SHIFT MAPS AND ATTRACTORS

Hisao Kato

Institute of Mathematics, University of Tsukuba, Ibaraki 305, Japan

1 Introduction.

All spaces considered here are assumed to be separable metric spaces. Maps are continuous functions. By a compactum we mean a compact metric space. A continuum is connected, nondegenerate compactum. Let R be the real line and R^* the Euclidean *n*-dimensional space. Let S be the unit circle in the plane R^2 . For a manifold M, ∂M denotes the manifold boundary. Let $F: Y \to Y$ be a homeomorphism of a space Y (onto itself) with metric dand let Λ be a compact subset of Y. Then Λ is said to be an *attractor* of Fprovided that there exists an open neighborhood of U of Λ in Y such that

$$F(\operatorname{Cl}(U)) \subset U$$
 and $\Lambda = \bigcap_{n>0} F^n(U)$.

Note that $F(\Lambda) = \Lambda$. Moreover, if for each $y \in Y \lim_{n \to \infty} d(F^n(y), \Lambda) = 0$, then we say that Λ is a global attractor of F, where $d(A, B) = \inf\{d(a, b) | a \in A, b \in B\}$ for sets A, B. Let $f: X \to X$ and $g: Y \to Y$ be maps. Then f is topologically conjugate to g if there is a homeomorphism $\phi: X \to Y$ such that $\phi \cdot f = g \cdot \phi$.

The notion of shift maps is very convenient for dynamical systems. Let $\mathbf{X} = \{X_{\mathbf{x}}, p_{i,i+1} | i = 1, 2, ...\}$ be an inverse sequence of compacta X_i and maps $p_{i,i+1} : X_{i+1} \to X_i (i = 1, 2, ...)$ and let

$$\operatorname{invlim} \mathbf{X} = \{(x_i)_{i=1}^{\infty} | x_i \in X_i, \ p_{i,i+1}(x_{i+1}) = x_i \text{ for each } i\} \subset \prod_{i=1}^{\infty} X_i.$$

Then invlim X is a topological space as a subspace of the product space $\prod_{i=1}^{\infty} X_i$. Then invlim X is a compactum. Let $f : X \to X$ be a map of a compactum X. Consider the following special inverse limit space:

$$(X, f) = \{(x_i)_{i=1}^{\infty} | x_i \in X \text{ and } f(x_{i+1}) = x_i \text{ for each } i \ge 1\}.$$

Define a map $\tilde{f}: (X, f) \to (X, f)$ by $\tilde{f}(x_1, x_2, \ldots,) = (f(x_1), x_1, \ldots,)$. Then \tilde{f} is a homeomorphism and it is called the *shift map* of f. A map $f: X \to Y$ of compacta is a *near homeomorphism* if f can be approximated arbitrarily closely by homeomorphisms from X onto Y.

Is bell proved that if $X = \operatorname{invlim} \{X_i, p_{i,i+1}\}$ where each X_i is a compactum which can be embedded into R^* (*n* fixed), then X can be embedded into R^{2*} . Barge and Martin proved that if $f: I \to I$ is any map of the unit interval I = [0, 1], then there is a homeomorphism $F: R^2 \to R^2$ such that (I, f) is contained in R^2 , F is an extension of the shift map $\tilde{f}: (I, f) \to (I, f)$, and (I, f) is a global attractor of F.

2 Shift maps of compact polyhedra in \mathbb{R}^n .

In this section, we obtain the following theorem which is a generalization of Barge-Martin's theorem, and which is related to Isbell's theorem.

Theorem 2.1 If P is a compact polyhedron in \mathbb{R}^n and $f: P \to P$ is any map, then there is a homeomorphism $F: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ such that (P, f) is contained in \mathbb{R}^{2n} , F is an extension of the shift map $\tilde{f}: (P, f) \to (P, f)$ of f, and (P, f) is an attractor of F. Moreover, if P is collapsible, then F can be chosen so that (P, f) is a global attractor of F.

To prove the above theorem, we need the following lemma which was proved by Brown.

Lemma 2.2 Let $\mathbf{X} = \operatorname{invlim}\{X_i, p_{i,i+1}\}$ be an inverse sequence of compacta X_i . If each $p_{i,i+1} : X_{i+1} \to X_i$ is a near homeomorphism, then $\operatorname{invlim} \mathbf{X}$ is homeomorphic to X_i for each *i*.

By using the above lemma, we can easily obtain the following.

Lemma 2.3 Suppose that X is a compact subset of a compactum Y and $f: X \to X$ is a map of X. If there is an extension $h: Y \to Y$ of f such that h is a near homeomorphism and there is a neighborhood N of X in Y such that $h(N) \subset X$, then there is a homeomorphism $F: Y \to Y$ such that F is topologically conjugate to $\tilde{h}: (Y,h) \to (Y,h), (X,f)$ is contained in Y, F is an extension of the shift map $f: (X, f) \to (X, f)$ of f, and (X, f) is an attractor of F.

3 Shift maps of the unit circle S.

In this section, for the special case P = S we obtain the following.

Theorem 3.1 Let $f: S \to S$ be any map of the unit circle S, then there is a homeomorphism $F: \mathbb{R}^3 \to \mathbb{R}^3$ such that (S, f) is contained in \mathbb{R}^3 , F is an extension of the shift map $\tilde{f}: (S, f) \to (S, f)$, and (S, f) is an attractor of F.

Corollary 3.2 Let $f: S \to S$ be a map of the unit circle S with $|\deg(f)| \ge 1$, then there is a homeomorphism $F: S^3 \to S^3$ of the 3-sphere S^3 such that $(S, f) \subset S^3$, F is an extension of \tilde{f} , (S, f) is an attractor of F and if X is the attractor of F^{-1} , then $F^{-1}|X: X \to X$ is topologically conjugate to the shift map $\tilde{g}: (S, g) \to (S, g)$, where $g: S \to S$ is the natural covering map with $\deg(g) = \deg(f)$.

Note that there is a finite graph G which is naturally embedded into R^3 and a homeomorphism $f: G \to G$ such that there is no near homeomorphism $F: R^3 \to R^3$ which in an extension of f. Naturally, we have the following problem.

Problem 3.3 If $f: G \to G$ is a map of any finite graph G, does there exist a homeomorphism $F: \mathbb{R}^3 \to \mathbb{R}^3$ such that $(G, f) \in \mathbb{R}^3$, F is an extension of the shift map $\tilde{f}: (G, f) \to (G, f)$, and (G, f) is an attractor of F?

4 Everywhere chaotic homeomorphisms in the sense of Li-Yorke on manifolds and kdimensional Menger manifold.

In this section, we deal with everywhere chaotic homeomorphisms in the sense of Li-Yorke. By using the notions of attractor and shift map, we can show that every manifold and k-dimensional Menger manifold admit such chaotic homeomorphisms.

A map $f: X \to X$ is sensitive if there is $\tau > 0$ such that for each $x \in X$ and each neighborhood U of x in X, there is a point $y \in U$ and a natural number $n \ge 0$ such that $d(f^n(x), f^n(y)) > \tau$. A map $f: X \to X$ is accessible if for any nonempty open sets U, V of X and each $\epsilon > 0$, there are two points $x \in U, y \in V$ and a natural number $n \ge 0$ such that $d(f^n(x), f^n(y)) < \epsilon$.

Let $f: Y \to Y$ be a map and $\tau > 0$. A subset S of Y is called a τ -scrambled set of f if the next three conditions are satisfied: For each $x, y \in S$ with $x \neq y$,

1. $\limsup_{x\to\infty} d(f^*(x), f^*(y)) > \tau$,

2. $\liminf_{x\to\infty} d(f^*(x), f^*(y)) = 0$, and

3. $\limsup_{n\to\infty} d(f^n(x), f^n(p)) > \tau$ for any periodic point p of f.

If there is an uncountable τ -scrambled set S of f, then we say that f is τ -chaotic (in the sense of Li-Yorke) on S. A map $f: Y \to Y$ is everywhere chaotic if there is $\tau > 0$ such that f is τ -chaotic on almost all Cantor sets in Y, i.e., for any closed subset A of Y and $\epsilon > 0$, there is an Cantor set C in Y such that $d_H(A, C) < \epsilon$ and f is τ -chaotic on C, where d_H denotes the Hausdorff metric.

Then we have the following characterization of everywhere chaotic homeomorphism.

Theorem 4.1 Let $f : X \to X$ be a map of a compactum X. Then f is everywhere chaotic if and only if f is sensitive and accessible.

Then we have the following theorem.

Theorem 4.2 Every compact n-manifold $(n \ge 2)$ admits an everywhere chaotic homeomorphism.

For the case of Menger manifolds, we obtain the following theorem.

Theorem 4.3 If P is a compact connected polyhedron with dim $P \leq k$, then there is a k-dimensional compact Menger manifold M^k such that M^k is (k-1)-homotopy equivalent to P satisfying the following property; if a map $f: P \rightarrow P$ is (k-1)-homotopic to id_P , then there is a Z-set P' such that P' is homeomorphic to P, (P, f) is contained in $M^k - P'$ and there is a homeomorphism $F: M^k \rightarrow M^k$ such that $F|P' = id_{P'}, (P, f)$ is a global attractor of $F|M^k - P'$ and F is an extension of $\tilde{f}: (P, f) \rightarrow (P, f)$. In particular, if P is (k-1)-connected compact polyhedron with dim $P \leq k$, then for any map $f: P \rightarrow P$, there is a homeomorphism $F: \mu^k \rightarrow \mu^k$ of the k-dimensional Menger compactum μ^k such that (P, f) is contained in $\mu^k - \{*\} (* \in \mu^k), F(*) = *, (P, f)$ is a global attractor of $F|\mu^k - \{*\}$, and F is an extension of \tilde{f} .

Corollary 4.4 Let $f: G \to G$ be any map of a compact connected graph G. Then there is a homeomorphism $F: \mu^1 \to \mu^1$ of the Menger curve μ^1 such that $(G, f) \subset \mu^1 - \{*\}, F(*) = *, (G, f)$ is a global attractor of $F|\mu^1 - \{*\}$ and F is an extension of f.

By using the above theorem, we obtain the following.

Theorem 4.5 Every compact Menger manifold admits an everywhere chaotic homeomorphism. In particular, every compact Menger manifold admits a sensitive homeomorphism.

Remark 4.6 There is a Z-set X in $\mu^{\mathbf{k}}$ $(k \ge 1)$ such that for any homeomorphism $h: X \to X$, there is no homeomorphism $F: \mu^{\mathbf{k}} \to \mu^{\mathbf{k}}$ so that F is an extension of h and X is an attractor of F.

For the case of chaos of Devaney, the following problem remains open.

Problem 4.7 Do compact Menger manifolds admit chaotic homeomorphisms in the sense of Devaney ?