
Isomorphism of restricted chain-like graphs

Koichi Yamazaki

University of Electro-Communications
1-5-1 Chofugaoka, Chofu

Tokyo 182, Japan
yamazaki@cso.cs.uec.ac.jp

Abstract
We consider the isomorphism problem for the following set of graphs $L$ :

for any graph $H\in L,$ $H$ can be decomposed by partitions of nodes $V_{0},$ $V_{1},$ $\cdots$ , $V_{m}$ such that
(1) $|V_{i}|\leq k$ for each $0\leq i\leq m,$

$V(H)=0\leq i\leq\cup V_{i}m’ V_{:}\cap V_{j}=\emptyset,$
$i\neq j$ ,

(2) there no exist edges $\{x, y\}$ for any $x\in V_{1}.,$ $y\in V_{j}$ , and $0\leq i<j\leq m,$ $j-i\geq 2$ ,
(3) the subgraph induced by V. is connected for each $0\leq i\leq m$ .

In this paper, we will show that the isomorphism problem for $L$ can be solved in $O(n^{3})$ time.

1 Introduction
The problem of finding an efficient algorithm for testing whether two graphs are isomorphic is of
fundamental importance the graph theory. Many classes of sets of graphs are investigated such as
planar graphs [5], interval graphs [7], bounded degree graphs [8], and partial $k$-trees [1]. Bodlaender
shows that for partial $k$-trees the isomorphism problem can be solved in $O(n^{k+4}\cdot)5$ time [1]. The
result leads the fact that for $k$ bounded bandwidth graphs the isomorphism pro,blem can be solved in
$O(n^{k+4}\cdot)5$ time.

We focus our attention to the following natural question: Is it possible to remove $k$ from the power,
that is, is there a constant $\alpha$ such that for each $k$ the isomorphism problem for $k$ bounded bandwidth
graphs can be solved in $O(n^{\alpha})$ time. If it is impossible to remove $k$ from the power and furthermore
the power, described by $f(k)$ , is unbounded, then for the set of all graphs the isomorphism problem
is not in P.

It is known that if a set of graphs $L$ is of bounded bandwidth then $L$ is chain-like graphs, namely
there exists a constant $k$ such that for any graph $H\in L,$ $H$ can be decomposed by a partitions of
nodes $V0,$ $V_{1},$ $\cdots,V_{m}$ with following properties :

(1) $|V_{1}|\leq k$ for each $0 \leq i\leq mV(H)=\bigcup_{0\leq i\leq m}V_{1},$
$V_{1}\cap V_{j}=\emptyset,$ $i\neq j$ ,

(2) there no exist edges $\{x,y\}$ for any $x\in V_{i,y}\in V_{j},$ $0\leq i<j\leq m,$ $j-i\geq 2$ .
In this paper, we consider the isomorphism problem for chain-like graphs with the following addi-

tional condition:
(3) for the above $V_{i}$ , the subgraph induced by $V_{1}$ is connected.

In this paper, we show that the isomorphism problem for the chain-like graphs with the additional
condition (3) can be solved in $O(n^{3})$ time. If there exists a constant $\alpha$ such that the isomorphism
problem without the condition (3) can be solved in $O(n^{\alpha})$ , then the isomorphism problem for a set of
bounded bandwidth graphs can be also solved in $O(n^{\alpha})$ .

2 Preliminaries
We consider finite undirected and connected graphs without loops and without multiple edges. For a
graph $X$ , we denote the set of nodes in $X$ by $V(X)$ .
Definition 2.1 A set of graphs $L$ is $k$ chain-like graphs if for any graph $H\in L,$ $H$ can be decomposed
by a partitions of nodes $V_{0},$ $V_{1},$ $\cdots,V_{m}$ such that

(1) $|V_{i}|\leq k$ for each $0\leq\dot{i}\leq m,$
$V(H)= \bigcup_{0\leq i\leq m}V_{i},$

$V_{i}\cap V_{j}=\emptyset,\dot{i}\neq j$,
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(2) there no exist edges $\{x,y\}$ for any $x\in V_{i,y}\in V_{j},$ $0\leq i<j\leq m,$ $j-i\geq 2$ .
We call the list of the partitions $(V_{0}, V_{1}, \cdots,V_{m})$ partition list with bounded width $k$ of $H$ .
A set of graphs $L$ is $k$ chain-like graphs with connected condition if $L$ holds the above conditions (1),
(2), and

(3) for each $0\leq i\leq m$ , the subgraph induced by $V_{*}$ is connected.
A set of graphs $L$ is chain-like graphs (with connected condition) if there exists a constant $k$ such that
$L$ is $k$ chain-like graphs (with connected condition, respectively).

Let $H$ be a graph, $u$ and $v$ be nodes in $V(H)$ , and $S=\{s_{1}, S_{2}, \cdots,s_{n}\}$ be a subset of $V(H)$ . By
$d_{H}(u,v)$ we denote the distance between $u$ and $v$ in $H$ , and by $d_{H}(S,u)$ we denote $\min\{d_{H}(s_{1}, u)$ ,
$d_{H}(s_{2}, u),$ $\cdots,$ $d_{H}(s_{n}, u)\}$ . We denote the set of nodes $\{u|d=d_{H}(s,u)\}$ by $l_{S}^{d}(H)$ . We call the
list of the levels $(l_{S}^{0}(H),l_{S}^{1}(H),$ $\cdots,lm(sH))$ , denoted by $level_{H(s)}$ , the level list (with start set $S$ ),
where $m=$ $\max d_{H}(s, u)$ . We call $m$ the length of $level_{H}(s)$ and denote by $|level_{H()1}s$ and we say

$u\in V(H)$

$0\leq\dot{*}\leq m\mathrm{m}\mathrm{a}\mathrm{x}|l_{S}:(H)|$ the width (of $level_{H}(S)$).

Definition 2.2 For a graph $H$ , a integer $k$ is the distancewidth of $H$ if $k=$ $\min\{j|j$ is the
$S\subseteq V(H)$

width of $level_{H}(S)\}$ . Similarly, $k$ is the rooted distancewidth of $H$ if $k=$ $\min\{j|j$ is the width of
$u\in V\langle H)$

$level_{H(\{}u\})\}$ .
Definition 2.3 A set of graphs $L$ is $k$ bounded (rooted) distancewidth if for any graph $H\in L$ the
(rooted) distancewidth of $H$ is at most $k$ . A set of graphs $L$ is bounded (rooted) distancewidth if there
exists a constant $k$ such that $L$ is $k$ bounded (rooted) distancewidth.
Definition 2.4 Let $C_{1}$ and $C_{2}$ be classes of sets of graphs. The class $C_{2}$ covers the class $C_{1}$ , denoted
by $C_{1}\prec C_{2}$ , if for any set $L_{1}\in C_{1}$ , there exists a set $L_{2}\in C_{2}$ such that $L_{1}\subseteq L_{2}$ .
Example 2.1

Let $D_{e}$ be the class {$L|L$ is a set of graphs with bounded degree},
$\mathcal{T}$ be the class {$L|L$ is a set of graphs with bounded treewidth},
$C_{u}$ be the class {$L|L$ is a set of graphs with bounded cutwidth},
$B$ be the class {$L|L$ is a set of graphs with bounded bandwidth},
$C_{h}$ be the class {$L|L$ is chain-like graphs}, and
$D_{r}$ be the class {$L|L$ is bounded rooted distancewidth}.

Then $D_{\mathrm{e}}\neq \mathcal{T}$ and $\mathcal{T}\neq D_{\mathrm{e}}$ ,
$C_{h}\prec \mathcal{B}$ and $B\prec C_{h}$ ,
$D_{r}\prec B\prec C_{u}\prec \mathcal{T}$, and
$D_{r}\prec \mathcal{B}\prec c_{u}\prec v_{\mathrm{e}}$ .

(See [6] table 2 in p.550)

Proposition 2.1 Let $C_{1}$ and $C_{2}$ be classes of sets of graphs, and assume that there exists a constant
$\alpha$ such that for any $L\in C_{2}$ the isomorphism problem for $L$ can be solved in $O(n^{\alpha})$ . Then, $C_{2}$ covers
$C_{1}$ implies that for any $L\in C_{1}$ the isomorphism problem for $L$ can be solved in $O(n^{\alpha})$ .

3 Results

Rooted graphs $X_{r}\dot{.}$ with root $r_{x}\in V(X)$ and $\mathrm{Y}_{r_{y}}$ with $r_{y}\in V(\mathrm{Y})$ are isomorphic if there exists a
isomorphic bijection $f$ : $V(\mathrm{Y})arrow V(X)$ such that $f(y_{r})=x,$ .
Lemma 3.1 Let $X$ and $\mathrm{Y}$ be $k$ chain-like graphs and $r_{x}$ and $r_{y}$ be nodes in $V(X)$ and $V(\mathrm{Y})$ respec-
tively. Then given the level list levelx $(r_{x})$ with width $k$ , and $level_{\mathrm{Y}}(r_{y})$ (it may be not level list with
width $k$) as inputs, the decision whether the rooted graph $X_{r_{x}}$ and $\mathrm{Y}_{r_{y}}$ are isomorphic can be solved in
$O(|V(X)|)$ .

2



Proof. Let $m_{x}=|level_{H(}r$ )$x|,$ $m_{y}=|level_{H(}r$ )$y|$ , and $R_{12},$$R,$ $\cdots,R_{m_{x}}$ be sets of isomorphisms.
By $X_{i}$ and $\mathrm{Y}_{1}$ , we denote the induced subgraphs by $l_{r_{x}}:(X)$ and $l_{r_{\mathrm{V}}}|(\mathrm{Y})$ respectively. The following
procedure sub-RCGI work correctly in $O(|V(X)|)$

Procedure sub-RC$\mathrm{G}\mathrm{I}(levelH(rx),level_{H(}rx))$

if $m_{x}\neq m_{y}$ then return false
$\mathrm{i}\mathrm{f}|X_{i}|\neq|\mathrm{Y}_{i}|$ for some $1\leq i\leq m_{x}$ then return false
if $X_{\dot{\iota}}$ and $\mathrm{Y}_{1}$ are not isomorphic for some $1\leq i\leq m_{x}$ then return false
Comput all isomorphisms to $X_{i}$ from $\mathrm{Y}_{1}$ for each $1\leq i\leq m_{x}$

(We say the isomorphisms $f_{0}^{i},f_{1}|,$ $\cdots,fj.$ )$\dot{\iota}$

.

Initialize $R_{1}:=\{f_{0}^{1},f_{1}^{1}, \cdots, f^{1}j_{1}\}$ and $R::=\emptyset$ for each $2\leq i\leq m_{x}$

for $i:=1$ to $m_{x}-1$ do
for each isomorphism $f_{s}^{1}\in R_{:}$

if for all $u\in V(\mathrm{Y}_{1})$ and $v\in V(\mathrm{Y}_{1+1})$ ,
$u$ and $v$ are adjacent iff $f_{s}^{i}(u)$ and $f_{t}^{i+1}(v)$ are adjacent
then add $f_{t}^{1+1}$ in $R_{1+1}$ .

if $R_{m_{x}}\neq\emptyset$

then return true
else return false

end.

$\square$

Theorem 3.2 Let $L$ be a set of graphs with $k$ bounded rooted distancewidth. If graphs $X$ and $\mathrm{Y}$ are
in $L$ , then the decision whether $X$ and $\mathrm{Y}$ are isomorphic can be solved in $O(|V(x)|^{3})$ time.

Proof. Let $X$ and $\mathrm{Y}$ be graphs in $L$ . From $X\in L,$ $X$ has a level list levelx $(X_{i})$ with at most width
$k$ for some $x_{i}\in V(X)$ .
Procedure RCGI

Construct $level_{X()}X_{i}$ for each $1\leq i\leq n(V(X)=\{x_{1}, \cdots,x_{n}\})$

Find a levelx $(X_{i})$ with at most width $k$ and fix such $x_{i}$ as $x$

Construct levely $(y_{i})$ for each $1\leq\dot{i}\leq n(V(\mathrm{Y})=\{y_{1}, \cdots, y_{n}\})$

for $i:=1$ to $n$ do
if sub-RCGI($levelx(x),$ $level_{\mathrm{Y}(y))}i=$ true then return true

return false
end.

$\mathrm{i}\mathrm{s}O\mathrm{F}_{\mathrm{o}\mathrm{r}\mathrm{a},(}\not\in\Gamma \mathrm{a}n)$.ph $H$ and $\mathrm{a}$ node $u$ in $V(H),$ $level_{H}(u)$ can be constructed in $O(n^{2})$ time. Thus total time

$\square$

Lemma 3.3 Let $D_{r}$ be the class {$L|L$ is bounded rooted distancewidth}. Let $C_{\mathrm{c}}$ be the class $\{L|L$
is chain-like graphs with connected condition}. Then, $C_{\mathrm{c}}\prec D_{r}$ .
Proof Let $L$ be a set of graphs in $C_{c}$ such that $L$ is $k$ chain-like graphs for some $k,$ $H$ be a graph in $L$ ,
and $(V_{0},V_{1,m}\ldots,V)$ be a partition list of $H$ with at most width $k$ . Since $H\in L\in C_{c}$ , we can assume
that the subgraph induced by $V_{i}$ is connected. First we choice arbitrarily a node $r$ in $V_{0}$ , then we
assign the distance from the root $r$ to each node in $H$ . We call the assigned distance the label for each
node. Let $s_{i}$ and $l_{i}$ be the smallest and largest label of nodes in $V_{i}$ respectively for each $1\leq i\leq m$ .
To show this lemma, we need the following facts :

fact 1 : Since the $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{g}\mathrm{r}’ \mathrm{a}_{\mathrm{P}}\mathrm{h}$ induced by $V_{\dot{\iota}}$ is connected, $l_{i}-s_{i}\leq k-1$ .
fact 2 : From $S:+1-S_{1}\geq 1,$ $s_{i}+e\leq s_{i+\mathrm{e}}$ for any integer $e$ .
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Let $d$ be a label and let $p(q)$ be the largest (smallest) integer such that for any $j<p(q>j)1_{j}^{\text{ノ}}$

does not have a node with label $d$ respectively. Now we will show that $q-p<k$ , in other words, the
number of the partitions which have a node with label $d$ is at most $k$ . Suppose, to the contrary, thal
$p+k\leq q$ . Since there exists a node with label $d$ in $V_{p}$ and the fact 1, $d\leq l_{p}\leq s_{p}+k-1$ . From there
exists a node with label $d$ in $V_{q}$ , the contrary assumption and the fact 2, $s_{p}+k\leq s_{p+k}\leq s_{q}\leq d$ .
From the contradiction that $d\leq s_{p}+k-1<s_{p}+k\leq d$ , for any label $d$ the number of the partitions
which have a node with label $d$ is at most $k$ . Therefore for any label $d$ there exist at most $k^{2}$ nodes
which have the label $d$ . This means that the rooted distancewidth of $H$ is at most $k^{2}$ . Let

$L’\in D_{r}\mathrm{b}\mathrm{e}\coprod$

the set {$H|H$ has at most $k^{2}$ rooted distancewidth}. From $L\subseteq L’,$ $C_{c}\prec D_{r}$ .
From Proposition 2.1, Theorem 3.2 and Lemma 3.3, we obtain the following main theorem.

Theorem 3.4 Let $k$ be a constant and $L$ be a set of graph with the following properties:
for any graph $H\in L,$ $H$ can be decomposed by a partitions of nodes $V_{0,1}V,$ $\cdots,$

$V_{m}$ such that
(1) $|V_{i}|\leq k$ for each $0\leq\dot{i}\leq m,$

$V(H)= \bigcup_{0\leq 1\leq m}.V|’ V_{1}\cap V_{j}=\emptyset,$
$i\neq j$ ,

(2) there no exist edges $\{x,y\}$ for any $x\in V_{i},$ $y\in V_{j},$ $0\leq i<j\leq m,$ $j-i\geq 2$ ,
(3) the subgraph induced by $V_{1}$ is connected for each $0\leq i\leq m$ .

If graphs $X$ and $\mathrm{Y}$ are in $L$ , then the decision whether $X$ and $\mathrm{Y}$ are isomorphic can be solved in
$O(|V(x)|^{3})$ .
Some pepole may hope that $C_{h}\prec D_{r}$ , but it does not hold unfortunately.

Theorem 3.5 Let $C_{h}$ be the class {$L|L$ is chain-like graphs} and $D_{\mathrm{r}}$ be the class {$L|L$ is bounded
rooted distancewidth}. Then, $C_{h}\neq D_{r}$ .
Proof. To show this theorem, we will construct a set of graphs $L$ with the following properties :

$\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{p}\mathrm{o}i\mathrm{i}\mathrm{n}\mathrm{S}-1\mathrm{i}\mathrm{k}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{a}_{\mathrm{P}}\mathrm{h}_{\mathrm{S}},$

$k\mathrm{g}\mathrm{e}\mathrm{r}$ , there exists a graph $H\in L$ such that the rooted distancewidth of
$\dot{H}$ is more than $k$ .
$L=\{H_{2},H_{3},H_{4}, \cdots\}$ is described in Fig.1. It is easy to see that for each $2\leq k$ the rooted distancewidth
of $H_{k}$ is more than $k$ .

$H_{2}$

$H_{3}$

$H_{4}$

$H_{5}$

.
Fig.1 The graphs of $L$

$\square$

4 Concluding Remarks
In this paper, we showed a isomorphism problem for a restriction chain-like graphs is solved in $O(n^{3})$

time. Let $D_{\dot{\iota}}$ be the class {$L|L$ is bounded distancewidth} and $D_{\mathrm{r}}$ be the class {$L|L$ is bounded
rooted distancewidth}. Then, we conjecture that $D_{i}\prec D_{t}$ .
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