
Expressive Power of Binary Decision Diagrams
Representing $\mathrm{s}_{\mathrm{U}\mathrm{m}-_{\mathrm{O}}}\mathrm{f}$-product Form

積和形論理式を表す二分決定グラフの表現能力
Koyo NITTA Yasuhiko TAKENAGA Shuzo YAJIMA
新田高溶 武永康彦 矢島脩三

Department of Information Science, Faculty of Engineering, Kyoto University
京都大学工学部情報工学教室

1 Introduction

It is often required to represent and manipulate Boolean functions efficiently. Binary Decision Di-
agrams (BDDs) $[1, 2]$ are graph-based representations of Boolean functions. BDDs have recently

attracted much attention because they satisfy the above requirements, to represent and manipulate
Boolean functions efficiently.

As the study on BDDs has progressed, the range of applications has broadened. Coudert et al.
[3] and Minato [4] have proposed methods to represent sets of combinations using BDDs. In these
methods, a set of combinations can be represented implicitly using a BDD as a characteristic function
of it. This means that we can treat two-level Boolean formulas, e.g. sum-of-product form, product-
of-sum form and exclusive-or sum-of-product form, using BDDs, since a two-level Boolean formula
can be regarded as a set of combinations. For example, a Boolean formula in sum-of-product form
can be regarded as a set of products, which are combinations of literals. In this way, based on implicit
set representation, we can manipulate two-level Boolean formulas efficiently by using BDDs.

We focus on BDDs representing Boolean formulas and study their expressive power. We say that
a BDD representing a Boolean formula realizes a Boolean function if the formula is an expression
of the function. We also discuss relations among their expressive power, l-L and l-NL. Here l-L
(l-NL, respectively) is the class of languages accepted by \log-space bounded on-line deterministic
(nondeterministic, respectively) Turing machines.

This report is organized as follows. In Section 2, we explain how to represent sum-of-product
form using BDDs, and define computational models used in this report. In Section 3, the expressive
power of BDDs representing $\mathrm{S}\mathrm{u}\mathrm{m}- \mathrm{o}\mathrm{f}-\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{d}}\mathrm{u}\mathrm{c}\mathrm{t}$ form is considered in terms of Ternary Decision Diagrams
(TDDs) [5]. Section 4 shows relations among the class of functions expressible by polynomial size
TDDs and other classes. Section 5 is a conclusion.

2 Preliminaries

2.1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) represents a Boolean function. A BDD is a directed acyclic
graph with a unique source node, called the root node, and two sink nodes, called the constant nodes.
The two constant nodes are labeled by the Boolean constants 0 and 1, respectively. We denote the
constant node labeled by 0 , by $c_{0}.$, and the constant node labeled by 1, by c_{1} . Non-sink nodes are
called variable nodes. Each variable node is labeled by one of Boolean variables $\{x_{1}, \ldots, x_{n}\}$, and has
two outgoing edges labeled by 0 and 1, called the $\mathit{0}$-edge and the 1-edge, respectively. Each variable
appears at most once on each path from the loot node to one of the constant nodes. The order in
which variables appear is consistent among all the paths. In this report, we assume that the variable
order is $x_{1},$ $x_{2},$ $\ldots,$

x_{n} .
We define the size of a BDD B , denoted by $|B|$, as the number of variable nodes. A set of nodes

labeled by the same variable x_{i} is called the i-th level.
Given an assignment to the variables, the value of the function that a BDD represents is deter-

mined by traversing nodes from the root node to one of the constant nodes. On a variable node v

数理解析研究所講究録
906巻 1995年 196-203 196

whose level is l , the edge labeled by the value of x_{l} is selected and it leads to the node pointed to
by the edge. The value of the function is 0 if the traverse terminates at c_{0} , and 1 if the traverse
terminates at c_{1} .

2.2 Binary Decision Diagrams Representing Sum-of-product Form

Coudert et al. [3] and Minato [4] have proposed methods to represent a set of combinations implicitly
using a BDD. These methods enable us to represent a set of products. These method, which differ
slightly from each other, are based on the idea that, on the nodes corresponding to the variable x_{i} , the
set of products are divided into three sets; the set of products in which x_{i} occurs, the set of products
in $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}\overline{X_{i}}$ occurs, and the set of products in which neither x_{i} nor $\overline{X_{i}}$ occurs. These methods represent
a set of products using two new variables for each x_{i} to distinguish these three cases. Each path from
the root node to c_{1} corresponds to a product.

We here explain Minato’s method to represent a set of products using a BDD [4]. A product in
n-variable formulas can be represented by a $2n$-bit vector $(x_{112}\overline{X}X\cdots X_{n}\overline{x_{n}})$, where each bit, x_{i} or $\overline{x_{i}}$,
expresses whether the corresponding literal is included in the product or not. For example, $x_{1}\overline{x_{2}}X_{4}$

can be represented by (10010010).
Given a set P of products, the function $h(x_{1},\overline{x_{1}}, X_{2},\overline{X_{2}}, .., , x_{n},\overline{x_{n}})$ is considered such that

$h(x_{1,1}\overline{x}, x_{22},\overline{X}, . .., x_{n},\overline{x_{n}})=1$ if and only if the product corresponding to the vector $(X_{1}\overline{X_{1}}X_{2}\cdots X_{n}\overline{X_{1},})$

is in P . A BDD is said to represent P if the BDD represents h . In this way, we can represent a set of
products using a BDD. In this method, for each variable x_{i} , the nodes labeled by the positive literal
x_{i} and the nodes labeled by the negative literal \overline{xi} are used in a BDD. This type of BDD is called
Zero-8uppressed $BDD(\mathrm{O}-\sup- BDD)$ because of its reduction rule [4]. We assume that the variable
order in a $0- \sup-\mathrm{B}\mathrm{D}\mathrm{D}$ is $x_{1},$ $\overline{x_{1}},$ $x_{2},$ $\overline{x_{2}},$

$\ldots,$ $x_{n},$ $\overline{x_{n}}$.
A BDD representing a set of products can be regarded as representing a function in $\mathrm{S}\mathrm{u}\mathrm{m}- \mathrm{o}\mathrm{f}-\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{d}}\mathrm{u}\mathrm{c}\mathrm{t}$

form since sum-of-product form can be seen as a set of products. For example, we consider a Boolean
function $f=x_{1}\overline{x_{2^{X_{3}}}}+\overline{x_{1}x_{3}}+x_{2}\overline{.x_{3}}$. We can represent f as a set of products $\{x_{1}\overline{X_{2}}X3,\overline{.x1}\overline{X3}, X_{2}\overline{x_{3}}\}$.

2.3 Ternary Decision Diagrams

A Ternary Decision Diagram $(TDD)[5]$ has proposed to represent and manipulate a set of products.
A TDD is similar to a BDD, with the exception that each variable node of a TDD has an extra
outgoing edge labeled by an $‘*$ ’ symbol, called $the*$ -edge (don’t-care edge), as well as the 0-edge and
the l-edge.

A TDD can also be regal $\mathrm{d}\mathrm{e}\mathrm{d}$ as representing a Boolean function. Given an assignment to the
variables, the value of the function that a TDD represents is determined by traversing nodes form
the root node to one of the constant nodes. On a variable node v whose level is l , we select the edge
labeled by the value of x_{l} or the $*$ -edge nondeterministically. The value of the function is 1 if there
exists at least one path that terminates at c_{1} , otherwise 0 .

We consider a family of TDDs as a computational model which computes a family of Boolean
functions. A family $\{T_{n}\}$ of TDDs is a sequence $T_{1},$ $T_{2},$

$\ldots,$
$T_{n},$

\ldots of TDDs, where T_{n} is a TDD
representing an n-variable Boolean function. A family $\{T_{n}\}$ of TDDs is said to accept a language
$A\subseteq\{0,1\}^{*}$ if and only if for each $n,$ T_{n} represents the characteristic function of $A^{(n)}=\mathrm{A}\cap\{0,1\}^{n}$,
i.e., $x_{1}\cdots x_{n}\in A$ iff $f_{n}(x_{1}, \ldots, x_{n})=1$, where f_{n} is the Boolean function which T_{n} represents.

We define the size of a TDD T , denoted by $|T|$, as the number of variable nodes. We extend the
definition of the size to a family $\{T_{n}\}$ of TDDs as follows. The size of $\{T_{n}\}$ is said to be $S(n)$ if for
each $n,$ $|T_{n}|$ is bounded by $S(n)$.

In a family of TDDs, each TDD works only on the inputs of a fixed length. Even if all the TDDs
in the fanffiy are simple, a family might represent a complicated language. To avoid such families
of TDDs, we define uniform families of TDDs, that is, families of TDDs such that intuitively it is
easy to construct the n-variable TDD from n . A family $\{T_{n}\}$ of TDDs is \log -uniform if the function
$narrow\overline{T_{n}}$ is computable by an $O(\log n)$ -space bounded deterministic Turing machine, where $\overline{T_{n}}$ is the
standard encoding of T_{n} defined as follows. We define that the standard encoding \overline{T} of a TDD T

197

consists of a set of five-tuples $(v, l, e_{0}, e_{1,*}e)$, where v is a variable node or a constant node, l is the
level of $v,$ e_{0} is the node pointed to by the 0-edge from $v,$ e_{1} is the node pointed to by the l-edge
from v , and e_{*} is the node pointed to by $\mathrm{t}\mathrm{h}\mathrm{e}*$ -edge from v .

We can transform $0- \sup$-BDDs representing sum-of-product form into TDDs with the same or less
size. Conversely, we can also transform TDDs into $0- \sup$-BDDs with at most twice size.

Proposition 1 For a $\mathit{0}_{-\sup-}BDDZ$ representing a Boolean function as $sum- of-p\Gamma oduCt$ form. there
exists a $TDDT$ which represents the same function such that $|T|\leq|Z|$.

For a $TDDT$, there exist8 a $0- \sup-BDDz$ which represents the same function as $Sum-of_{- prodc}ut$

form such that $|Z|\leq 2|T|$.

Proof: Let Z be a $0- \sup-\mathrm{B}\mathrm{D}\mathrm{D}$ representing sum-of-product form. Z has no path from the root node
to c_{1} that includes both the 1-edges from a node labeled by x_{i} and from a node labeled by $\overline{x_{i}}$ for any
x_{i} . If any, we can remove the path without changing the set of products represented by $z_{\text{ノ}}$. since the
path corresponds to no product (because $x_{i}\wedge\overline{x_{i}}=0$). We can assume that a node labeled by x_{i} , a
node labeled by $\overline{x_{i}}$ and their edges in Z take the forln as figure 1.

e_{*} e_{0} e_{1}

Figure 1: form of $0- \sup-\mathrm{B}\mathrm{D}\mathrm{D}$

Then the 1-edge of a node labeled by x_{i} in Z corresponds to the 1-edge of a node labeled by x_{i}

in T , the 1-edge of a node labeled by $\overline{x_{i}}$ in Z corresponds to the 0-edge of a node labeled by x_{i} in T ,
and the 0-edge of a node labeled by x_{i} or $\overline{x_{\mathrm{i}}}$ in Z corresponds to the $*$-edge of a node labeled by x_{i}

in T .
Conversely, a node labeled by x_{i} in T can be transformed into a couple of nodes labeled by x_{i} and

$\overline{x_{i}}$ in Z . Note that for each node labeled by x_{i} in T , both nodes of the couple are not always needed.
\square

Due to this proposition, we can observe that the size of a $0- \sup-\mathrm{B}\mathrm{D}\mathrm{D}$ representing a Boolean function
as sum-of-product form differs from the size of a TDD representing the same function within only
constant factor. Therefore we can consider that the expressive power of $0- \sup-\mathrm{B}\mathrm{D}\mathrm{D}_{\mathrm{S}}$ representing
sum-of-product form is the same as that of TDDs in terms of polynomial size. From now, we focus
on TDDs instead of $0- \sup$-BDDs representing $\mathrm{S}\mathrm{u}\mathrm{m}- \mathrm{o}\mathrm{f}-\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{d}}\mathrm{u}\mathrm{c}\mathrm{t}$ form.

3 Characterization of TDDs

We define the class of languages accepted bv uniform families of polynomial size TDDs.

Definition 1 U-PolyTDD is the class of languages accepted by uniform families of polynomial size
TDDs.

Each node of TDDs has three edges, the 0-edge, the 1-edge, and the $*$ -edge. Corresponding to
this feature, we consider restricted nondeterministic Turing machines.

198

We refer to a \log-space bounded on-line nondeterministic Turing machine with the following
restrictions on nondeterministic operations, as an l-RNL machine. We suppose the following restric-
tions.. While it reads each single input symbol, it can use only one nondeterministic operation, i.e.,

there are at most two possible computations while the input head does not nlove.. Either of the two computations after it reads 0 as a single input symbol, is the same as either
of the two computations after it reads 1 as the input symbol.

Note that a \log-space bounded on-line nondeterministic Turing machine with no restrictions may take
many nondeterministic operations while it reads each single input symbol.

We designate the class of languages accepted by these restricted l-NL machines, by l-RNL.

Theorem 1 U-PolyTDD $=$ l-RNL.

Proof : (\supseteq) Let A be a language in l-RNL and $l\mathcal{V}I$ be a restricted \log-space bounded on-line
nondeterministic Turing machine that accepts A . We will show that for any M , there exists a
uniform family $\{T_{n}\}$ of polynomial size TDDs that accepts A .

Let a configuration of M be a triple (h, q, u) , where h is the head position of M on the input tape,
q is a state of M , and u describes the contents of the work tape and the head position on the work
tape.

A node of T_{n} corresponds to a configuration of M with an input of length n . The root node
corresponds to the initial configuration (1, $q_{ini}\mathrm{f},$ uinit) of M , where the first term indicates that the
head position on the input tape of M is 1, q_{inii} is the initial state of M , and u_{init} represents the
binary representation of n and the head position 1 on the work tape. Let a node v of T_{n} correspond
to a configuration (h, q, u) of M . If q is a rejecting state or an accepting state of $M,$ v is c_{0} or c_{1}

.
respectively. Otherwise, v is a variable node labeled by x_{h} , and the edges from v points to other nodes
as follows. Let 6 be the state transition function of M . The head position of the input tape may
not move during the transition. To exclude such conditions, we consider $\delta’$ obtained by iterating δ

until the input head moves. That is, a transition by $\delta’$ corresponds to several transitions by δ during
which the input head position changes from h to $h+1$. Since M is restricted, we can assume;

$\delta’((h, q, u), 0)$ $=$ $((h+1,q0, u_{0}), (h+1, q’, u’))$ and
$\delta’((h, q, u), 1)$ $=$ $((h+1,q_{1,1}u),$ $(h+1, q’, u’))$

The 0 -edge points to the node corresponding to $(h+1, q_{0}, u_{0})$, the 1-edge points to the node corre-
sponding to $(/x+1, q_{1}, u_{1})$, and $\mathrm{t}\mathrm{h}\mathrm{e}*$ -edge points to the node corresponding to $(h+1, q’, u’)$. Now T_{n}

is obtained.
Since M is $O(\log n)$ -space bounded, the number of different configurations of M is bounded by

some polynomial in n . Hence the size of T_{n} is bounded by some polynomial in n . It is obvious that
$\{T_{n}\}$ is \log-uniform and accepts A .

(\subseteq) Let A be a language in U-PolyTDD, and let $\{T_{n}\}$ be a uniform family of polynomial size
TDDs that accepts A . We will show that for any $\{T_{n}\}$, we can design a restricted \log-space bounded
on-line nondeterministic Turing machine M that accepts A .

M knows the length n of the input without moving the head of the input tape. Since $\{T_{n}\}$ is
\log-uniform, M can generate the standard encoding $\overline{T_{n}}$ of T_{n} from n . First, M generates the root
node $(v_{root0,1}, 1, e6, e*)$ of $\overline{T_{n}}$. For an input $b_{1}\cdots b_{n}(b_{1}, \ldots, b_{n}\in\{0,1\}),$ M repeats to generate a
five-tuple $(v, l, e_{0}, e1, e*)$ and select the next node until v is one of the constant nodes. As for the
next node, $e_{b_{l}}$ or e_{*} is selected nondeterministically. M accepts the input if there exists at least one
computation path terminating at c_{1} , otherwise M rejects the input.

M can use only $O(\log n)$ space since the length of each five-tuple is bounded by $O(\log n)$, and M

satisfies the above restrictions. It is obvious that M accepts A . \square

199

4 Relations among Classes

In this section, we discuss relations among U-Poly TDD, l-L and l-NL. First, we show some properties
on the size of TDDs.

Lemma 1 If an n -variable function f_{n} is expressible by a Boolean formula in sum-of-product form
in which the number of products is p , then f_{n} can be represented by a $TDDT$ whose $\mathit{8}ize$ is bounded
by $n\cross p$.

Proof: In T , each path from the root node to c_{1} corresponds to a product. Even if for any level, no
nodes in the level can be shared, there are at most p nodes. Therefore the size of T is bounded

$\mathrm{b}\mathrm{y}\square$

$n\cross p$.

As for U-PolyTDD, the following result is derived from this lemma.

Corollary 1 Let A be a language. If for any n , the characteristic $f\dot{u}ncti_{\mathit{0}}nfn$ of $A^{(n)}=A\cap\{0,1\}^{n}$ is
expressible by a Boolean formula in sum-of-product form in which the number of

\cdot

products is bounded
by some polynomial in n , then $A\in$ U-PolyTDD.

We show the relation between U-PolyTDD and l-L.

Theorem 2 $l- L\subseteq$ U-PolyTDD.

Proof : We first show that l-L is included in U-PolyTDD. In the proof of Theorem 1, we let all
$\mathrm{t}\mathrm{h}\mathrm{e}*$ -edges point to c_{0} . Then any l-L machine can be simulated by a uniform family $\{T_{n}\}$ of TDDs
whose size is bounded by some polynomial in n .

Next, we show that this inclusion is strict. We define the following language;

$A=\{ww|w\in\{0,1\}^{*}\}$

Both A and its complement $\overline{\mathrm{A}}$ are not included in l-L [6]. The characteristic function χ_{2n} of $\overline{A}\cap$

$\{0,1\}^{2n}$ is expressible as follows.

$x2n(w_{1}\cdots w_{2n})=w1\overline{w_{n+}1}+\overline{w1}wn+1+w2\overline{w2}+\overline{w2}w_{n}+2\ldots+w_{n}\overline{w2n}+\overline{w}w_{2n}n+n$

Since this formula is in $\mathrm{S}\mathrm{u}\mathrm{m}- \mathrm{o}\mathrm{f}_{-\mathrm{p}\mathrm{r}}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}$ form in which the number of products is $2n$, by Corollary
$1\square$

’

$\overline{A}\in$ U-PolyTDD.

We discuss the relation between U-PolyTDD and l-NL. By Theorem 1 and the definition of
l-RNL, it is obvious that U-PolyTDD \subseteq l-NL.

We consider the language TAGAP, which is the set of the topologically arranged representations
of directed acyclic $\mathrm{g}_{\mathrm{T}}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{s}$ that have a directed path from the source node to a terminal node.

TA $GAP=$

{ $x_{11121mmm}X\cdots x\cdots x|(x_{ij})$ is the adjacency matrix of
a directed acyclic graph G such that G is topologically
arranged and there exists at least a path from v_{1} to v_{m} of $G.$ }

We say that the representation of a directed acyclic graph G is topologically arranged if there is no
edge ($v_{i},$ v_{j} I when $i>j$. Hartmanis et al. have shown that TAGAP is complete for l-NL under l-L
reductions.

We show that TAGAP is in U-PolyTDD.

Lemma 2 $TAGAP\in$ U-PolyTDD.

200

Proof $\mathrm{L}:\mathrm{e}\mathrm{t}M$ be a \log-space bounded deterministic Turing machine. We design M to produce a
falnily $\{T_{n}\}$ of TDDs that accepts TAGAP. For each m of the number of nodes in $G,$ M works by
the following algorithm. Here nodes of level $(i-1)m+1$ are labeled by x_{ij} .

begin
for $i=1,$ $\ldots,$ $m-1$ do

begin
for $j=i+1,$ $\ldots,$ m do

begin
if $j=m$ then print $(v_{ij}’, (i-1)m+j,$ $c_{0,1}c,$ $C_{0}.)$

else print $(v_{ij}’, (i-1)m+j,$ $v_{i(j}’+1)’ ivv’’(j+1)’ i(j+1))$

end
end

end

M use only $O(\log m)$ space of its work tape and each TDD that M produces has the size of $O(m^{2})$.
We claim that a family $\{T_{n}\}$ of TDDs that M produces accepts TAGAP.

We prove the claim by induction on m of the number of nodes in G . The base case is obvious. In
the inductive step, we assume that $T_{(i)}$ accepts $TAGAP\cap\{0,1\}^{i^{2}}$ for $\perp\leq i\leq m$, i.e., $T_{(i)}$ accepts G

such that G has i nodes and $G\in$ TAGAP.
For $T_{(m)}$, we consider another TDD $T_{(m)}^{1}$ obtained by removing the nodes labeled by $x_{1j}(\perp\leq j\leq$

$m)$ and edges of these nodes from $T_{(m)}$. By the assumption and the above algorithm, it is clear that
$T_{(m)}^{1}$ accepts the input if there exists a path from v_{2} to v_{m} . That is, $T_{(m)}^{1}$ is isomorphic to $T_{(_{7n}-1)}$

except for labels. Silnilarly, another TDD $T_{(?\}\iota)}^{2}$ can be obtained by removing the nodes labeled by
$x_{2j}(2\leq j\leq m)$ and edges of these nodes from $T_{(_{\mathit{7}\hslash})}^{1}$. $T_{(m)}^{2}$ is isomorphic to $T_{(nl-}2$) except for labels.
We can continue this and obtain the sequence $\{T_{(\eta\iota)}^{j}\}$, where $T_{(7n)}^{j}$ is isolnorphic to $T_{(m-j)}$ except for
labels.

To construct $T_{(m+1}$)’ we have only to test each variable $x_{1j}(1\leq j\leq m+1)$ and connect the
edges from the node labeled by the variable to other nodes appropriately. If $x_{1j}=1$, there are two
possibilities; one is that the edge from v_{1} to v_{j} in G is included in the very path that makes G in
TAGAP, the other is that the edge from v_{1} to v_{j} is not included in the path. For the former case, we
connect the 1-edge to the root node of $T_{(m1}^{j}+$

). For the latter case, we connect the $*$ -edge to $v_{1(j+1)}’$

$\mathrm{I}^{)\mathrm{o}\mathrm{i}c}\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{o}0\mathrm{t}_{0}\mathrm{t}\mathrm{e}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$

edge from v_{1} in G . The 0-edge also points to $v_{1(j+1)}’$. Note that all the 0-edges
$\mathrm{m}\mathrm{a}\mathrm{y}\square$

By Lemma 2, if U-PolyTDD is closed under l-L reductions, U-PolyTDD $=$ l-NL. But it is not clear
whether U-PolyTDD is closed under l-L reductions or not.

We propose a reduction which is an l-L reduction restricted on relation between the length of
the input and the length of the output. We show that U-PolyTDD is closed under the reductions.
Length restricted l-L reductions, denoted by $\leq_{\mathit{1}- L}^{l}$, are l-L reductions restricted as follows.

Length restriction

For each i , the i-th output symbol depends only on the string from the from(i) -th input
symbol to to(i) -th input symbol. Here from and to satisfy the following.

from$(i)\leq to(i)<from(i+1)$.

This restriction means that the length of the output depends only on the length of the input. It also
lneans that to produce a single output symbol, a transducer M_{r} needs to read at least one unread
input symbol.

Lemma 3 U-PolyTDD is closed under $\leq_{\mathit{1}- L}^{l}$.

Sketch of Proof $\mathrm{L}:\mathrm{e}\mathrm{t}$ A and B be languages. Assume that $A\leq_{\mathit{1}- L}^{l}B$, and that $B\in$ U-PolyTDD.
There exist two machines: an l-L generator M which generates a family $\{T_{n}\}$ of TDDs accepting B ,

201

and a restricted l-L transducer M_{r} which reduces A to B . We will construct a machine $M’$ which
generates a family $\{T_{n}’\}$ of TDDs that accepts A .

At first, $M’$ on input n simulates M_{r} , and knows the length $g(n)$ of the output that M_{7} produces
on input n . Because of the restriction mentioned above, $g(n)$ depends only on n .

Next $M’$ simulates M on input $g(n)$ and generates $T_{g(n)}$. Whenever $M’$ needs to know the value
of the i-th input symbol of $M,$ $M’$ simulates M_{r} on the input string from from(i) to to (i) . $M’$ can
produce the simulation of M_{r} as a form of a TDD because of Theorem 2. \square

We define a new operation on languages, called stretch, and give more information on the relation
between U-PolyTDD and l-NL.

Definition 2 Let A be a $languag\epsilon_{\dot{\mathrm{A}}}$ and let $p(n)be.-\sigma ome$ polynomial in n . $str\epsilon tchp(A)$ is $defin\epsilon \mathrm{r}l$ as
$f_{\dot{O}}ll_{ows}$.

stretch $(A)=$

$\{x_{1}\# y11\ldots y1p(n)\# x_{2}\# y_{2}1\ldots y2p(n)\#\cdots\# x_{n}\# y_{n1}\cdots ynp(n)|x_{i}=y_{i1}=\cdots=y_{ip(n})$

$for\perp\leq i\leq n$, and $x_{1}x_{2n}\ldots X\in A$ for each n }

Let C be a class of languages. The class $\mathcal{R}^{st}(c)$ is defined as follows.
$\mathcal{R}^{st}(C)=$ { $A|$ stretch $(\mathrm{A})\in C$ for some p}

Using this operation, together with the above results, the following result is obtained.

Theorem 3 $\mathcal{R}^{st}(U-PolyTDD)=$ l-NL.

Proof: (\subseteq) It is obvious since for any A , if stretch (A) is in l-NL, then $A\in l- NL$

(\supseteq) For any $A\in$ l-NL, A is $\leq_{\mathit{1}- L}$-reducible to TA GAP. We can show that stretch (A) is $\leq_{\mathit{1}- L’}^{l}$

reducible to TAGAP for some polynomial p .
Let A be $\leq_{\mathit{1}- L}$ -reducible to TA GAP. We assume that A is reduced to TAGAP using the technique

in [6]. In the technique, for any $n,$ $A^{(n)}=A\cap\{0,1\}^{n}$ is $\leq\iota- L$-reducible to TAGAP whose length is
some polynomial $q(n)$, where q depends only on n , and each bit of TA $GAP\cap\{0,1\}^{q}(n)$ depends only
on a single bit of $A^{(n)}$. For $p(n)\geq q(n)$, there exists a restricted l-L machine M_{r} which can reduce
stretch (A) to TA GAP. From Lemma 2 and 3, $\mathcal{R}^{st}(U-PolyTDD)\supseteq$ l-NL. \square

5 Conclusion

We have characterized the expressive power of BDDs representing sum-of-product form by restricted
l-NL machines. The restrictions on l-NL machines that we suppose in this report do not matter in
the case of off-line Turing machines. If we omit the restriction on appearance of variables in TDDs,
the expressive power of polynomial size TDDs is equal to NL .

We have also discussed relations among U-PolyTDD , l-L, and l-NL. U-PolyTDD includes
l-L strictly, and U-PolyTDD is included in l-NL. If U-PolyTDD is closed under l-L reductions,
U-PolyTDD $=$ l-NL. It is interesting whether this inclusion is strict or not.

Although we have considered only the case that a BDD is regarded as representing suln-of-
product form, the same BDD can also be regarded as representing other two-level logic forms, such
as $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}- \mathrm{o}\mathrm{f}_{-\mathrm{S}}\mathrm{u}\mathrm{m}$ form or ring-sum-of-product form. In these cases, similar results can be obtained
by introducing the classes, co-l-NL or $\mathit{1}-\oplus L$.

202

References

[1] S. B. Akers. Binary decision diagraIns. IEEE Trans. Comput., Vol. C-27, No. 6, pp. 506-516, Jun
1978.

[2] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput..
Vol. C-35, No. 8, pp. 677-691, Aug 1986.

[3] O. Coudert and J. C. Madre. Implicit and incremental computation of primes and essential primes
of Boolean functions. In Proc. 29th $ACM/IEEE$ DAC, pp. 36-39, Jun 1992.

[4] S. Minato. Zero-suppressed BDDs for set manipulation in colnbinatorial problems. In Proc. of
\cdot

$ACM/IEEEDAC\dot{\text{ノ}}\mathit{9}\mathit{3}$, pp. 272-277, Jun 1993.

[5] Kouichi Yasuoka. Ternary decision diagrams as a representation of sets of products. In RIlVIS
$koukyurokv_{i}$ Kyoto University, 1995. (to appear).

[6] J. Hartmanis and S. Mahaney. Langueges simultaneously complete for one-way and two-way
\log-tape automata. SIAM J. Comput., Vol. 10, No. 2, pp. 383-390, May 1981.

203

