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1 Introduction.
All- spaces considered here are assumed to be separable metric spaces.

Maps are continuous functions. By a compactum we mean a compact metric
space. A continuum is connected, nondegenerate compactum. Let $R$ be the
real line and $R$’ the Euclid $e\mathrm{a}\mathrm{n}n$ -dimensional space. Let $S$ be the unit circle
in the plane $R^{2}$ . For a manifold $M,$ $\partial M$ denotes the manifold boundary. Let
$F$ : $Yarrow Y$ be a homeomorphism of a space $Y$ (onto itself) with metric $d$

and let A be a compact subset of $Y$ . Then A is said to be an attractor of $F$

provid $e\mathrm{d}$ that there exists an open neighborhood of $U$ of A in $Y$ such that

$F(\mathrm{C}1(U))\subset U$ and $\Lambda=\cap,\geq 0F’(U)$ .

Note that $F(\Lambda)=\Lambda$ . Moreover, if for each $y \in Y\lim,arrow\infty d(p’(y), \Lambda)=0$,
then we say that A is a global attractor of $F$ , where $d(A, B)= \inf\{d(a, b)|a\in$

$A,$ $b\in B\}$ for sets $A,$ $B$ . Let $f$ : $Xarrow X$ and $g:Yarrow Y$ be maps. Then $f$

is topologically conjugate to $g$ if there is a homeomorphism $\phi:Xarrow Y$ such
that $\phi\cdot f=g\cdot\phi$ .

The notion of shift maps is very convenient for dynamical systems. Let
X $=\{X_{l},p_{*,.+1}|i=1_{\backslash ,\prime}2, \ldots\}$ be an inverse sequence of compacta $X_{*}$ and
maps $pi,i+1$ : $X_{1+1}.arrow X_{i}(;=1,2, \ldots)$ and let

invlim $\mathrm{X}=$ { $(x_{1}.)\dot{\iota}\infty|=1Xi\in \mathrm{x}_{i,p_{1},i+}\iota(x_{i+}1)=x_{i}$ for each $i$ } $\subset\Pi_{1=1}^{\infty}x_{:}$ .
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Then invlim X is a topolog-ical space as a subspace of the product space
$\prod_{*=1}^{\infty}X_{*}$ . Then invlim X is a $\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{a}}}\mathrm{C}\{\mathrm{u}\mathrm{m}$ . Let $f$ : $Xarrow X$ be a map of a
compactum $X$ . Consider the following special inverse limit space:

(X, $f$ ) $=$ { $(x_{i})_{i}\infty|=1:x\in X$ and $f(X_{1+1})=x_{i}$ for each $i\geq 1$ }.

Define a map $\tilde{f}$ : (X, $f$ ) $arrow(X, f)$ by $\tilde{f}(x_{1},x_{2}, \ldots, )=(f(x_{1}), x_{1}, \ldots, )$ . Then
$\tilde{f}$ is a homeomorphism and it is called the shift map of $f$ . A map $\beta$ : $Xarrow Y$

of compacta is a near homeomorphism if $f$ can be approximated arbitrarily
closely by homeomorphisms from $X$ onto $Y$ .

Isbell proved that if $X=\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{h}\mathrm{m}\{x_{i},p|,.+1\}$ where each $X_{1}$ is a compactum
which can be embedded into $R^{\cdot}$ ( $n$ fixed), then $X$ can be embedd $e\mathrm{d}$ into $R^{2}$ .
Barge and Martin proved that if $f$ : $Iarrow I$ is any map of the unit int$e$rval
$I=[0,1]$ , then there is a homeomorphism $F$ : $R^{2}arrow R^{2}$ such that (I, $f$ ) is
contained in $-R_{-}^{2},$ $F$ is a.n $\mathrm{e}\mathrm{x}\tau_{-,\mathrm{e}\mathrm{n}8}\mathrm{i}\mathrm{o}\mathrm{n}$ of $\mathrm{t}_{}\mathrm{h}\mathrm{e}$ shift map $\tilde{f}$ : (I, $f$ ) $arrow(I, f)$ , and
(I, $f$ ) is a global attractor of $F$ .

2 Shift maps of compact polyhedra in $R^{n}$ .
In this section, we obtain the following theorem which is a generalization

of $\mathrm{B}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}-\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{n}^{\gamma}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}_{J}$and which is related to Isbdl’s theorem.

Theorem 2.1 If $P$ is a compact polyhedron in $R^{\iota}$ and $f$ : $Parrow P$ is any
map, then there is a homeomorphism $F$ : $R^{2\sim}arrow R^{2n}$ such that $(P, f)$ is
contained in $R^{3}’:F$ is an extension of the shifl map $\tilde{\beta}$ : $(P, f)arrow(P, f)$ of
$f$ , and $(P, f)$ is an attractor of F. $M_{\mathit{0}\gamma eo}ve\gamma_{y}$ if $P$ is collapsible, then $F$ can
be chosen so that $(P, f)$ is a global attracto $r$ of $F$ .

To prove the above theorem, we need the following lemma which was
$\mathrm{p}$ roved by $\mathrm{B}$ rown.

Lemma 2.2 Let $\mathrm{X}=\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{h}\mathrm{m}\{X_{*},p_{i},*+1\}$ be an inverse sequence of compacta
$X_{i}$ . If each $p:,i+1$ : $X_{i+1}arrow X_{1}$ ts $a$ near $h_{\mathit{0}}meomo\gamma ph3Smf$ then invhmX is
homeomorphzc to $X_{i}$ for each $i$ .

By using the above lemma, we can easily obtain the following.
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Lemma 2.3 Suppose that $X$ is a compact subset of a compactum $\mathrm{Y}$ and
$f$ : $Xarrow X$ ; a map of X. If there $\iota s$ an extenston $h$ : $Yarrow Y$ of $f$ such
that $h,s$ $a$ near homeomorphism and there is a nezghborhood $N$ of $X$ in $Y$

such that $h(N)\subset X_{y}$ then there ,
$s$ a homeomorphism $F$ : $Yrightarrow Y$ such that

$F$ is topologically $con_{\mathit{1}^{u}\mathit{9}}ate$ to $\tilde{h}$ : $(Y, h)arrow(Y, h),$ $(X,\beta)$ is contarned in $Y$ ,

$F$ is an extension of the shift map $f$ : (X, $f$ ) $arrow(X, f)$ of $f$ , and (X, $f$)’ $s$ an
attractor of $F$ .

3 Shift maps of the unit circle S.

In this section, for the special case $P=S$ we obtain the following.

Theorem 3.1 Let $f$ : $Sarrow S$ be any map of the unit circle $S$ , then there ’ $s$

a homeomorph ,$smF$ : $R^{3}arrow R^{3}$ such that $(^{\mathrm{C}^{\gamma}}\llcorner" \beta)$ is contained in $R^{3},$ $F$ is an
extension of the shtft map $\tilde{f}$ : $(S, f)arrow(S, f)_{y}$ and $(S, f)\iota s$ an attractor of
$F$ .

Corollary 3.2 Let $f$ : $Sarrow S$ be a map of the unit crrcle $Swi\mathrm{f}h|\deg(f)|\geq 1$ ,

then there is a homeomorphism $F$ : $S^{3}arrow S^{3}$ of the 3-sphere $S^{3}$ such that
$(S, f)\subset S^{3}\text{ノ}F$ is an extension of $\tilde{f}_{f}(S_{J}\backslash \beta)\iota s$ an attractor of $F$ and if $X$ is
the attractor of $F^{-1}$ , then $F^{-1}|X$ : $Xarrow X$ is topologically conjugate to the

shift map $\tilde{g}$ : $(S, g)arrow(S, g)_{f}$ where $g$ : $Sarrow S$ is the natural covering map
wzth deg(9) $=\deg(f)$ .

Note that there is a finite graph $c_{r}$ which is naturally $e$mbedded into $R^{3}$

and a homeomorphism $f$ : $Garrow G$ such that there is no near homeomorphism
$F$ : $R^{3}arrow R^{3}$ which in an extension of $f$ . Naturally, we have the following
problem.

Problem 3.3 If $f$ : $Garrow G\dot{l}S$ a map of any $fin;te$ graph $G_{f}$ does there exist
a homeomorphism $F:R^{3}arrow R^{3}$ such that $(G, f)\in R^{3},$ $F\iota s$ an extension of
the shift map $\tilde{f}:(G, f)arrow(G, \beta)$ , and $(G, f)$ is an attractor of $F$ ?
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4Everywhere chaotic homeomorphisms in
the sense of Li-Yorke on manifolds and $\mathrm{k}-$

dimensional Menger manifold.
In this section, we deal with everywhere chaotic homeomorphisms in the
sense of Li-Yorke. By using the notions of attractor and shift map, we can
show that every manifold and $\mathrm{k}$-dimensional Menger manifold admit such
chaotic homeomorphisms.

A map $\beta$ : $Xarrow X$ is sensitive if there is $\tau>0$ such that for each $x\in X$

and each neighborhood $U$ of $x$ in $X$ , there is a point $y\in U$ and a natural
number $n\geq 0$ such that $d(f^{u}(x), f’(y))>\tau$ . A map $f:Xarrow X$ is accessible
if for any nonempty open sets $U,$ $V$ of $X$ and each $\epsilon>0$ , there are two points
$x\in U,$ $y\in V$ and a natural number $n\geq 0$ such that $d(\beta’(x), f’(y))<\epsilon$ .

Let $f$ : $\mathrm{Y}arrow Y$ be a map and $\tau>0$ . A subset $S$ of $Y$ is called a $\tau-$

scrambled set of $f$ if the next three conditions are satisfied: For each $x,y\in S$

with $x\neq y$ ,

1. $\lim\sup,arrow\infty d(f’(x), f^{n}(y))>\tau$ ,

2. $\lim\inf,arrow\infty d(\beta’(\Sigma), \beta\cdot(y))=0$ , and

3. $\lim\sup.arrow\infty d(f^{n}(X), f(p))>\tau$ for any periodic point $p$ of $\beta$ .
If there is an uncountable $\tau$-scrambled set $S$ of $f$ , then we say that $\beta$ is
$\tau$ -chaotic (in the sense of $Li$-Yorke) on $S$ . A map $f$ : $Yarrow Y$ is everywhere
chaotic if there is $\tau>0$ such that $\beta$ is $\tau$-chaotic on almost all Cantor sets
in $Y$ , i.e., for any closed subset $A$ of $Y$ and $\epsilon>0$ , there is an Cantor set $C$

in $\mathrm{Y}$ such that $d_{H}(A, C)<\epsilon$ and $f$ is $\tau$-chaotic on $C$ , where $d_{H}$ denotes the
Hausdorff metric.

Then we have the following characterization of everywhere chaotic home-
omorphism.

Theorem 4.1 Let $\beta$ : $Xarrow X$ be a map of a compactum X. Then $\beta$ is
everywhere chaotic if and only if $f$ is sensitive and accessible.

Then we have the following theorem.

Theorem 4.2 Every compact $n$-manifold $(n\geq 2)$ admits an everywhere
chaotic homeomorphism.
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For the case of Menger $\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\dot{\mathrm{f}}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{S}$ , we obtain the following theorem.

Theorem 4.3 If $P$ is a compact connected polyhedron wrth $d;_{mP}\leq k_{f}$ then

there is a $k$-dimensional compact Menger manifold $M^{\mathit{1}}$ such that $M^{t}$ is $(k-$

$1)- h_{om}oto\mathrm{p}y$ equivalent to $P$ sattsfymg the $;ol\iota_{own},g$ property; if a map $\beta$ :
$Parrow P$ is $(k-1)$ -homotopic to $id_{P}$ , ihen there is a $Z$-set $P^{1}$ such $t.hat$

$P^{\dagger}$ is homeomorphic to $P,$ $(P, \beta)$ is contained in $M^{1}-P^{1}$ and there is a
homeomorphism $F$ : $M^{\mathrm{g}}arrow M^{k}$ such that $F|P’=id_{P’},$ $(P, f)$ is a global
attractor of $F|M^{t}-P^{\mathrm{t}}$ and $F1s$ an exfension of $\tilde{\beta}$ : $(P, \beta)arrow(P, f)$ In

$p\overline{u};^{-}\cdot tiC\mathrm{u}^{7}‘\overline{a}\Gamma,$ if $Pi\overline{s}(k-1)$ -conn$e\overline{c}ted\overline{c}\overline{\circ}t\overline{i}\overline{\iota}pactpolyhedr\cdot\partial nw\iota\#\iota di_{Y\overline{i}\overline{l}}P\underline{\backslash /}k$ ,

then $for$
-

any map $f$ : $Parrow P,$ the $\mathrm{r}e$ is a homeomorphism $F$ : $\mu^{k}arrow\mu^{f}$

of the k-dimensional Menger compactum $\mu^{f}$ such that $(P, f)$ is contained in
$\mu^{\mathit{1}}-\{\mathrm{r}\}(*\in\mu^{\mathit{1}})_{\gamma}F(*)=*_{f}(P, f)$ is a global attractor of $F|\mu^{f}-\{*\}$ , and
$F$ is an extension of $\tilde{f}$ .

Corolary 4.4 Let $f$ : $Garrow G$ be any map of a compact connected graph $G$ .
Then there is a homeomorphism $F$ : $\mu^{1}arrow\mu^{1}$ of the Menger curve $\mu^{1}$ such

that $(G, \beta)\subset\mu^{1}-\{*\},$ $F\zeta*)=*,$ $(G, f)$ is a global attractor of $F|\mu^{1}-\{*\}$

and $F$ is an extension of $f$ .

By using the above theorem, we obtain the following.

Theorem 4.5 Every compact Menger manifold admits an everywhere chaotic
homeomorphism. In particular, every compact Menger manifold admits a

sensitive homeomorphism.

Remark 4.6 There is a $Z$-set $Xm\mu^{1}(k\geq 1)$ such that for any homeomor-

phism $h$ : $Xarrow X_{f}$ there is no homeomorphism $F$ : $\mu^{\mathrm{S}}arrow\mu^{k}$ so that $F$ is an

extension of $h$ and $X$ is an attractor of $F$ .

For the case of chaos of Devaney, the following problem remains open.

Problem 4.7 Do compact Menger manifolds admit chaotic homeomorph’$sms$

in the sense of Devaney ?
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