0oooo0O0oooo
906 0 19950 186-195 186

SHRET T 7 e HV-REESRI

FERZERBG RSV & —
L%

1995 42 A 2 H (K)

Abstract

This paper presents Ternary Decision Diagrams which represent sets of products.
This paper also presents manipulating methods for sum-of-products forms and ringsum-

of-products forms using Ternary Decision Diagrams.

1 Introduction

Binary Decision Diagrams [1] are very efficient in representing and manipulating logic functions
[2]. BDDs have become very popular in the field of VLSI logic system designs, and have
occupied very high position at implementing CAD systems [3, 4, 8]. Nowadays BDDs are used
to represent sets of products [5, 7] as well as logic functions. But BDDs are rather powerless
to represent sets with binate literals, so new idea to represent sets of products is required.
Ternary Decision Diagrams were first introduced to represent Pseudo Kronecker Expres-
sions [6], which are subclass of General Reed-Muller Expressions. More general in this paper,
Ternary Decision Diagrams are presented as a graph representation of sets of products. The
manipulation of sum-of-products forms and ringsum-of-products forms using TDDs is also

presented.

2 Ternary Decision Diagrams

Ternary Decision Diagrams are a direct 3-degree acyclic graph denoted by an 8-tuple
(V,@,,eo,el,e*,x,)\); where @ and |1]| are leaf nodes, V is a set of nodes except for the leaf
nodes, €, €1, and ¢, denote edges that are mappings from V to VU{@,}, X={z1,z2, - ,Zn}
is a set of variables, A which represents labels on the non-leaf nodes is a mapping from V to
X; and TDDs must satisfy:

i) Variable Ordering Rule (see Figure 1.)
There exists a total order zy, > z9, > - -+ > xg, on X such that
eo(V)EV = A(v)>A(eo(V))
YveV, e (v)EV = A(v)>A(e(V)) -
e(V)EV = A(v)>A(el(V))

*Koichi Yasuoka, Kyoto University Data Processing Center Research and Development Division

(a) incorrect TDDs (b) correct TDDs
Figure 1: Variable Ordering Rule

ii) Node Reduction Rule (see Figure 2.)
YveV, e(v 75@ Voe(v 7’5@

/

(a) incorrect TDDs (b) correct TDDs

Figure 2: Node Reduction Rule

iii) Node Unification Rule (see Figure 3.)
WVEV, AV)=A(Y) A eo(v)=€o(V) A e1(V)=€1(V') A e (v)=€, (V) = v=v".

We define a set of products represented by a node in TDDs as follows:
° @ represents the empty set §.

o |1|represents the set {1}.

187

188

(a) incorrect TDDs (b) correct TDDs
Figure 3: Node Unification Rule

e A non-leaf node vEV represents the union of the following three sets; the logical prod-
ucts of A(v) and the set represented by €o(v), the logical products of A(v) and the set
represented by €;(v), and the set represented by €,(v).

Figure 4 shows an example of sets of products represented by nodes in TDDs.

{55151»'_2'933, Z2, 2;_2-:1:3}

0 1 *
1 \\
{_—2-$3} {-’EZa Ez3}
Z2 I2

/0\
) {1}

Figure 4: Sets of products represented in TDDs

3 Operations on TDDs

When a set of products is given, it can be regarded either as a sum-of-products form or as
a ringsum-of-products form. For example, the set {z1T3z3, T2, To23} can be regarded either
as T1E3T3+T2+TaT3 OF as T1T323PDTo@T23. Hence, when we represent a set of products in

189

TDDs, we carry out different operations on TDDs according as our view of the set, namely,
the sum-of-products form or the ringsum-of-products form.

In the rest of this paper, we think of {Z;}, {z;} (z;€X), 8, and {1} as basic sets that are
given in TDDs from the beginning.

3.1 Manipulating sum-of-products forms on TDDs

We consider essential operations on TDDs, in which we represent sum-of-products forms, in
this section, namely, Union, Cartesian Product, Weak Division, Intersection, and Difference.
i) Union
The set operator U is used to make the sum of two sum-of-products forms. For ex-
ample, {17323, 22, Taz3}U{zs, Trzs}={21T323, T2, T3z3, Ti1z3} can be regarded as
(17223 + 22+ T323) +H(To+T1T3) =21 T35+ Lo+ Tox3+T123. Figure 5 shows the procedure
for the operator U on TDDs. The procedure terminates when it reaches to the leaf nodes,
where the rules PUB=P, JUQ=Q, and {1}U{1}={1} are used.
P Q PUQ

0 * O * () *

MMM

A(node of P)=A(node of Q)
P PUQ

0 * 0 *

MAM

A(node of P)>A(node of Q)
Q PUQ

0 * 0 *

/ 1

AMM

A(node of P)<A(node of Q)

Figure 5: Procedure to compute PUQ

ii) Cartesian Product
The set operator X is used to make the product of two sum-of-products forms. For exam-

190

ple, {z1T323, =2, T3} x {21, T3 }={z1%323, T1%2, T2T3} can be regarded as (z1T2T3+2
+Z523)(T1+T3)=21T2x3+T1L2+22T3. Figure 6 shows the procedure for the operator x
on TDDs. The procedure terminates when it reaches to the leaf nodes, where the rules
Px@=0 and Px{1}=P are used.

Q

P
0 * ‘0*

MM

A(node of P)=A(node of Q)

Q PXQ

0 * 0 *

AMM

c) A(node of P)<A(node of Q)

Figure 6: Procedure to compute PxQ

iii) Weak Division

iv)

The weak division operator / is used to get a quotient on the field of Cartesian Product.
The quotient R=P/Q is the maximum set that satisfies RxQCP, where R does not
include variables appeared in Q. For example, {z1Z3z3, o, T2z3} /{1, 21 }={Z3z3}. Figure
7 shows the procedure for the operator / on TDDs. The procedure terminates when
the rule P/@=oc0 or P/{1}=P is used, where co means the universal set which satisfies
ooNR=R for any set R.

Intersection

The set operator N is used to get common products between two sets of products. The
procedure for the operator N on TDDs is similar to the one for U save that its termination
rules are PN@=0, dNQ=0, and {1}N{1}={1}. It is also used within the weak division
procedure.

191

P/Q

'A/D
al
B/E
al
C/F

A(node of P)=A(node of Q)
P P/Q

0 * 0 *

MAM

A(node of P)>A(node of Q)
Q

0 *

AM

A(node of P)<A(node of Q)

Figure 7: Procedure to compute P/Q

v) Difference
The set operator — is used to remove some products from a set of products. It can
be used to get a remainder after a weak division as P—((P/Q)x Q). Figure 8 shows the
procedure for the operator — on TDDs. The procedure terminates when it reaches to
the leaf nodes, where the rules P—@=P, §—Q=0, and {1}—{1}=0 are used.

3.2 Manipulating ringsum-of-products forms on TDDs

We consider essential operations on TDDs, in which we represent ringsum-of-products forms, in
this section, namely, Symmetric Difference, Ringsum Product, Weak Division, and Intersection.

i) Symmetric Difference
The set operator @ is used to make the ringsum of two ringsum-of-products forms.
For example, {z1%3%3, T2, To23}D{z2, Tizs }={21T273, T3, Z1z3} can be regarded as
(21T323DT2DT223)D(22.BT173) =21 T723DT223DF123. It can be used to get a remainder
after a weak division as P@((P/Q)®Q). The procedure for the operator @ on TDDs
is similar to the one for U in the previous section save that its termination rules are

Pod=P, 0Q=Q, and {1}&{1}=0.

192

P Q P—Q

0 * 0 * 0 *

MMM

A(node of P)=A(node of Q)
P P—Q

0 * 0 *

MAM

A(node of P)>\(node of Q)
Q

0 *

AMA

A(node of P)<A(node of Q)

Figure 8: Procedure to compute P—Q

ii) Ringsum Product
The set operator ® is used to make the product of two ringsum-of-products forms. For
example, {21T3z3, T2, T223}®{z1, T3}={z122, 2T3} can be regarded as (z1Zzz3Dz2
DT223)(210T3)=z122D2,T3. Figure 9 shows the procedure for the operator ® on TDDs.
The procedure terminates when it reaches to the leaf nodes, where the rules PQ@=0 and
P®{1}=P are used.

iii)-iv) Weak Division and Intersection
Same as those mentioned in the previous section, though we regard the quotient R=P/Q
here as the maximum set that satisfies RQQCP, because R®Q=RxQ when R does not
include variables appeared in Q.

3.3 Emulating BDDs

When a sum-of-products form P is given, we can obtain the sum-of-minterms form Q which
expresses the logic function expressed by P with Shannon Expansion:

Q = {w—l) CL']_}X{TQ-, .’L'z}x Tt X{ﬁ, m’n,}XP .

193

MM

A(node of P)=A(node of Q)
P P®Q

o@* o@*

A(node of P)>A(node of Q)
Q PeQ

o@* o@*

/\ /><3><\ C®D X CQE X C®F

A(node of P)<A(node of Q)

Figure 9: Procedure to compute PQQ

When a ringsum-of-products form P is given, we can obtain the ringsum-of-minterms form Q
which expresses the logic function expressed by P with Shannon-Davio Expansion:

Q = {71, 21}0{7z, 22} - - ®{Tn, z,}®P .

TDDs, whose source node represents a set of minterms, bear a close resemblance to quasi-
reduced BDDs! whose source node represents the logic function expressed by the sum of the
minterms. Since in TDDs each path from a node to corresponds with a product in the
set represented by the node, and in quasi-reduced BDDs each path from a source node to
corresponds with a minterm in the logic function represented by the source node. Figure 10
shows an example, in which both source nodes represent Ty ZTz23+Z122T3+T1 2223 +T1T223.

Here we consider the emulation of the operations on BDDs by the operations on TDDs
whose source nodes represent sets of minterms. On such TDDs, we may use all operations
mentioned in the sections 3.1 and 3.2, because a set of minterms can be regarded both as a
sum-of-products form and as a ringsum-of-products form.

e Logical OR can be emulated by the operator U.

TQuasi-reduced BDDs have some additional nodes to BDDs in order that any paths from the source node
to . 1]include all variables [9].

194

I

%

®

\
-—————— |
-

\"@ (O
<

0

(a) in TDDs (b) in quasi-reduced BDDs

Figure 10: Representation of a set of minterms

e Logical EXOR can be emulated by the operator .

¢ Logical AND can be emulated by the operator x, ®, or N. Because PxQ=P®Q=PNQ
when P and Q are sets of minterms.

e Logical NOT can be emulated by © with the set of all minterms made of {%7, 2}
®{TE7 (L‘g}@ tt ®{ﬂ’ $n}'

e Restrictions P|,,¢ and P|,.; can be emulated by (P/{Z;})x{%;, =} and (P/{z:})
x{Z;, z;}, respectively.

It is evident now that TDDs can emulate quasi-reduced BDDs.

4 Conclusion

We have proposed a new technique of representing sets of products named Ternary Decision
Diagrams. TDDs can represent both sum-of-products forms and ringsum-of-products forms,
and even can emulate BDDs. We have shown procedures to manipulate sets of products on
TDDs. The procedures are very easy to implement, and very useful in the field of VLSI logic
system designs. We are sure that TDDs will take the place of BDDs at implementing CAD
systems in the near future.

Acknowledgement

The author would like to express his appreciation to the members of Professor Yajima's Re-
search Laboratory of Kyoto University for their fruitful discussions. The author also thanks
Mr. Minato of NT'T LSI Laboratories for his beneficial advices on the operations presented in
this paper.

195

References

[1] S. B. Akers: Binary Decision Diagrams, IEEE Transactions on Computers, Vol. C-27
(1978), pp. 509-516.

[2] R. E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans-
actions on Computers, Vol. C-35 (1986), pp. 677-691.

[3] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli: Logic Verifica-
tion Using Binary Decision Diagrams in a Logic Synthesis Environment, Proceedings of
ICCAD’88 (1988), pp. 6-9.

[4] Y. Matsunaga and M. Fujita: Multi-level Logic Optimization Using Binary Decision Dia-
grams, Proceedings of ICCAD’89 (1989), pp. 556-559.

[6] O. Coudert and J. C. Madre: A New Graph Based Prime Computation Technique, Logic
Synthesis and Optimization (edited by T. Sasao), Kluwer Academic Publishers (1992),
pp- 33-57.

[6] T. Sasao: And-Exor Expressions and Their Optimization, Logic Synt‘hesis and Optimiza-
tion (edited by T. Sasao), Kluwer Academic Publishers (1992), pp. 287-312.

[7] S. Minato: Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems, Pro-
ceedings of ACM/IEEE 30th Design Automation Conference (1993), pp. 272-277.

[8] H. Ochi, K. Yasuoka, S. Yajima: Breadth-First Manipulation of Very Large Binary Decision
Diagrams, Proceedings of ICCAD’93 (1993), pp. 48-55.

[9] Y. Takenaga and S. Yajima: Computational Complexity of Manipulating Binary De-
cision Diagrams, IEICE Transactions on Information and Systems, Vol. E77-D (1994),
pp. 642-647.

