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In this note, let me consider the linear thermoelastic plate equation:

(1) $u_{tt}-h\triangle u_{tt}+\triangle^{2}u+\alpha\triangle\theta=0$ in $(0, \infty)\cross\Omega$ ,
(2) $\theta_{t}-\beta\triangle\theta-\alpha\triangle u_{t}=0$ in $(0, \infty)\cross\Omega$ ,
(3) $u(0, x)=u_{0}(x),$ $u_{t}(0, x)=u_{1}(x),$ $\theta(0, x)=\theta_{0}(x)$ in $\Omega$ ,

where $\alpha\neq 0,$ $\beta>0$ and $h\geq 0$ are real constants. $\Omega$ is a bounded domain in $R^{n}$ with $C^{\infty}$

boundary $\partial\Omega$ , which is identffied with a thin plate of height $h$ . $u$ and $\theta$ denote vertical
deflection of the plate md temperature, respectively. The derivation of (1) and (2)
can be found in J. Lagnese’s book,1 where Lagnese discussed stability of various plate
models and showed that the energy of a linear thermoelastic plate decays exponentially
fast with a certain dissipative boundary condition. In this note, I would like to consider
the following two questions under suitable boundary conditions.
(Q.1) Does the first energy decay exponentially fast ?
(Q.2) Do solutions become smooth enough even if the initial data belong to a first

energy class only ?
From a physical point of view, the energy of motion changes to the temperature, so that
even if the total energy is conserved, the motion will stop at time infinity. The expo-
nential decay of solutions represents this physical aspect. Namely, (Q.1) should have
an affirmative answer. The second question is concerning the fact that the dissipation
from temperature smoothen the motion. Thus, (Q.2) has an affirmative answer if the
dissipation from temperature is strong enough. From a mathematical point of view, if
$h=0$ , then both (1) and (2) seem to be parabolic, so that (Q.2) has an affirmative
answer. But, if $h>0$ , the first equation is a hyperbolic equation with respect to $u$ , so
that (Q.2) must have a negative answer.

Now, let us try to answer two questions under the following boundary conditon:

(4) $u=\triangle u=\theta=0$ on $(0, \infty)\cross\partial\Omega$ .

Roughly speaking, I shall prove that
(A.1) the first energy of solutions to (1)$-(4)$ decays exponentially fast:

1 Boundary stabilization of thin plate, SIAM Studies in Appl. Math. 10, Philadelphia, 1989.
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(A.2) when $h=0$ , solutions to (1)$-(4)$ become smooth for $t>0$ even if the initial data
$u_{0},$ $u_{1}$ and $\theta_{0}$ belong to the first energy class only:

(A.3) when $h>0$ , each time section of solutions to (1)$-(4)$ belongs to the same class
for all $t\geq 0$ .

Namely, (A.2) is the affirmative answer of (Q.2) and (A.3) is the negative answer of
(Q.2).

Now, let me give you a sketch of proofs of the assertions $(A.1)-(A.3)$ . The key idea
is to use an orthonormal system $\{\phi_{n}\}$ of $L^{2}(\Omega)$ , where each $\phi_{n}$ is an eigenfunction of
$-\triangle$ with zero Dirichlet boundary conditon corresponding to the eigenvalue $\lambda_{n}$ , i.e.

$-\triangle\phi_{n}=\lambda_{n}\phi_{n}$ in $\Omega$ and $\phi_{n}=0$ on $\partial\Omega$ ;
$0<\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{n}\leq\cdots$ $(\lambda_{n}arrow\infty as narrow\infty)$ .

Using the fact that $\triangle^{2}\phi_{n}=\lambda_{n}^{2}\phi_{n}$ in $\Omega$ and $\phi_{n}=\triangle\phi_{n}=0$ on $\partial\Omega$ , you can reduce the
problem (1)$-(4)$ to the ordinary differential equations:

(5) $\{\begin{array}{ll}(1+h\lambda_{n})u_{n}’’+\lambda_{n}^{2}u_{n}-\alpha\lambda_{n}\theta_{n}=0, t>0,\theta_{n}’+\beta\lambda_{n}\theta_{n}+\alpha\lambda_{n}u_{n}’=0, t>0,u_{n}(0)=u_{n}^{0}, u_{n}’(0)=u_{n}^{1}, \theta_{n}(0)=\theta_{n}^{0}, \end{array}$

where

(6) $ui(x)= \sum_{n=1}^{\infty}u_{n}^{i}\phi_{n}(x)$ $(i=0,1)$ , $\theta_{0}(x)=\sum_{n=1}^{\infty}\theta_{n}^{0}\phi_{n}(x)$ .

And then, solutions $u(t, x)$ and $\theta(t, x)$ to (1)$-(4)$ are represented by the relations:

(7) $u(t, x)= \sum_{n=1}^{\infty}u_{n}(t)\phi_{n}(x)$ and $\theta(t, x)=\sum_{n=1}^{\infty}\theta_{n}(t)\phi_{n}(x)$.

To investigate the properties of $u$ and $\theta$ , in view of (5), you have to know the asymptotic
behaviour of the characteristic roots. In fact, the equations in (5) are written in the
following matrix form:

$U_{n}’=A_{n}U_{n}t>0$ and $U_{n}(0)=\{\begin{array}{l}u_{n}^{0}u_{n}^{1}\theta_{n}^{0}\end{array}\}$ ,

where

$U_{n}(t)=\{\begin{array}{l}u_{n}(t)u_{n}’(t)\theta_{n}(t)\end{array}\}$ and $A_{n}=(\mp_{0}^{0_{2}}1h\lambda_{n}-\lambda$ $-\alpha\lambda_{n}01$ $\frac{\alpha\lambda_{n}0}{-\beta\lambda_{n}^{n}1+h\lambda}$

Put
$f_{n}(k)= det(kI-A)=k^{3}+\beta\lambda_{n}k^{2}+\frac{(\alpha^{2}+1)\lambda_{n}^{2}}{1+h\lambda_{n}}k+\frac{\beta\lambda_{n}^{3}}{1+h\lambda_{n}}$ .

Let me denote three roots of the algebraic equation: $f_{n}(k)=0$ by $k_{0}(\lambda_{n})$ and $k_{\pm}(\lambda_{n})$

where $k_{0}(\lambda_{n})$ is real and $\pm Imk_{\pm}(\lambda_{n})>0$ . To know the property of the roots we use
the following fact.
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Corollary of Hurwitz’s theorem. Let $a,$ $b,$ $c\in R$ . In order that all the roots of the
algebraic equation: $x^{3}+ax^{2}+bx+c=0,$ $h$ave nega$tii^{\gamma}e$ imaginary part, it is necessary
and $s$ufficient that $a,$ $b,$ $c>0$ and $ab– c>0$ .

And then, we know that $k_{0}(\lambda_{n})<0$ and $Rek\pm(\lambda_{n})<0$ for all $n\geq 0$ . You have to
know the asymptotic behaviour of the roots as $narrow\infty$ .

First I consider the case that $h=0$ . The argument below follows the paper due
to Racke and Rivera,2 where they handled with thermoelastic bar and plate equations
having the Kirchhoff type nonlocal nonlinearity with the boundary condition (4) in the
rather abstract setting and they show the exponential decay and smoothing property
when $h=0$ . Put $k=\lambda_{n}l$ , and then

$f_{n}(k)=\lambda_{n}^{3}(l^{3}+\beta l^{2}+(\alpha^{2}+1)l+\beta)=0$.

Denoting three roots of the equation: $l^{3}+\beta l^{2}+(\alpha^{2}+1)l+\beta=0$, by $l_{0}$ and $l\pm$ where
$l_{0}<0,$ $Rel\pm<0$ and $\pm Iml\pm>0$ (cf. Hurwitz’s theorem), we have

(8) $k_{0}(\lambda_{n})=l_{0}\lambda_{n}$ and $k\pm(\lambda_{n})=l\pm\lambda_{n}$ when $h=0$ .

Put

$U(t, x)=\{\begin{array}{l}u(t,x)u_{t}(t,x)\theta(t,x)\end{array}\}$ ,

and then

$U(t, x)= \sum_{n=1}^{\infty}e^{tA_{n}}U_{n}(0)\phi_{n}(x)$ .

By (8) we can see that

(9) $|e^{tA_{n}}U_{n}(0)|\leq Ce^{-c_{0}\lambda_{n}t}|U_{n}(0)|$

where $c_{0}=- \min(l_{0}, Rel_{+}, Rel_{-})$ , which immediately implies that

$\Vert\triangle u(t, \cdot)\Vert^{2}+\Vert u_{t}(t, \cdot)\Vert^{2}+\Vert\theta(t, \cdot)\Vert^{2}\leq Ce^{-c_{0}\lambda_{1}t}\{\Vert\triangle u_{0}\Vert^{2}+\Vert u_{1}\Vert^{2}+\Vert\theta_{0}\Vert^{2}\}$ ,

where $\Vert\cdot\Vert$ denotes the usual $L^{2}$ -norm on $\Omega$ . This is the exponential result, the affirmative
answer to (Q.1), when $h=0$ . To show (A.2), you observe that

(10) $( \frac{\partial}{\partial t})^{K}(-\triangle)^{M}U(t, x)=\sum_{n=1}^{\infty}e^{tA_{n}}(A_{n})^{K}\lambda_{n}^{M}U_{n}(0)\phi_{n}(x)$ .

When $t>0$ , by (9) you have

$|e^{tA_{n}}U_{n}(0)| \leq\frac{N!}{(C\lambda_{n}t)^{N}}|U_{n}(0)|$ for any $N\geq 1$ ,

2 Smoothing properties, decay and global existence of solutions to nonlinear coupled systems of
thermoelastic type, Preprint in 1993
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which together with (10) implies that

$\#(\frac{\partial}{\partial t})^{K}(-\triangle)^{M}U(t, \cdot)\#\leq C_{N}t^{-N}\{\Vert\triangle u_{0}\Vert^{2}+\Vert u_{1}\Vert^{2}+\Vert\theta_{0}\Vert^{2}\}$

for a large $N$ depending on $K$ and $M$ , where

$\# U\#^{2}=\Vert\triangle u\Vert^{2}+\Vert v\Vert^{2}+\Vert\theta\Vert^{2}$ for $U=\{\begin{array}{l}uv\theta\end{array}\}$ .

This shows that the solutions $u$ and $\theta$ become $C^{\infty}$ for $t>0$ when $h=0$ , so that (A.2)
is proved.

Now, let us consider the case that $h>0$ . The roots $k_{0}(\lambda_{n})$ and $k\pm(\lambda_{n})$ have the
following asymptotic behaviours:

$k_{0}( \lambda_{n})=-\beta\lambda_{n}+\sum_{j=0}^{\infty}d_{0}^{j}\lambda_{n}^{-j}$ ,

(12)

$k_{\pm}( \lambda_{n})=\pm\frac{\sqrt{-1}}{\sqrt{h}}\lambda_{n}^{1/2}-\frac{\alpha^{2}}{2\beta\sqrt{h}}+\sum_{j=1}^{\infty}d_{\pm}^{j}\lambda_{n}^{-j/2}$

as $narrow\infty$ . Since $k_{0}(\lambda_{n})<0$ and $Rek\pm(\lambda_{n})<0$ as follows from Hurwitz’s theorem,
by (12) we see that there exists a $c_{1}>0$ such that

$k_{0}(\lambda_{n}),$ $Rek_{\pm}(\lambda_{n})\leq-c_{1}$ for all $n\geq 1$ ,

so that we can also prove that

$\Vert\triangle u(t, \cdot)\Vert^{2}+\Vert u_{t}(t, \cdot)\Vert^{2}+h\Vert\nabla u_{t}(t, \cdot)\Vert^{2}+\Vert\theta(t, \cdot)\Vert^{2}$

$\leq Ce$
‘

$c_{1}t\{\Vert\triangle u_{0}\Vert^{2}+\Vert u_{1}\Vert^{2}+h\Vert\nabla u_{1}\Vert^{2}+\Vert\theta_{0}\Vert^{2}\}$

for a suitable $C>0$ , where $u$ and $\theta$ are solutions to (1)$-(4)$ for $h>0$ and $\nabla v=$

$(\partial v/\partial x_{1}, \ldots, \partial v/\partial x_{n})$ . This means that the first energy of solutions to (1)$-(4)$ decays
exponentially fast when $h>0$ , i.e., (A.1) is proved.

Finally, let me discuss about (A.3). For simplicity, I consider the case that $u_{1}=\theta_{0}=$

$0$ . And then, by representing solutions to (5), you can show that

$\lambda_{n}^{2}|u_{n}(t)|^{2}+(1+h\lambda_{n})|v_{n}(t)|^{2}+|\theta_{n}(t)|^{2}\geq C_{2}e^{-c_{3}}{}^{t}\lambda_{n}^{2}|u_{n}^{0}|^{2}$

for large $n$ with suitable positive constants $C_{2}$ and $c_{3^{3}}$ which implies (A.3). In fact, for
example if we assume that

$\sum_{n=1}^{\infty}\lambda_{n}^{4}|u_{n}^{0}|^{2}=\infty(i.e., \triangle^{2}u\not\in L^{2})$ ,

3I shall give a proof elsewhere in future.
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then

$\Vert\triangle^{2}u(t, \cdot)\Vert^{2}+\Vert\triangle u_{t}(t, \cdot)\Vert^{2}+h\Vert\triangle\nabla u_{t}(t, \cdot)\Vert^{2}+\Vert\triangle\theta(t, \cdot)\Vert^{2}=\infty$ for $t\geq 0$ .

I think that it is very interesting in considering the same problem under other bound-
ary conditions, for example,

$\partial u$

$u=\partial\nu$
(D) $-=\theta=0$ on $\partial\Omega$ ,

(N) $\triangle u+\alpha\theta=\frac{\partial}{\partial\nu}(\triangle u+\alpha\theta)=\frac{\partial\theta}{\partial\nu}=0$ on $\partial\Omega$ ,

where $\partial/\partial\nu$ denotes the outward normal derivatives on $\partial\Omega$ . When $h=0$ , the exponential
decay result is known. Namely, J.U.Kim4 proved the following theorem.

Theorem. There exist $C$ and $\gamma>0$ such that

$\Vert u(t, \cdot)\Vert_{2}^{2}+\Vert u_{t}(t, \cdot)\Vert^{2}+\Vert\theta(t, \cdot)\Vert^{2}$

$\leq Ce^{-\alpha t}\{\Vert u_{0}\Vert_{2}^{2}+\Vert u_{1}\Vert^{2}+\Vert\theta_{0}\Vert^{2}\}$

where $\Vert v\Vert_{2}^{2}=\sum_{|\alpha|\leq 2}\Vert\partial_{x}^{\alpha}v\Vert^{2}$ , provided that $u$ and $\theta$ solve the problem (1), (2), (3) aiid
(D).

Recently, the author5 proved the exponential decay result when $h=0$ and the
boundary condition is (N) case. To state the theorem more precisely, I have to introduce
some functional spaces

$H_{\Delta}^{2}=\{u\in L^{2}|\triangle u\in L^{2}\}$ , $Y=\{u\in L^{2}|\triangle u=0 in \Omega\}$ ,
$X_{0}=\{u\in L^{2}|(u, v)=0\forall v\in Y\}$ , $X_{1}=\{u\in H_{\triangle}^{2}|(u, v)_{\triangle}=0\forall v\in Y\}$ ,

where $(\cdot,$ $\cdot)$ is the usual $L^{2}$ -innerproduct and $(u, v)_{\Delta}=(\triangle u, \triangle v)+(u, v)$, which is the
innerproduct of $H_{\triangle}^{2}$ .

Theorem. Let $H_{X}$ be the set of all $(u, v, \theta)$ satisfying the condition:

$u\in X_{1},$ $v\in X_{0},$ $\theta\in L^{2},$ $\int_{\Omega}(\theta-\alpha\triangle u)dx=0$ .

Then, there exist positive constants $C$ and $\gamma$ such that

$\Vert\triangle u(t, \cdot)\Vert^{2}+\Vert u(t, \cdot)\Vert+\Vert u_{t}(t, \cdot)\Vert^{2}+\Vert\theta(t, \cdot)\Vert^{2}$

(13)
$\leq Ce^{-\gamma t}\{\Vert\triangle u_{0}\Vert+\Vert u_{0}\Vert^{2}+\Vert u_{1}\Vert^{2}+\Vert\theta_{0}\Vert^{2}\}$

4 On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992),
889-899.
5 On the exponential decay of the energy of a linear thermoelastic plate, Preprint in 1993.
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provided that $(u_{0}, u_{1}, \theta_{0})\in H_{X}$ and $u$ and $\theta$ solve the problem (1), (2), (3) and (N).

Moreover, for general initial data $u_{0}\in H_{\triangle}^{2},$ $u_{1}\in L^{2}$ and $\theta_{0}\in L^{2}$ , we can represent
solutions by the relation

$u(t, x)=u_{E}(t, x)+u_{S}(t, x),$ $\theta(t, x)=\theta_{E}(t, x)+\theta_{S}(t, x)$

where $u_{E}$ and $\theta_{E}$ satisfy the estimate of type (13) and

$u_{S}(t, x)=ty_{1Y}(x)+w_{0}(x)+u_{0y}(x),$ $\theta_{S}(t, x)=\theta_{0}(x)-\theta_{1}$ ;

$\theta_{1}=\frac{1}{(1+\alpha^{2})|\Omega|}\int_{\Omega}(\theta_{0}(x)-\alpha\triangle u_{0}(x))dx$ ;

$w_{0}(x)\in X_{1}$ , $\triangle w_{0}=-\alpha\theta_{1}$ in $\Omega$ ;
$u_{0}(x)=u_{0X}(x)+u_{0Y}(x)\in X_{1}\oplus Y=H_{\Delta}^{2}$ ;
$u_{1}(x)=u_{1X}(x)+u_{1Y}(x)\in X^{0}\oplus Y=L^{2}$ .

When $h=0$ , to show that (Q.2) has an affirmative answer is an open problem for (D)
and (N). Moreover, when $h>0$ , (Q.1) and (Q.2) have so far no answers at all for (D)
and (N). This is, I think, very interesting problem.
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