $f=Q_{\theta\theta}+Q$ , Theorem 1 yields a periodic-in-time solution $\Gamma_{t}$

(up to translation in space) of (4).

We also note that $f$ is a positive function if and only if the Frank diagram of $q$ is

strictly convex (see [12]).

The initial value problem for (5) with $q=0$ was derived in [9] and extensively studied

by Gage and Hamilton [11] for the curve shortening problem. Since a circle shrinks to

a point in a finite time for the curve shortening equation (4) with $q=0$ , the curvature

may blow up in a finite time. Blow up profiles for convex immersed curves were classified

by Angenent [2] based on a result of [1] under {he self-similar growth assumption for

curvatures. There may happen that curvature growth is faster than self-similar rate. Its

asysmptotic profile is studied in [2] via (4) with $q=0$ . Recently, more precise profile is

obtained by Angenent and Velazquez [3] by studying (4) itself. The iunitial boundary

value problem for higher dimensional version of (1) with $f=0$

$u_{t}=u^{2}(\triangle u+u)$

in a bounded domain with zero boundary data was studied in [8] and [10] for positive

initial data. The existence of blow up phenomena depends on the first eigenvalue of

the Laplace operator with zero boundary condition. These authors studied whether a

solution blows up and they estimated the size of blow up sets. However it seems that

there are no results concerning the periodic problem for the equation (1).

115



We make use of the Leray-Schauder degree theory to show this theorem. The exis-

tence of periodic solutions for semilinear parabolic equations was obtained by the degree

theory in Esteban [6], [7], Hirano and the second author [14] and so on. But constract-

ing homotopies to solve the equation(l) is more difficult than that in the above papers

because the equation (1) is degenerate and our desired solution should satisfy the con-

straint (3).

We shall select desired solution by introducing a kind of penalty method since not

all solutions satisfy the constraint (3). Explaining heuristically, for small $\epsilon>0$ , we

consider the penalized equation

$u_{t}=u^{2}(u_{xx}+u+ \frac{\epsilon}{u}-f)$ in K. (6)

For a solution $u$ of this equation, we observe that the condition (2) implies

$- \frac{d}{dt}\int_{0}^{2\pi}\frac{e^{ix}}{u}dx=\epsilon\int_{0}^{2\pi}\frac{e^{ix}}{u}dx$

by multiplying (6) with $u^{-2}e^{ix}$ and integrating over $(0,2\pi)$ . Since $u$ is periodic in time,
$\hat{c}$

this implies that $u$ satisfies the constraint (3). We modify the term – so that the solu-
$u$

tions has a uniform bound in the next section. A penalty method is adapted in various

evolution equations to introduce constraints of solutions. For example, it was used to

constract a solution $u$ satisfying a constraint $|u|=1$ for the harmonic gradient flow

equations in Chen [4], Chen and Struwe [5] and Keller, Rubinstein and Sternberg [15].

2 Upper bound for solutions of approximate equations.

The Leray-Schauder degree theory is adapted to show Theorem 1. To do that, we

introduce the following approximate equation

$u_{t}=(u+ \epsilon^{2})^{2}(u_{xx}+\frac{u^{2}}{(u+\epsilon^{2})^{2}}(u+\frac{\epsilon}{\xi_{\epsilon}(u)}-f))$ in $K$ , (7)
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1
where $\overline{m}<\min_{K}f$ and $\xi_{\epsilon}$ is a smooth increasing function on $R$ such that

$\xi_{\epsilon}(s)=s+\xi i^{2}$ for all $s\geq m\epsilon$

and
$\max(s+\in^{2}, m\epsilon i)\leq\xi_{\epsilon}(s)\leq C\max(s+\in^{2}, m\epsilon)$ for all $s>0$ .

We first observe that any positive solution of

$u_{t}=u^{2}(u_{xx}+u+ \frac{\hat{c}}{u}-f)$ in $K$

satisfies the constraint (3), so we modify this equation so that it is a uniformly parabolic

and the Leray-Schauder degree in a large and a small ball can be computed.

For $\tau\in[0,1]$ , we consider the equation

$u_{t}=(u+ \epsilon^{2})^{2}[u_{xx}+\frac{u^{2}}{(u+\epsilon^{2})^{2}}\{u+\tau(\frac{\epsilon}{\xi_{\epsilon}(u)}-f)\}+(1-\tau)\beta]$ in $K$, (8)

where $\beta>0$ .

We assume that $f$ is a smooth function. Then it follows that each positive solution

of (8) is smooth. Our purpose in the present section is to show the following result.

Theorem 2. There exists $M=M(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that $\max_{K}u\leq M$ for each

$\xi i>0,$ $\tau\in[0,1]$ and each positive solution $u$ of (8).

We first get an estimate of Harnack type in space direction to prove this theorem.

The Harnack inequality was used in $[$ 10$]$ for the equation $u_{t}=u^{2}(\triangle u+u)$ .

Lemma 1. Suppose that there is $M_{0}>0$ such that $\max_{K}u\geq _{0}$ for any $\epsilon>0,$ $\tau\in$

$[0,1]$ and any positive solution $u$ of (8). Then there exists $C_{0}=C_{0}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such

that for each $\xi j>0,$ $\tau\in[0,1]$ and each positive solution $u$ of (8),

$(u(x, t_{0})+\xi i^{2})^{2}\geq(M+\epsilon^{2})^{2}-C_{0}(M+\epsilon^{2})^{2}(x-x_{0})^{2}$ for all $x$ ,

where $M= \max_{K}u=u(x_{0}, t_{0})$ .
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Proof. Put $v=u+\epsilon^{2}$ and

$g(v, x, t)= \frac{(v-\epsilon^{2})^{2}}{v^{2}}\{v-\epsilon^{2}+\tau(\frac{\mathcal{E}}{\xi_{\epsilon}(v-\epsilon^{2})}-f)\}+(1-\tau)\beta]$.

Letting $z= \frac{v_{t}}{v}$ , it follows that

$z_{x}= \frac{v_{tx}}{v}-\frac{v_{t}v_{x}}{v^{2}}$

and
$z_{xx}= \frac{v_{txx}}{v}-\frac{2\tau)_{x}z_{x}}{t}-\frac{v_{t}v_{xx}}{v^{2}})$

from (8). Differenciating $z=v(v_{xx}+g)$ ,

$z_{t}=v^{2}z_{xx}+2vv_{x}z_{x}+2z^{2}+v(g_{v}v-g)z+g_{t}v$ .

Let $(\hat{x},\hat{t})$ be a minimizer of $z$ in $K$ . Then we have

$2vz^{2}+v(g_{v}v-g)z+g_{t}v\leq 0$

at $(\hat{x},\hat{t})$ and hence

$z \geq-\frac{v\{(g_{v}v-g)+|g_{v}v-g|\}}{4}-(\frac{v|g_{t}|}{2})^{1/2}$

at $(\hat{x},\hat{t})$ . Therefore there are $c_{0}’=c_{0}(|f|_{\infty}, |f_{t}|_{\infty})>0,$ $c_{1}=c_{1}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that

$\min z\geq-c_{0}(M+\epsilon^{2})-c_{1}(M+\epsilon^{2})^{1/2}$ .

By the assumption, there is $c_{2}=c_{2}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that

$\min z\geq-c_{2}(M+\epsilon^{2})$ . (9)

From $vv_{xx}=z-vg$ , it follows that

$vv_{xx} \geq-c_{2}(M+\epsilon^{2})-(M+\epsilon^{2})\max_{v\leq M+\epsilon}g$ .

Consequently, there is $C_{0}=C_{0}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that $vv_{xx}\geq C_{0}(M+\epsilon^{2})^{2}$ . Then

we see
$\frac{1}{2}(v^{2})_{xx}=v_{x}^{2}+vv_{xx}\geq C_{0}(M+\epsilon^{2})^{2}$ .
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This implies the assertion of this lemma.

We next obtain integral bounds for solutions of (8).

Lemma 2. There are $C_{1}=C_{1}(|f|_{\infty}, |f_{t}|_{\infty})>0$ and $C_{2}=C_{2}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such

that
$\int_{0}^{T}\int_{0}^{2\pi}(u+\epsilon^{2})dxdt\leq C_{1}$

and
$\int_{0}^{T}\int_{0}^{2\pi}\frac{u_{t}^{2}}{(u+\epsilon^{2})^{2}}dxdt\leq C_{2}$

for each $\epsilon>0,$ $\tau\in[0,1]$ and each positive solution $u$ of (8).

Proof. Multiplying (8) with $\frac{1}{(u+\epsilon^{2})^{2}}$ and $\frac{u_{t}}{(u+\epsilon^{2})^{2}}$ and integrating over $K$ re-
spectively, we obtain these integral bounds.

From Lemma 1 and 2, Theorem 2 can be shown.

Proof of Theorem 2. Assume there are no upper bounds for solutions of (8).

From Lemma 1, it follows that

$\int_{0}^{2\pi}(u(x, t_{0})+\epsilon^{2})^{2}dx\geq\frac{1}{2}(M+\epsilon^{2})^{2}$ . (10)

TAe $t_{1}\in[0,$ $T]$ with $\int_{0}^{2\pi}(u(x, t_{1})+\epsilon^{2})^{2}dx\leq\frac{MC_{1}}{T}$ . By Lemma 2, we get

$\int_{0}^{2\pi}(u(x, t_{0})+\epsilon^{2})^{2}dx$ $\leq$ $\int_{0}^{2\pi}(u(x, t_{1})+\epsilon^{2})^{2}dx+\int_{0}^{T}\int_{0}^{2\pi}2(u+\xi i^{2})u_{t}dxdt$

$\leq$ $\frac{MC_{1}}{T}+2M^{3/2}C_{1}^{1/2}C_{2}^{1/2}$

This contradicts (10). Therefore the assertion of this thoerem holds.
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3 Lower bound for solutions of approximate equations.

We begin this section with another inequality of Harnack type in time direction.

Lemma 3. There is $C_{3}=C_{3}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that for any $\epsilon>0$ and any

positve solution $u$ of (7),

$u(x, t)+6^{2}\leq e^{-C_{3}(M+\epsilon^{2})(t-s)}(u(X, 15)+\epsilon^{2})$ (11)

for all $s,$ $t$ with $s-T\leq t\leq s$ and $x\in[0,2\pi]$ , where $M$ is an upper bound obtained in

Theorem 2.

Proof. From (9), it followe that $\frac{u_{t}}{u+\epsilon^{2}}\geq-c_{2}(M+\epsilon^{2})$ in K. Integrating this

inequality over $(t, s)$ , we obtain (11).

The following result about the distance of zeros of a solution for an ordinary differ-

ential inequality is crucial in our proof of Theorem 3.

Lemma 4. Let $U\in C^{1}([0, \beta])$ be nonnegative and not identically zero, $U(O)=$

$U(\beta)=0$ and $U_{x}(0)=0$ or $U_{x}(\beta)=0$ . If $U_{xx}+U\geq 0$ in $(0, \beta)$ , then $\beta>\pi$ .

Proof. Suppose that $\beta\leq\pi$ . Then we have

$\int_{0}^{\beta}\sin(\frac{\pi x}{\beta})(U_{xx}+U)\leq\int_{0}^{\beta}\sin(\frac{\pi x}{\beta})\{U-(\frac{\pi}{\beta})^{2}U\}dx\leq 0$ .

From $U(O)=U(\beta)=0$ , it follows that $U(x)=c \sin(\frac{\pi x}{\beta})$ in $[0, \beta]$ for some $c>0$ . This

contradicts that $U_{x}(0)=0$ or $U_{x}(\beta)=0$ . Therefore $\beta>\pi$ .

The following result is concerned with the conslraint (3).

Lemma 5. (Ther exists $C_{4}=C_{4}(|f|_{\infty})>0$ such that

$| \int_{0}^{T}\int_{0}^{2\pi}\{\frac{u^{2}}{(u+\epsilon^{2})^{2}} \frac{\epsilon}{\xi_{\epsilon}(u)}+(1-\frac{u^{2}}{(u+\epsilon^{2})^{2}})f\}\sin(x-\alpha)dxdt|\leq C_{4}\epsilon$

for each $\alpha\in[0,2\pi],$ $\epsilon>0$ and each positive solution $u$ of (7).
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Proof. Integrating (7) over $K$ , this follows from $\int_{0}^{2\pi}f\sin(x-\alpha)dx=0$ .

Using Lemma 3, 4 and 5, we can obtain a positive lower bound for solutions of (7).

Theorem 3. There exists $\delta=\delta(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that $\min_{K}u\geq\delta$ for any $\epsilon>0$

and any positive solution $u$ of (7).

Proof. On the contrary, assume that there are sequences $\epsilon_{n}arrow 0$ and $\{u_{n}\}$ for

which $u_{n}$ is a solution of (7) with $\epsilon=\epsilon_{n}$ such that $\min_{K}u_{n}arrow 0$ as $narrow\infty$ . We easily see

$\max_{K}u_{n}\geq\min_{K}f-\frac{1}{m}$ for all $n$ . Put $U_{n}(x)= \int_{0}^{2\pi}u_{n}(x, t)dt$ for $x\in[0,2\pi]$ . Integrating

(11) over $(s-T, t)$ and $(t, t+T)$ respectively, we have $C_{5}=C_{5}(|f|_{\infty}, |f_{t}|_{\infty})>0$ and

$C_{6}=C_{6}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that

$C_{5}(U_{n}(x)+T\epsilon_{n}^{2})\leq u_{n}(x, t)+\epsilon_{n}^{2}\leq C_{6}(U_{n}(x)+T\epsilon_{n}^{2})$ (12)

for all $(x, t)\in K$ and $n$ . Therefore it holds that

$\max_{K}U_{n}\geq\frac{1}{C_{6}}(\min_{K}f-\frac{1}{m}+\epsilon_{n}^{2})-T\epsilon_{n}^{2}$

for all $n$ . Multiplying (7) with $\frac{1}{(u_{n}+\epsilon_{n}^{2})^{2}}$ and integrating over $(0, T)$ , there is $C_{7}=$

$C_{7}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that

$0\leq U_{nxx}+U_{n}\leq C_{7}$

for all $x\in(0,2\pi)$ and $n$ . By $|U_{nxx}|_{\infty}\leq C_{7}+MT$ for each $n$ , we may assume that $U_{n}$

converges strongly to some $U$ in $C^{1}([0,2\pi])$ . Then we get $U\geq 0,$ $U\not\equiv O$ and $U_{xx}+U\geq 0$ .

Letting $U_{n}(x_{n})= \min_{x\in[0,2\pi]}U_{n}(x)$ , it follows that $U_{n}(x_{n})arrow 0$ from (12). Since we may

suppose that $x_{n}$ converges to some $x_{0}$ , we see $U(x_{0})=0$ and $U_{x}(x_{0})=0$ . Take $\beta>0$

such that $U(x_{0}+\beta)=U_{x}(x_{0}+\beta)=0$ and $U>0$ in $(x_{0}, x_{0}+\beta)$ . According to Lemma

4, we have $\beta>\pi$ . Since $\{u_{n}\}$ is bounded in $H^{1}(K)$ , we may assume that $u_{n}$ converges
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to some $u$ a.e. in $K$ . It is immediate that $U(x)= \int_{0}^{T}u(x, t)dt$ and $u(x, t)>0$ a.e. in

$(x_{0}, x_{0}+\beta)\cross(0, T)$ from (12). Taking $0<\sigma<\beta-\pi$ , there is $\rho>0$ such that $U(x)\geq 2\rho$

for all $x\in[x_{0}+\sigma, x_{0}+\sigma+\pi]$ . Therefore $U_{n}(x)\geq\rho$ for all $x\in[x_{0}+\sigma, x_{0}+\sigma+\pi]$ and

sufficiently large $n$ . Since $u_{n}(x, t)\geq C_{5}\rho-\epsilon_{n}^{2}$ in $[x_{0}+\sigma, x_{0}+\sigma+\pi]\cross[0, T]$ by (12),

there is $C_{8}=C_{8}(|f|_{\infty}, |f_{t}|_{\infty})>0$ such that

$| \int_{0}^{T}\int_{xo+\sigma}^{xo+\sigma+\pi}\{\frac{u_{n}^{2}}{(u_{n}+\epsilon_{n}^{2})^{2}} . \frac{\epsilon_{n}}{\xi_{\epsilon_{n}}(u_{n})}+(1-\frac{u_{n}^{2}}{(u_{n}+\epsilon_{n}^{2})^{2}})f\}\sin(x-(x_{0}+\sigma))dxdt|\leq C_{8}\epsilon_{n}$

(13)

for sufficiently large $n$ . On the other hand, it holds that

$U_{n}(x)\leq U_{n}(x_{n})+C_{9}(x-x_{n})^{2}$

for all $x$ , where $C_{9}=(C_{7}+M)T$ . Letting $narrow\infty$ , we get

$U(x)\leq C_{9}(x-x_{0})^{2}$

and hence

$u(x, t)\leq C_{6}C_{9}(x-x_{0})^{2}$

for all $(x, t)\in K$ . Consequently, it holds that

$\lim_{narrow}\sup_{\infty}\frac{1}{\epsilon_{n}}\int_{xo+\sigma-\pi}^{x_{0}+\sigma}\int_{0}^{T}\{\frac{u_{n}^{2}}{(u_{n}+\epsilon_{n}^{2})^{2}}\cdot\frac{\epsilon_{n}}{\xi_{\epsilon_{n}}(u_{n})}+(1-\frac{u_{n}^{2}}{(u_{n}+\epsilon_{n}^{2})^{2}})f\}$

$\sin(x-(x_{0}+\sigma))dxdt$

$\leq$ $- \sin(\frac{\sigma}{2})\lim_{narrow}\inf_{\infty}\frac{1}{\epsilon_{n}}\int_{x0}^{xo+\sigma/2}\int_{0}^{T}\{\frac{1}{\max(u_{n},m\epsilon_{n})}\cdot\frac{u_{n}^{2}}{(u_{n}+\epsilon_{n}^{2})^{2}}\}dxdt$

$\leq$ $- \sin(\frac{\sigma}{2})\int_{x0}^{x_{0}+\sigma/2}\int_{0}^{T}\frac{1}{u}dxdt$

$=$ $-\infty$ .

This inequality and (13) contradict Lemma 5. This completes the proof.
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4 Proof of the Main theorem.

We take $b_{\epsilon}>0$ satisfying

$b_{\epsilon}s+ \frac{s^{2}}{(s+\epsilon^{2})^{2}}(s+\frac{\epsilon}{\xi_{\epsilon}(s)}-f)\geq 0$ for all $s>0$ .

The following result is obtained in (see [12]).

Lemma 6. For any $v\in C(K)$ , there is the unique solution $u \in\bigcap_{p>1}W_{p}^{2,1}(K)$ of

$u_{t}=(u+\epsilon^{2})^{2}(u_{xx}-b_{\epsilon}u+v)$ in K. (14)

Furthermore the operator $S$ associating the solution $u$ of (14) with $v$ is compact from

$C(K)$ into itself.

We define two functions $\phi$ and $\tilde{\phi}$ by

$\phi(s)=\{\begin{array}{ll}b_{\epsilon}s+\frac{s^{2}}{(s+\epsilon^{2})^{2}}(s+\frac{\epsilon}{\xi_{\epsilon}}-f) for s\geq 00 for s<0\end{array}$

and

$\tilde{\phi}(s)=\{\begin{array}{ll}b_{\epsilon}s+\frac{s^{2}}{(s+\epsilon^{2})^{2}}s+\beta) for s\geq 0\beta for s<0.\end{array}$

We calculate degrees of $I-So\phi$ in a small and a large ball in $C(K)$ and then show

that the degree in the large ball exsept for the small ball is not zero. This argument was

used for a semilinear parabolic equation with superlinear nonlinearity in [6] and [7].

Lemma 7. There is $r>0$ such that $\deg(I-So\phi, B_{r}(0), 0)=1$ , where $B_{r}(0)$

denotes the open ball with radius $r$ oentered at $0$ in $C(K)$ .

Proof. We first see that there is $r>0$ such that $\max_{K}u\geq 2r$ for each $\epsilon>0,$ $\tau\in[0,1]$

and each fixed point $u$ of $So(\tau\phi)$ . In fact, any fixed point $u$ of $S\circ(\tau\phi)$ satisfies

$u_{t}=(u+ \epsilon^{2})^{2}(u_{xx}+(\tau-1)b_{\epsilon}u+\tau\frac{u^{2}}{(u+\epsilon^{2})^{2}}(u+\frac{\epsilon}{\xi_{\epsilon}(u)}-f))$ in $K$ (15)
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by the maximum principle. Suppose that $\max_{K}u_{n}arrow 0$ for some $\epsilon_{n}arrow 0,$ $\tau_{n}\in[0,1]$ and

fixed points $u_{n}$ of $So(\tau_{n}\phi)$ with $\epsilon i=\epsilon_{n}$ . Multiplying (15) with $\frac{1}{(u_{n}+\epsilon_{n}^{2})^{2}}$ and integrat-

ing over $K$ , we have a contradiction. Therefore there exists $r>0$ such that $\max_{K}u\geq 2r$

for all $\epsilon>0,$ $\tau\in[0,1]$ and any fixed point $u$ of $So(\tau\phi)$ . According to the homotopy

invariance of the Leray-Schauder degree, we obtain $\deg(I-So\phi, B_{r}(0), 0)=1$ .

Lemma 8. There is $R>r$ such that $\deg(I-So\phi, B_{R}(0), 0)=0$ .

Proof. Choose $R>M$ , where $M$ is an upper bound obtained in Theorem 2. By

Lemma 2, there are no fixed points of $So(\tau\phi+(1-\tau)\tilde{\phi})$ on the boundary of $B_{R}(0)$ for all
$\epsilon>0$ and $\tau\in[0,1]$ . We also observe that $\deg(I-So\tilde{\phi}, B_{R}(0), 0)=0$ since $I-S\circ\tilde{\phi}$ has

no fixed points in $C(K)$ . From the homotopy invariance of the Leray-Schauder degree,

the assertion of this lemma follows.

By Lemma 7 and 8, it holds that

$\deg(I-So\phi, B_{R}(0)\backslash B_{r}(0), 0)=-1$ .

Therefore the approximate equation (7) has a positive solution $u_{\epsilon}$ for each $\epsilon>0$ .

Now we can prove our main theorem under the above preparation.

Proof of Theorem 1. Since $\{u_{\epsilon}\}$ has an upper and a positive lower bound by

Theorem 2 and 3, we may assume that $\{u_{\epsilon}\}$ weakly converges to some $u$ in $W_{p}^{2,1}(K)$

with $p>3$ . Then $u$ is a positive solution of (1). It remains to show that $u$ satisfies the

constraint (3). Since $\{u_{\epsilon}\}$ is bounded away from zero, the equation (7) is written as

$u_{\epsilon t}=(u_{\epsilon}+ \epsilon^{2})^{2}(u_{\epsilon xx}+\frac{u_{\epsilon}^{2}}{(u_{\epsilon}+\epsilon^{2})^{2}}(u_{\epsilon}+\frac{\epsilon}{u_{\epsilon}+\epsilon^{2}}-f))$ in $K$ .

Multiplying this equation with $\frac{\sin x}{(u_{\epsilon}+\epsilon^{2})^{2}}$ and integrating over $(0,2\pi)$ , we have

$- \frac{d}{dt}\int_{0}^{2\pi}\frac{\sin x}{u_{\epsilon}+\epsilon^{2}}dx=\epsilon\int_{0}^{2\pi}\frac{\sin x}{u_{\epsilon}+\epsilon^{2}}dx+v_{\epsilon}(t)$ ,
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where
$v_{\epsilon}(t)= \int_{0}^{2\pi}\{(\frac{u_{\epsilon}^{2}}{(u_{\epsilon}+\epsilon^{2})^{2}}-1)u_{\epsilon}+(1-\frac{u_{\epsilon}^{2}}{(u_{\epsilon}+\epsilon^{2})^{2}})f\}\sin xdx$ .

Then there is $C=C(|f|_{\infty})>0$ such that $|v_{\epsilon}(t)|\leq C\epsilon^{2}$ for all $t$ . Therefore we obtain

$| \int_{0}^{2\pi}\frac{\sin x}{u_{\epsilon}+\in i^{2}}dx|\leq C\epsilon$ for all $t$ . Letting $\epsilon:arrow 0$ , we see $u$ satisfies the condition (3).
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