
Negative Results for Learning Minor Closed
Graph Classes

Carlos Domingo * John $\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{w}\mathrm{e}-\mathrm{T}\mathrm{a}\mathrm{y}\mathrm{l}\mathrm{o}\mathrm{r}\uparrow$

Abstract

The paper considers the problem of learning classes of graphs closed under taking

minors. It was shown that any such class can be properly learned in polynomial

time using membership and equivalence queries. The representation of the class is

in terms of a set of minimal excluded minors (obstruction set). A negative result for

learning such classes using only equivalence queries is provided, after introducing a

notion of reducibility between query learning problems.

1 Introduction

This paper considers the problem of identifying a very broad series of classes of graphs,

namely those closed under taking graph minors. Such sets of graphs have been studied for

a number of years by graph theorists. The classes of graphs that are closed under taking

minors are very common. Examples are the planar graphs, graphs which can be embedded

in 3-dimensional space without knots, graphs with genus, treewidth, pathwidth at most

some fixed constant $k$ , etc. In some cases there are no known algorithms for testing for

membership in these classes, though the general theory of graph minors ensures that such

algorithms must exist.
The key result obtained by Robertson and Seymour showed that for any class of

graphs closed under taking minors, there is a finite set of minimal minors not in the

class. This set is called the obstruction set of the class. Any such class can therefore be

characterised as the set of graphs which do not contain any member of the obstruction

*Dept. of Computer Science, Tokyo Institute of Technology, Tokyo 152, Japan, carlos@cs.titech. $\mathrm{a}\mathrm{c}$.jp

\dagger Dept. of Computer Science, Royal Holloway, University of London, England, john@dcs.rhbnc.ac.uk

数理解析研究所講究録
906巻 1995年 212-219 212



set as a minor. In general there are no efficient algorithms for computing the obstruction
set of a class of graphs.

In [6] it was shown that any graph class that is closed under taking minors can
be identified using the learning protocol of equivalence and membership queries. The
learning algorithm delivers the obstruction set of the class using a number of queries
that is polynomial in the size of the minimal representation and the size of the largest
counterexample.

In this paper we show that when restricting the learner to use only equivalence queries,
such polynomial time learning algorithm does not exist. We introduce a notion of re-
ducibility between query learning problems needed for the proof. Using previous negative
results for Monotone DNF formula $[2, 4]$ the lower bound for learning minor closed graphs
classes can be pushed up to $\Omega(n^{\log n})$ .

In the next section we will review the definitions and results of the theory of graph
minors and of learning theory that we will need. This will lead into Section 3 containing
the definition of reduction and Section 4 with the negative results.

2 Definitions and Known Results

A graph $G$ comprises a set of nodes $VG$ and a set of edges $EG\subseteq VG\cross VG$ , which is
symmetric and antireflexive. We say that a graph $H$ is a one-step minor of a graph $G$ ,
denoted $H\prec_{1}G$ , if $H$ is obtained from $G$ by deletion of one edge, or by deletion of one
vertex together with all edges incident with the vertex, or by identifying two adjacent
vertices into a single vertex, that is adjacent to all the vertices adjacent

The minor relation $(\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{d}\preceq)$ is the transitive reflexive closure of the $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\prec_{1}$ .
A class of graphs $\mathcal{G}$ is minor closed if $G\in \mathcal{G}$ and $H\preceq G$ imply that $H\in \mathcal{G}$ .
For a minor closed class of graphs $\mathcal{G}$ , the obstruction set of $\mathcal{G}$ , denoted $\mathrm{o}\mathrm{b}(\mathcal{G})$ , is the

set of minimal elements in the $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\preceq \mathrm{i}\mathrm{n}$ the complement of $\mathcal{G}$ . Hence, for each graph
$G,$ $G\in \mathcal{G}$ if and only if there is no $H\in \mathrm{o}\mathrm{b}(\mathcal{G})$ that is a minor of $G$ .

Robertson and Seymour proved Wagner’s conjecture that for every minor closed class
of graphs, the obstruction set is finite [3].

We can relax our definition of graph and our minor relation fixing the labels of the

vertices in our graphs.

Definition 1 A graph $G_{L}$ is say to be labelled if we have a fixed labelling in its vertices
that allow us to exactly recognize each vertex and therefore each edge.
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Definition 2 Let $G_{L}$ and $H_{L}$ be two labelled graphs. We say that $G_{L}$ is a labelled minor

of $H_{L}$ (denoted by $G_{L}\preceq_{L}H_{L}$ ) iff the set of edges of $G_{L}$ is contained in the set of edges

of $H_{L}$ .

Thus, we can also consider classes of labelled graphs closed under the “labelled minor

relation” previously defined. This classes will be represented by a finite obstruction set

of labelled graphs. A labelled graph will be in the class iff it does not have any of the

“forbidden” graphs of the obstruction set as a labelled minor.

In this paper we follow the learning framework defined by Watanabe [7]. The formal

object known as a representation class is a triple $(R, c, \Sigma)$ where $R$ is a set of valid

representations, $c$ a semantic function from $R$ to the concept space and a $\Sigma$ is an alphabet

for the concepts represented by $R$ . Thus, for each representation $r\in R$ , the concept
$c(r)\subseteq\Sigma^{*}$ is the concept represented by $r$ . Whenever $c$ and $\Sigma$ are implicitly understood

we will use $R$ as an abbreviation for the whole class.

Throughout the paper we will work with the class of concepts $\mathcal{G}$ of graphs closed under

taking minors. We can represent a class $\mathcal{G}$ by a finite set of minimal excluded minors. We

call this representation class $R_{\mathrm{o}\mathrm{b}}$ .
For proving our negative result we also need to make use of two more representation

classes. First, we consider the representation class of Monotone formulae in disjunctive

normal form (DNF). A Boolean formula is said to be monotone if all the literals in the

formula appear positively. We denote this representation class by $R_{mmo\iota ne}\circ DNF$ . The

other representation class will be the labelled obstruction set representing minor closed

graph classes of labelled graphs. We call this representation class $R_{\mathrm{o}\mathrm{b}_{L}}$ .
When we are talking about query learning, we need to define the communication

protocol between the Teacher and the Learner. A protocol is a set of queries. We will use

throught the paper one kind of query, equivalence queries with counterexample [1].

In [2] a general proof technique called approximate fingerprints is shown. When you

can show that a representation class has the approximate fingerprint property this implies

that there is no polynomial time algorithm for learning that representation class using

only equivalence queries. Many negatives results have been proved using this technique.

We will make explicit use of one of them.

Theorem 3 [2] There is no polynomial time algorithm that exactly identifies all Mono-

tone $DNF$ formulas using only equivalence queries.

The following corollary of the previous theorem will allow us to improve the lower

bound:
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Corollary 4 $l\mathit{4}J$ There is no $\mathcal{O}(n^{\log n})$ algorithm for exact identification of all Monotone
$DNF$ formulas using only equivalence queries.

Our goal will be to reduce our learning problem to the problem of learning Monotone
DNF formulas. In the following section we introduce the notion of reduction we will use
for the proof.

3 Reduction between query learning problems

A general notion of reduction among representation classes that preserves polynomial
predictability was introduced by Pitt and Warmuth [5]. Since our model of learning
is different we redefined that reduction in order to make it useful for our framework.
However, the intuition behind is still the same.

Assume we have a learning algorithm $L_{2}$ that exactly identifies the representation
class $R_{2}$ using poynomial number of equivalence queries. We would like to construct a
reduction from the representation clas $R_{1}$ to $R_{2}$ that allows us to build an algorithm
$L_{1}$ for exactly identify representation class $R_{1}$ using polynomial number of equivalence
queries. When $L_{2}$ asks an equivalence query, the reduction might be able to transform
the query to a equivalence query in $R_{1}$ . Thus, our reduction should provide a function
$g$ (called the representation transformation) which maps representations from $R_{2}$ to $R_{1}$ .
Moreover, when $L_{1}$ receives a counterexample there must exist a second transformation
$f$ (the word transformation) which maps this counterexample into a counterexample for
$L_{2}$ . If the reduction (transformations $f$ and $g$ ) fulfils some requirements the algorithm
$L_{2}$ for $R_{2}$ might be used to obtain another algorithm for $R_{1}$ , preserving the number
of equivalence queries. However, we are not always able to transform the equivalence
queries for representation $R_{2}$ into equivalence queries for $R_{1}$ . Thus, $g$ will be only a
partial function. In the case that $g$ is undefined the algorithm $L_{1}$ must be able to answer
by itself with a counterexample consistent with any target concept represented in $R_{1}$ .

Since we want to use the transformation for proving a non-learnability result, we only
need to preserve the number of queries. In fact, we do not really care about the time
complexity of the transformations $f$ and $g$ , as far as they are computable and length
preserving within a polynomial. Below we give the formal definition of the reduction.

Definition 5 Let $(R_{1}, c_{1,1}\Sigma)$ and $(R_{2}, c_{2,2}\Sigma)$ be a pair of representation classes. With
respect to this pair, $a$ word transformation is a function $f$ : $\Sigma_{1}^{*}\vdasharrow\Sigma_{2}^{*}$ and $a$ partial
representation transformation is a partial function $g:R_{1}-\succ R_{2}$ .
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Definition 6 The representation class $R_{1}$ reduces to the representation class $R_{2}$ (denoted

by $R_{1}\underline{\triangleleft}R_{2}$) iff there is a polynomially length preserving word transformation $f$ and

a polynomially length preserving partial representation transformation $g$ such that the

following two conditions hold:,

1. When $g$ is defined for an $r_{2}\in R_{2},$ $w_{1}\in c_{1}(g(r_{2}))$ iff $f(w_{1})\in c_{2}(r_{2})$ .

2. When $g$ is undefined for an $r_{2}\in R_{2}$ it must be possible to compute a word $w\in\Sigma_{2}^{*}$

such that for any $r\in R_{2}$ for which $g$ is defined, $w\in c_{2}(r)$ iff $w\not\in c_{2}(r_{2})$ .

The following lemmas show the utility of the reducibility (the proofs are in the full

version of the paper):

Lemma 7 For all representation classes $R_{1}$ and $R_{2}$ , if $R_{1}\underline{\triangleleft}R_{2}$ and $R_{2}$ is exactly learnable

using polynomial number of equivalence queries, the $R_{1}$ is exactly learnable using at most

the same number of queries.

Lemma 8 The reduction is transitive, $i.e.$ , if $R_{1}\underline{\triangleleft}R_{2}\underline{\triangleleft}R_{3}$ , then $R_{1}\underline{\triangleleft}R_{3}$ .

4 Equivalence queries are not enough

In the previous section we defined a notion of reduction among query learning problems.

Now, we want to make use of this notion to reduce Monotone DNF formulae to Obstruc-

tion sets.. Unfortunately, we have not found any straight way to make this reduction.

Therefore, we might use an intermediate representation class, Labelled Obstruction Sets

which was previously defined in the second section.

Lemma 9 $R_{mmoteDN}mF\underline{\triangleleft}R_{\mathrm{o}\mathrm{b}_{L}}$ .

Proof: The reduction we will show below is indeed a reduction from the negation of

Monotone DNF formulae to $R_{\mathrm{o}\mathrm{b}_{L}}$ . However, the problem of learning this representation

is equivalent to the problem of learning $R_{mmoteDN}mF$ . Thus, we can conclude that the

following reduction works also for Monotone DNF formulae.

Let $\mathrm{o}\mathrm{b}_{L}$ be an arbitrary obstruction set of $t$ labelled graphs with at most $n$ vertices and

at most $k$ actual edges out of $m$ possible. We first show how to transform this obstruction

set into a Monotone DNF formulae. We consider formulae over $m$ variables, $V_{m}$ . Since we

are working with labelled graphs we can exactly identify each edge. Therefore, we map

each edge into one positive variable and one graph will represent the conjunction of all
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its edges. Moreover, each graph of the obstruction set will be map into one term of the
formulae. This transformation is computable and polynomially preserves the length of the
obstruction set. It is also a total function, so we do not have to define what to do in the
case that the function is undefined. Hence this will be our representation transformation
$g$ .

Let $a\in\{0,1\}^{m}$ an assigment for a boolean formulae over $V_{m}$ . We can build a labelled
graph with $n$ vertices and $m$ possible edges such that the egdge $e_{i}$ appears in the graph
iff $a_{i}=1$ . This will be our word transformation $f$ which is clearly computable and length
preserving.

It should also be clear that the above defined reduction fulfils the first condiction of
our definition of reduction. The negation of a Monotone DNF $\phi$ formula is not satisfied
by an assigment $a$ iff the term obtained from the assigment is a superset of at least one of
the terms of the formula. The graph $f(a)$ is not contained in the class recognized by $\mathrm{o}\mathrm{b}_{l}$

iff the set of edges of $f(a)$ is a superset of at least one of the graphs in the obstruction
set. $\bullet$

Lemma 10 $R_{\mathrm{o}\mathrm{b}_{L}}\underline{\triangleleft}R_{\mathrm{o}\mathrm{b}}$ .

Proof: Since we want to transform normal graphs into labelled graphs and viceversa, we
would like to add to the labelled graphs an artificial labelling that allow us to determine
which were the labelled vertices. Let $G_{L}$ be a labelled graph with $n$ vertices. Withouth
loss of generality, we can assume that the number of actual edges out of the $m$ possible
is a fixed constant $s$ and the labels are taken from the set $\{v_{1}, \ldots, v_{n}\}$ . We call the
vertices of $G_{L}$ the principal vertices. Let $v_{i}$ be one the principal vertices of $G_{L}$ . We add
to $v_{i}$ one edge and at the other side of this new edge, we add the complete graph $K_{s+i+1}$

by one of its vertices. Thus, we can define a transformation $f$ from labelled graphs to
unlabelled graphs that adds to each labelled vertex $v_{i}$ a new edge and the corresponding
complete graph $K_{s+i+1}$ . Hence, $f(G_{L})$ will be an unlabelled graph and $f$ will be our word
transformation. Since $s$ is a fixed constant, the size of $f(G_{L})$ is polynomial in the size of
$G_{L}$ . Thus, $f$ is polynomially length preserving. We claim that the principal vertices of
$G_{L}$ can be uniquely identified in $f(G_{L})$ . They will be the $n$ vertices with at most $s+1$

incident edges.
However, the inverse transformation $f^{-1}$ from unlabelled graphs to labelled graphs

is partially defined, since if the unlabelled graph does not have the desired structure
($n$ principal vertices and the added complete graphs $K_{s+2}$ to $K_{s+n+1}$ ) is not possible
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to construct a labelled graph. Nevertheless, we will use $f^{-1}$ in the construction of our

representation transformation.
Let $Ob$ be an obstruction set of unlabelled graphs. We might want to map each graph

in $Ob$ into a labelled graph and build a labelled obstruction set $Ob_{L}$ . Assume that each

graph in $Ob$ has the above explained structure. Therefore, we can apply $f^{-1}$ to each graph

in $Ob$ obtaining $Ob_{L}$ . This will be our partial representation transformation $g$ . Notice

that when $g$ is defined, $G_{L}\preceq_{L}H_{L}$ iff $f(G_{L})\preceq f(H_{L})$ . Since $g$ is constructed by $f^{-1}$ this

implies that the first condition of the reduction is satisfied.

On the other hand, let $H$ be an unlabelled graph in $Ob$ without the desired structure.

In this case, $g$ is undefined and we must give a sistematic way for constructing a unlabelled

graph $C$ such that, for any obstruction set $Ob^{l}$ for which $g$ os defined, $C\in \mathcal{G}(Ob’)$ iff

$C\not\in \mathcal{G}(Ob)$ . The construction is as follows. Let $G_{0}$ the graph obtained after applying

$f$ to a labelled graph with $n$ vertices and no edges. $G_{0}$ will be the disconnected graph

consistent of $n$ components, that is $K_{s+2}$ with one vertex linked with another vertex up

to $K_{s+n+1}$ also with one vertex linked to another vertex. We also consider the graph
$G_{*}$ built from the aplication of $f$ to a complete labelled graph with $n$ vertices. Thus,

$G_{*}$ will be a graph with $n$ principal vertices with all possible edges and the complete

graphs $K_{s+2}$ to $K_{s+n+1}$ joined around as previously stated. Notice that for any labelled

graph $G_{L}$ the following fact holds: $G_{0}\preceq f(G_{L})\preceq G_{*}$ . Since $f^{-1}(H)$ is undefined either

$G_{0}\not\leq H$ or $H\not\leq G_{*}$ . Consider the first case. For any $G_{L}$ , $G_{0}\preceq f(G_{L})$ implies that

$f(G_{L})\not\leq H$ (otherwise we contradict the assumption that $G_{0}\not\leq H$ , by transitivity of the

minor relation). Nevertheless, $H$ is minor of itself (by definition of the minor relation)

and therefore $H\not\in \mathcal{G}(Ob)$ but $H\in \mathcal{G}(Ob’)$ for any $Ob’$ where $g$ is defined (and therefore

$f^{-1})$ . Thus, $H$ satisfies the second condition of the reduction. On the other hand, assume

that $H\not\leq G_{*}$ . Thus, $G_{*}\in \mathcal{G}(Ob)$ but $G_{*}\not\in \mathcal{G}(Ob’)$ , for any $Ob’$ where $g$ is defined. This

holds because for any $G_{L},$ $f(G_{L})\preceq G_{*}$ . Hence $G_{*^{\mathrm{S}\mathrm{a}}}\mathrm{t}\mathrm{i}\mathrm{S}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{s}$ the second condition and we

are done. $\iota$

Now we are ready for stating our main negative result:

Theorem 11 There is no algorithm that exactly identifies the representation class $R_{\mathrm{o}\mathrm{b}}$

using $\mathcal{O}(n^{\log n})$ equivalence queries.

Proof: Suppose there is one. By Lemmas 9 and 10 we have the following chain of

reductions: $R_{mmoteDN}mF\underline{\triangleleft}R_{\mathrm{o}\mathrm{b}_{L}}\underline{\triangleleft}R_{\mathrm{o}\mathrm{b}}$ and by transitivity of the reduction (Lemma 8),

$R_{m}motmeDNF\underline{\triangleleft}R_{\mathrm{o}\mathrm{b}}$ . Thus, we can construct an algorithm using $O(n^{\log n})$ queries for

$R_{m}motmeDNF$ contradicting Corollary 4. Notice that in Lemma 10 we restrict the number
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of edges in our graphs to be a fixed constant. Thus, when applying the reductions we
are also restricting the number of literals in each term of the Monotone DNF formulae.
However, the same negative result of Corollary 4 holds even if we restrict the number of
literals per term to be a fixed constant. For more details about this we refer the reader
to [4]. 1

5 Acknowledgments

The authors would like to thank Osamu Watanabe for valuable advice and interesting
conversations while working on the topic.

References

[1] D. Angluin. Learning regular sets from queries and counterexamples, Information
and Computation, 75 (1987) 87-106.

[2] D. Angluin. Negative results for equivalence queries. Machine Learning, 5 (1990)

121-150.

[3] H. Bodlaender. A Tourist Guide through Treewidth, Acta Cybernetica, 11 (1993).

[4] C. Domingo. Improved Fingerprints for Boolean Formulae, Unpublished manuscript,
(1994).

[5] L. Pitt and M. K. Warmuth, Reductions among prediction problems: On the dif-
ficulty of predicting automata, Proceedings of the 3rd Annual IEEE Conference on
Structure in Complexity Theory, (1988) 60-69.

[6] J.Shawe-Taylor, C.Domingo, H.Bodlaender, J.Abello. Learning Minor Closed Graph

Classes with Membership and Equivalence. NeuroCOLT Technical Report NC-TR-
94-014, (1994).

[7] O. Watanabe. A formal study of learning via queries. Lecture Notes in Computer Sci-
ence 443: Proceedings of the 17th International Colloquium on Automata, Languages

and Programming, M.S.Paterson, ed., Springer-Verlag, (1990) 139-152.

219


