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Abstract
In this paper we study the reliable broadcasting in product networks. We suppose that the faulty

nodes and faulty links may arbitrarily change the messages that pass through them, and may even
fabricate messages. An $n$-channel network can tolerate $\lfloor(n-1)/2\rfloor$ such $\mathrm{a}\mathrm{l}.\mathrm{b}\mathrm{i}\iota \mathrm{r}\mathrm{a}\mathrm{l}.\mathrm{y}$ faults in broadcasting
in the worst case. We prove that the product network of any $n$ component networks is an n-channel
network, and hence it can tolerate $\lfloor(n-1)/2\rfloor$ faults in the worst case. If there are $f$ faulty nodes
randoffiy distributed in the $n$-product networks, the broadcasting succeeds with a probability higher
than $1-(4b^{s}nf/N)^{\lceil/21}n$ , where $N$ is the node number of the $n$-product network and $b$ is the upper
bound of the node numbers of the $n$ component networks. If only links may fail while all the nodes are
healthy, then $\ominus(L)$ faulty links that are randomly distributed in the $n$-product network can be tolerated
with high probability, where $L$ is the link number of the network.

1 Introduction
1.1 Product Networks
Let $G_{1}=(V_{1}, E_{1})$ and $G_{2}=(V_{2}, E_{2})$ be two finite undirected graphs. The cartesian product of $G_{1}$ and
$G_{2}$ is defined as $G=G_{1}\cross G_{2}$ with the node-set $V=V_{1}\cross V_{2}=\{(x, y)|x\in V_{1,y}\in V_{2}\}$ . There is an edge
$\mathrm{f}(x, y),$ $(u, v)\}$ in $G$ iff eitller $x=u$ and $\{y, v\}\in E_{2}$ , or $\{x, u\}\in E_{1}$ and $y=v$ . The graphs $G_{1}$ and $G_{2}$

are called the factors or component networks of G. $G$
’ consists of $|G_{2}|$ copies of $G_{1}$ , namely the subgraphs

$G_{1}x_{2}$ with node-set $\{(x_{1,2}x)|x_{1}\in V_{1}\}$ and edge-set $\{\{(x, x_{2}), (y, x_{2})\}|\{x, y\}\in E_{1}\}$ . Analogously, $G$

has $|G_{1}|$ copies $x_{1}G_{2}$ of $G_{2}$ induced by the node-set $\{(x_{1}, x_{0})|x_{2}\in V_{2}\}$ .
Figure 1 shows an example of a product network.
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Figure 1: Example of a product network.

This definition can be generalized to a product of $n$ graphs $G=(V, E)=G_{1}\cross G_{2}’\cross\ldots\cross G_{n}$ with
$G_{i}=(V_{i}, E_{i}),$ $1\leq i\leq n$ . It holds $V=\mathrm{t}^{\gamma_{1}}\cross\ldots\cross V_{n}$ and $E=\{\{x_{1}\ldots x_{n}, y_{1}\ldots y_{n}\}|\exists i\in\{1, \ldots, n\}$

with $\{x_{i}, y_{i}\}\in E_{i}$ and $x_{j}=y_{j}$ for $i\neq j$ }. An interconnection topology deIived froIn several component
networks by this product operation is called a product network.

Examples for product networks include the $(m_{1}\cross\ldots\cross m_{\mathrm{n}})$-mesh (respectively torus) defined as
$L_{m_{1}}\cross\ldots\cross L_{m_{n}}$ (respectively $R_{m_{1}}\cross\ldots\cross R_{m_{n}}$ ) (for a linear array $L_{j}$ or a ring $R_{j}$ of length $j$ ), the
$n$-dimensional binary hyper-cube is $Q_{n}=Q_{n-1}\cross I\iota_{2}’$ , the generalized hyper-ctlbe $GQ_{b}^{n}=GQ_{b}^{n-1}\cross Ii_{b}$ ,
where $I\iota_{b}^{-}$ is the complete graph of order $b,$ $b\geq 2$ , the hyper de Brllijn network $HD(m, n)=Q_{n\iota}\cross DG(n)$

(for the binary de Bruijn graph $DG(n)$ of order $n$ ) $[5]$ and the hyper Petersen network $HP_{n}=Q_{n-3}\cross P$

[4]. Here an $n$-dimensional binary hypercube, $Q_{n}$ , has the node-set $V_{n}=Z_{2}^{n}=\{x_{1\cdots n}x|x_{i}=0$ or
1, $1\leq i\leq n$ }, which is the set of binary strings of length $n$ . There exists an edge betweell two nodes iff
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their binary labels differ in exactly one bit. A binary de Bruijn graph of order $n,$ $DG(n)$ , has the same
node-set as $Q_{n}$ and the edge-set $\{(x1\cdots x_{n}, X2\cdots Xnp)|p, xi\in Z_{2},1\leq i\leq n\}$ .

Youssef has proven in [9] that for two graphs $G_{0}^{1}$ and $G_{1}$ , the product network $G=G_{1}\cross G_{2}$ has
the diameter $d(G)=d(G_{1})+d(G_{2})$ , the degree $deg(G)=deg(G_{1})+deg(G_{2})$ , the average distance
$d_{avg}(G)=d_{avg}(G_{1})+d_{avg}(G_{2})$ , and the node-connectivity $c(G’)=c(G_{1}’)+\subset\cdot(c_{2}^{l})$ .

1.2 Fault-Tolerant Broadcasting
Broadcasting is the process of information dissemination in a comlnunication network by whicll a message
originated at one node (source node) is transmitted to all other nodes in the network [7]. If there exist
faulty links and faulty nodes in the network, the task of fault-tolerant broadcasting is to dissenlinate the
information from the source node (source node is supposed to be always healthy) to all the healthy nodes
in the network. We say that a broadcasting succeeds if after the broadcasting procedure all the healthy
nodes in the network obtain correct message held by the source node. Recently a lot of attention has been
devoted to fault-tolerant broadcasting $[1],[2],16],[8]$ . In this paper we study fault-tolerant broadcasting in
product networks.

There are usually two assumptions of fault type. One is to assume that only fail-stop faults take
place, i.e., a faulty node or link does not transmit any message. It just stops tlle message. The other one
is to assume that a faulty node or link may behave in arbitrarily harmful performance, i.e., it may not
only stop a message, but also arbitrarily change the message that pass throught it, and even fabricate a
message. The faults we consider in this paper are of such arbitrary type.

In the study of fault-tolerant broadcasting, two situations are usually considered. One is to consider
the maxmum number of faults which can be tolerated in the worst case. Apparently, in this situation
the maxnium number of faults cannot exceed the degree (respectively half degree) of any node in the
presence of fail-stop faults (respectively arbitrary faults). The other situation is that faults are randolnly
ditributed in the network, and the relationship between the number of faults and the probability of
successful broadcasting is considered.

We call a graph $G$ an $n$-channel graph at node $u$ , if there are $n\mathrm{s}_{\mathrm{P}^{\mathrm{a}\mathrm{n}\dot{\mathrm{m}}\mathrm{n}}\mathrm{g}}$ trees of $G$ rooted at $u,$ $T_{1}$ ,

$T_{2},$
$\ldots,$

$T_{n}$ such that for any node $v$ of $G$ , paths from $u$ to $v$ in different $T_{i}$ are node disjoint. If a graph $G$

is $n$-channel graph at every node $u$ , we call $G$ an $n$-channel graph. We show that an $n$-channel network
can tolerate $\lfloor(n-1)/2\rfloor$ arbitrarily-faulty $\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{s}$ in broadcasting in the worst case. In this paper we
do following work:

(1) We prove that the product network of any $n$ component networks $G_{1}^{l}\cross G_{2}^{\mathrm{t}}\cross\cdots\cross G_{n}$ is an
$n$-channel network. Hence, it can tolerate $\lfloor(n-1)/2\rfloor$ arbitrarily-faulty $\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{s}$ in broadcasting in
the worst case.

(2) If every component network $G_{i}$ has $n_{i}$ nodes and $n_{i}\leq b$ for sonle constant $b$ , the product network
$G_{1}\cross G_{2}^{t}\cross\cdots\cross G_{n}$ can tolerate $=^{N}4b\overline{nk}$ faulty nodes of al.bitrary type that are randonlly distributed in

the network with probability larger than $1-k^{-\lceil/2\rceil}n$ . Here $N$ is the node number of $G_{1}\cross G_{2}\cross\cdots\cross G_{n}$ .
(3) $\mathrm{W}\mathrm{e}$ exploit the fact that there exist $n$ disjoint paths of length$\leq 3$ between any pair of adjacent

nodes in $G_{1}\cross G_{2}\cross\cdots\cross G_{n}^{l}$ and construct a reliable broadcasting, which tolerates $\ominus(L)$ arbitrarily-faulty
links that are randomly distributed in the $\mathrm{n}\mathrm{e}\mathrm{t}_{\mathrm{W}\mathrm{o}\mathrm{r}}\mathrm{k}$( $L$ is the lmnlber of the links in $G_{1}\cross G_{2}^{1}\cross\cdots \mathrm{x}G_{n}’$ ).

2 Broadcasting in Product of $n$ Networks

Let $G$ be a graph and $v$ be a node of $G$ . We call $G$ to be $n$-channel at node $\mathrm{t}$ ’ if there exist $n$ spanning
trees of $G$ rooted at $v$ , denoted by $T_{1},$ $T_{2},$ $\cdots$ , $T_{n}$ , which satisfy the following condition:

For any node $u$ of $G$ , the paths $p_{1}(v, u),$ $p_{2}(1^{)}, u),$ $\cdots,$ $p_{n}(v, u)$ are node-disjoint except for $v$ and $u$

where $p_{i}(v, u)$ denotes the path from $v$ to $u$ in $T_{i},$ $1\leq i\leq n$ . See Figure 2.
We call $G$ an $n$-channel graph if $G$ is $n$-channel at every node.

Theorem 1 If $G$ is an $n$ -channel network, then $G$ can tolerate $\lfloor(n-1)/2\rfloor$ arbitrarily-faulty $node\mathit{8}/link_{\mathit{8}}$

in the worst case in $broadCa\mathit{8}ting$ .

Proof: We suppose that every node $u$ of the network $G$ is a processor and has the knowledge about the
topology of the network.

Let node $s$ be the source node and $T_{1},$ $T_{2},$
$\ldots,$

$T_{n}$ be the $n$ spanning trees rooted at $s$ . For any node
$u$ , the path $p_{i}(s, u)$ from $s$ to $u$ in $T_{i}$ is node-disjoint from the path $p_{j}(s, u)$ in $T_{j}$ if $1\leq i\neq j\leq n$ . Node
$s$ holds a message $m$ which is needed to be disseminated to all the healthy nodes in the network.
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Figure 2: $G’$ is $n$-channel at node $n$ if $pi(v, u)’ \mathrm{S}$ are node-disjoint for ally $u$ .

At first, $s$ transmits the message $(i, m)$ to all its sons in $T_{i}$ , for $1\leq i\leq n$ . Then every node $u$ in the
network works concurrently in the following way:

When receiving a message $(i’, m’)$ from node $v,$ $u$ checks whethel. $v$ is the father of $u$ in $T_{i’}$ . If yes,
then $u$ saves the message $(i’, m’)$ and translnits it to all its sons in $T_{i’}$ . Otherwise, $u$ does nothing.

(Note: (1) If the message received by $u$ is not in form of $(i’, 7’)$ , then $u$ does nothing. (2) If $u$ receives
messages more than one times from a same adjacent node, it only accept the nlessage in the first time. (3)
Since tllere may exist faults, the nlessage $(i’, m’)$ received by $u$ is not necessaly to be $(i, m)$ , the $\mathrm{c}\mathrm{o}\mathrm{l}.1^{\cdot}\mathrm{e}\mathrm{C}\mathrm{t}$

message. But $u$ regards $(i’, m’)$ as correct one if it comes $\mathrm{f}\mathrm{i}\cdot \mathrm{o}\mathrm{m}$ the father of $u$ in $T_{i’}.$ )
After the broadcasting is completed, each node $u$ in $G$ obtains at most $n$ copies of the message,

each fronl one of $\tau_{1},$ $\tau_{2,n}\ldots,$$\tau$ . If there are no $\mathrm{m}\mathrm{o}\mathrm{I}^{\cdot}\mathrm{e}$ than $\lfloor(n-1)/2\rfloor$ fatllty $\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{s}$ , then at least
$\lceil(n+1)/2\rceil$ paths among $p_{1}(s, u),$ $p_{2}(s, u),\ldots,$ $p_{n}(s, u)$ are fatllt free. Hence, $\mathrm{n}\mathrm{l}\mathrm{O}\mathrm{l}.\mathrm{e}$ than half of the copies
of message $m$ obtained by $u$ are correct. By majority voting, $n$ can pick out the $\mathrm{c}\mathrm{o}\mathrm{l}.\Gamma \mathrm{e}\mathrm{C}\mathrm{t}$ message $m$ . $\square$

In the proof of above Theorem, there is an implicit assumption that every node $u$ knows that the
source node is $s$ . Actually, this assumption can be removed by $\mathrm{n}\mathrm{u}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$

. the broadcasting in the following
way:

At filst, $s$ transmits the message $(s, i, m)$ to all its sons in $T_{i(S)}$ , for $1\leq i\leq n$ . When receiving a
message $(s’, i’, m’)$ from node $v,$ $u$ checks whether $v$ is the father of $u$ in $T_{i^{l}}(s’)$ . If yes, then $u$ saves the
message $(s’, i’, m’)$ alld transmits it to all its sons in $T_{i’}(s)’.$ OtheIwise, $u$ does nothing. Here $T_{i}(v)’ \mathrm{S}$

denote the spanning trees rooted at node $v$ , and for any node $w,$ $p_{i}(1),$ $w)’ \mathrm{S}$ are node-disjoint.
Now we consider the product network of $n$ component networks. Let $G_{1}^{t},$ $G_{2},$

$\cdots,$ $G_{n}$ be $n$ basic
networks, i.e., each $G_{i}$ is a relatively simple $\mathrm{g}_{1}\cdot \mathrm{a}\mathrm{p}\mathrm{h}$ such as an array, a ring or a small complete graph
etc. In general, we let each $G_{i}$ be a small graph. Denote the product, of $G_{1},$ $G_{2},$

$\cdots,$
$G_{n}$

’ by $P(n, G_{i})=$
$G_{1}\cross G_{2}\cross\cdots\cross G_{n}$ . Each node $u$ of $P(n, G_{i}’)$ can be wirtten as $u=<u_{1},$ $u_{2},$ $\cdots$ , $u_{n}>\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}ui$ is a node
of $G_{i}$ , for $1\leq i\leq n$ . In the next Theorem, we prove that $P(n, G_{i})$ is an $n$-channel network. We only
need that each $G_{i}$ is connected and a spanning tree of each $G_{i}^{1}$ is used.

Theorem 2 $P(n, G_{i})$ is an $n$ -channel network for any $n$ networks $G_{1}’,$ $G_{2},$ $\cdots$ , $G_{n}$ .

Proof: To prove $P(n, G_{i})$ being an $n$-channel network, we only need to prove that $P(n, G_{i})$ is ?1-channel
at every node. Let $<s_{1},$ $s_{2,\ldots,n}S>\mathrm{b}\mathrm{e}$ a node of $P(n, G_{i})$ and let $BT_{i}$ be a spanning tree of $G_{i}$ rooted
at $s_{i}$ for $i=1,2,$ $\ldots,$

$n$ . Then from $BT_{1},$ $BT2,$ $\cdots,$ $BT_{n}$ , we call construct spanning trees $T_{1},$ $T_{2},$ $\cdots$ , $T_{n}$ of
$P(n, G_{i}’)$ rooted at $<s_{1},$ $s_{2},$

$\ldots,$ $S_{n}>$ . For $1\leq i\leq n$ , we construct $T_{i}$ as following:
Let $V_{1}=\{<s_{1}, s2, \ldots, si-1, X_{i}, s_{i}+1, \ldots, s_{n}>|x_{i}\in C_{\tau_{i}}\}$ . For any two nodes of $V_{1},$ $<s_{1},$ $s_{2,\ldots,i-1}s$ ,

$y_{i},s_{i+}1,$ $\ldots,$
$S_{n}>\mathrm{a}\mathrm{n}\mathrm{d}<S_{1},$ $s_{2},$

$\ldots,$ $s_{i}-1,$ $yi’ S_{i1,\ldots,n}+S’>$ , add alink between $<s1,$ $s2,$ $\ldots,$ $si-1,$ $y_{i,j}S+1,$ $\ldots,$ $Sn>$
and $<s_{1},$ $s_{2},$

$\ldots,$ $si-1,$ $y_{i}’,$ $s_{i+1},$ $\ldots,$
$s_{n}>\mathrm{i}\mathrm{f}$ and only if there is a link between $y_{i}$ and $y_{i}’$ in $BT_{i}$ .

Let $V_{2}=\{<s_{1}, s2, \ldots, si-1, x_{i}, xi+1, s_{i+2}, \ldots, s_{n}>|x_{i}\in G_{i}-\{s_{i}\}, X_{i1}+\in G_{i+1}’\}$ . For the two nodes of
$V_{2},$ $<s_{1},$ $S_{2},$

$\ldots,$ $S_{i1,i}-X,$ $y_{i+}1,$ $S_{i}+2,$ $\ldots,$
$sn>\mathrm{a}\mathrm{n}\mathrm{d}<s_{1},$ $s_{2,\ldots,i1}S-,$ $xi,$ $y^{J}i+1’+\mathit{8}_{i2},$

$\ldots,$
$s_{n}>$ , add alink between

$<s_{1},$ $s_{2,\ldots,i-1}S,$ $xi,$ $yi+1,$ $si+2,$ $\ldots,$ $Sn>$ and $<s_{1},$ $s_{2},$
$\ldots,$ $s_{i-1,i}x,$ $y_{i}’+1’ s_{i+2},$

$\ldots,$
$s_{n}>\mathrm{i}\mathrm{f}$ and only if there is

a link between $y_{i+1}$ and $y_{i+1}’$ in $BT_{i+1}$ .
Let $V_{3}=\{<s_{1}, s_{2,\ldots,i-1,i,i+}SxX1, x_{i+2}, s_{i+3}, \ldots, s_{n}>|x_{i}\in G_{i}-\{s_{i}\}, Xi+1\in G_{i+1}^{1}, x_{i+2}\in G_{i2}’+\}$ .

For the two nodes of $V_{3},$ $<s_{1},$ $s_{2},$
$\ldots,$ $si-1,$ $X_{i},$ $X_{i1}+,$ $y_{i+}2,$ $si+3,$ $\ldots,$

$sn>\mathrm{a}\mathrm{n}\mathrm{d}<s_{1,2}s,$
$\ldots,$ $s_{i-1},$ $x_{i},$ $xi+1,$ $yi+2’$ ,

$s_{i+3},$ $\ldots,$ $s_{n}>$ , add a link between $<s_{1},$ $s_{2},$
$\ldots,$ $si-1,$ $xi,$ $xi+1,$ $yi+2,$ $si+3,$ $\ldots,$ $s_{n}>$ and $<s_{1},$ $s_{2},$

$\ldots,$ $s_{i-1}$ ,
$x_{i},$ $x_{i+}1,$ $y_{i2}^{J}+’ s_{i+3},$

$\ldots,$
$s_{n}>\mathrm{i}\mathrm{f}$ and only if there is a link between $y_{i+2}$ and $y_{i+2}’$ in $BT_{i+2}$ .
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Let $V_{n-1}=\{<x_{1},$ $\ldots$ , xi-2, $s_{i-1,i,n}x\ldots,$$X>|x_{i}\in G_{i}-$ {si}, $x_{j}\in G_{j}$ for $j=i+1,$ $i+2,$
$\ldots,$ $n,$ $1,2,$

$\ldots,$
$i-$

2}. For the two nodes of $V_{n-1},$ $<X_{1},$ $\ldots,$ $x_{i-3}$ , yi-2, $s_{i-1},$ $X_{i,\ldots,n}x>\mathrm{a}\mathrm{n}\mathrm{d}<x_{1},$
$\ldots,$ $x_{i-3}$ , y\’i-2’ $s_{i-1j,\ldots,X_{n}},$$x>$ ,

add a link between $<x_{1},$ $\ldots,$ $x_{i3}-,$ $y_{i}-2,$ $si-1,$ $x_{i},$
$\ldots,$

$x_{n}>$ and $<x_{1},$ $\ldots,$ $x_{i3}-,$ $y’?.-2’-1,$$xis_{i},$ $\ldots,$
$x_{n}>$ if and

only if there is a link between yi-2 and $y_{i-2}’$ in BTi-2.
Let $V_{n}=$ { $<x_{1},$ $\ldots,$ $x_{i1}-,$ $x_{i},$

$\ldots,$
$xn>|x_{i}\in G_{i}-\{s_{i}\},$ $x_{j}\in G_{j}^{t}$ , for $j\neq i$ }. For the two nodes of $V_{n}$

$<x_{1},$ $\ldots,$ $x_{i2}-,$ $y_{i-1},$ $Xi,$ $\ldots,$ $Xn>$ and $<x_{1},$ $\ldots,$
$xi-\mathit{2},$ $y_{i}-1’ i,$ $\ldots,$$x\prime xn>$ , add a link between $<.\iota_{1},$ $\ldots$ . xi-2,

$y_{i-1},X_{i},\ldots,X_{n}>\mathrm{a}\mathrm{n}\mathrm{d}<x_{\mathrm{f}’ \mathrm{t}\mathrm{n}}\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{a}11\mathrm{y},\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}1\mathrm{e}\mathrm{t}\mathrm{m}\mathrm{o}’ \mathrm{S}\mathrm{s}0’ \mathrm{o}\mathrm{f}_{S_{i}\mathrm{i}}.\mathrm{n}’ B’ T_{i}\mathrm{b}\mathrm{y}\mathrm{f}i\mathrm{L}\mathrm{e}\mathrm{t}\mathrm{t}’.\mathrm{l}n+=\{<.\Gamma 1\backslash r_{2},,x_{i-1},sX_{\dot{1}}+,\mathrm{n}x1\cdots i-2y_{i-1}’,\theta_{i\cdots n}X>\mathrm{i}\mathrm{f}.\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{i}_{\mathrm{S}\mathrm{a}.1\mathrm{i}\mathrm{k}.\mathrm{b}y_{i1}..,y_{i1}’}11..\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n}_{i,1}-\mathrm{a}.\mathrm{d}->X_{\eta}^{\cdot}$

$|x_{j}\in G_{j},j\neq i\}-\{<s_{1}, s_{2}, \ldots, S_{n}>\}$ . For any node of $V_{n+1},$ $<X1,$ $\ldots,$ $Xi-1,$ si, $X\mathrm{i}+1,$ $\ldots,$ $xn>$ , add a link
between $<x_{1},$ $\ldots$ , $x_{i-l}$ , si, $x_{i+1},$ $\ldots,$

$x_{n}>\mathrm{a}\mathrm{n}\mathrm{d}<X_{1},$
$\ldots,$ $X_{i-1},$ $t_{i},$ $X_{j}+1,$ $\ldots,$ $xn>$ .

Apparently, $V_{1}-\{s\}\subset V_{\mathit{2}}\subset\cdots\subset V_{n}$ and $\mathrm{V}_{n}^{r}\cup l_{n+}’1\cup\{s\}=V(P(i, G_{i}))$ . It is not difficult to verify
that above connection makes a spanning tree $T_{i}$ of $P(n, G_{i})$ rooted at $<s_{1},$ $s_{2},$ $\ldots,$ $S_{n}>$ .

By the method of above construction, we can construct $n$ spanning trees of $P(n, G_{i}),$ $T_{1},$ $T_{\mathit{2}},$

$\ldots,$
$T_{n}$

rooted at $s=<s_{1},$ $s_{\mathit{2},\ldots,n}S>$ . For any node $u=<u_{1},$ $u_{2},$ $\ldots,$ $u_{n}>$ of $P(n, G_{i})$ , we denote the path from
$s=<s_{1},$ $s_{2,\ldots,n}S>$ to $u=<u_{1},$ $u_{2},$

$\ldots,$
$u_{n}>$ in $T_{j}$ by $p_{j}(s, u)$ for $j=1,2,$ $\ldots,$

$n$ . Next we prove that
$p_{1}(s, u),$ $p_{2}(s, u),$

$\ldots,$
$p_{n}(s, u)$ are node-disjoint. Hereafter in this paper, when we talk about the nodes of

$p_{j}(s, u)$ , we do not include $s$ and $u$ .
Suppose that $u_{j}=s_{j}$ for $j=i_{1},$ $i_{2},$

$\ldots,$
$i_{k},$ $1\leq i_{1}<i_{2}<\cdots<i_{k}\leq n$ , and $u_{j}\neq s_{j}$ for $1\leq j\neq$

$i_{1},$ $i_{2},$
$\ldots,$

$i_{k}\leq n$ .
(1) If $j\in\{i_{1}, i_{2}, \ldots, i_{k}\}$ , then $p_{j}(s, u)$ is node-disjoint with all other $p_{i}(S, \iota \mathrm{t})$ since the j-th component

of all the nodes on $p_{j}(s, u)$ is $t_{j}$ , the lefmost son of $s_{j}$ while for $i\neq j$ the j-th component of all the nodes
on $p_{i}(s, u)$ is $s_{j}$ .

(2) Now we only need to prove that for $j,$ $j’\neq i_{1},$ $i_{\mathit{2}},$

$\ldots,$
$i_{k}$ and $j\neq j’,$ $p_{j}(S, 1l)$ and $p_{j’}(s, u)$ are

node-disjoint. We denote the number of different components between two nodes $w=<u_{1,\ldots,n}’ u$) $>$

and $w’=<w_{1}’,$
$\ldots,$

$w_{n}’>\mathrm{b}\mathrm{y}\mathrm{N}\mathrm{D}(w, w)’$, i.e., $\mathrm{N}\mathrm{D}(u),$ $w’)=\mathrm{t}\mathrm{h}\mathrm{e}$ number of $w_{i}’ \mathrm{s}$ such that $w_{i}\neq u_{i})’$ . Let $\mathrm{t}$ ’ be
a node on $p_{j}(s, u),$ $v’$ be a node on $p_{j}’(s, u)$ and $j\neq j’$ . If $\mathrm{N}\mathrm{D}(v, s)\neq \mathrm{N}\mathrm{D}(\mathrm{t}^{\prime^{J}}, S)$ , of course $\mathrm{t}’\neq \mathrm{t}^{\prime^{l}}$ .

$\square \mathrm{I}\mathrm{f}$

$\mathrm{N}\mathrm{D}(v, s)=\mathrm{N}\mathrm{D}(v’, s)$ , it is not difficult to see from the construction of $T_{1},$ $T_{2},$ $\ldots,T_{n}$ that $\mathrm{t}$ ) $\neq \mathrm{t})’$ .

We suppose that each transmission of message $(i, m)$ via a link takes a unit time, or we say, takes
one step. The time needed by a broadcasting is measured as the number of concurrent steps in the
broadcasting. The quantity of the broadcasting is measured as the total number of transmissions. We
can not give the quantity of the broadcasting if there exist faults in the network since faults may fabricate
message. But if no faults exist, the quantity of the broadcasting should be $n(N-1)$ . It is the sllm of the
transmission numbers of $n$ spanning trees.

If at each step, each node can transmit a message to all its adjacent nodes, the broadcasting is called
all-port broadcasting. If at each step, each node can transmit a message to onIy one of its adjacent nodes,
the broadcasting is called one-port broadcasting. Let $s=<s_{1},$ $s_{2},$ $\cdots$ , $s_{n}>\mathrm{b}\mathrm{e}$ the source node of $P(n, G_{i}’)$

and hold a message to be disseminated to all healthy nodes in $P(n, G_{i})$ . Let $BT_{i}$ be a spanning tree of
$G_{i}$ rooted at $s_{i}$ for $1\leq i\leq n$ . Let $T_{i}$ be the $n$ spanning trees of $P(n, G_{i})$ rooted at $s=<s_{1},$ $s_{2},$ $\cdots$ , $s_{n}>$

as described in Theorem 2.
Theorem 3 gives the time needed by all-port broadcasting and the time needed by one-port broadcast-

ing. Here we suppose that in one time unit (or one step), a message $(i, m)$ is allowed to be transmitted
via a link forth and back once, or we say the two adjacent nodes $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{l}\dot{\mathrm{u}}\mathrm{c}\mathrm{a}\mathrm{f}\mathrm{e}$ once.

Theorem 3 (1) The all-port $broadca\mathit{8}ting$ which tolerate8 $\lfloor(n-1)/\underline{9}\rfloor$ faulty $nodes/link_{\mathit{8}}$ need8 concur-
rent $\mathit{8}teps$ not exceeding $1+ \sum_{i=1}^{n}a_{i}$ , where $a_{i}i_{\mathit{8}}$ the number of concurren, $t\mathit{8}teps$ needed by the all-port
broadcasting from $s_{i}$ in $G_{i}$ via $BT_{i}$ .
(2) The one-port broadcasting which tolerates $\lfloor(n-1)/2\rfloor$ faulty $node\mathit{8}/links$ needs concurrent steps not
exceeding 2 $\sum_{i=1}^{n}\mathit{0}_{i}$ , where $\mathit{0}_{i}$ as the number of concurrent $\mathit{8}teps$ needed by the one-port broadcasting from
$s_{i}$ in $G_{i}$ via $BT_{i}$ .

Proof: (1) The fault-tolerant broadcasting described in Theorem 1 is actually the broadcasting which
consists of $n$ concurrent broadcastings via $T_{1},$ $T_{2},$

$\ldots,$
$T_{n}$ respectively. Here each $T_{i}$ is a spallning tree

rooted at the source node $s$ , and for any node $u$ of $P(n, G_{j}’)$ paths from $s$ to $u$ in different $T_{i^{\mathrm{S}}}$
’ are node-

disjoint. If a transmission from $v$ to $w$ via the link $(v, w)$ appears in $T_{i}$ , then there is no transmission
from $v$ to $w$ in $T_{j}$ for $j\neq i$ (but it is possible that a transmission fronl $w$ to $\mathrm{t}\}$ appears in $T_{j}$ ). Hence, the
number of conculTent steps needed by the fault-tolerant broadcasting is equal to the nlaxmum hight of
$T_{1},$ $T_{2},$

$\ldots,$
$T_{n}$ .
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The hight of $BT_{\mathrm{i}}$ is $a_{i}$ , for $1\leq i\leq n$ . From the construction in Theorem 2, the hight of $T_{i}$ is equal
to $\sum_{1\leq j\neq i}\leq na_{j}+\max(a_{i}, 2)$ . Since $a_{i}\geq 1$ for $1\leq i\leq n$ , the hight of $T_{i} \leq 1+\sum_{i=1}^{n}a_{i}$ .

(2) The fault-tolerant one-port broadcasting works in the following way:
There are $2n$ rounds in the broadcasting. In round 1, $\mathit{0}_{1}$ steps al.e needed. In round 2, $\mathit{0}_{\mathit{2}}$ steps are
needed. ... In round $n,$ $\mathit{0}_{n}$ steps are needed. In round $n+1,\mathit{0}_{1}$ steps are needed. ... In round $2n,$ $\mathit{0}_{n}$

steps are needed.
Let $1\leq r\leq n,$ $1\leq j\leq \mathit{0}_{\mathrm{r}}$ and $u=<u_{1},$ $\ldots,$ $u_{r’\cdots,n}$$u>$ be a node of $P(n, G_{\iota}^{1})$ . Let $u$ transmit a

message to $u’=<u_{1},$
$\ldots,$ $u_{r-1},$ $u_{r}’,$ $ur+1,$ $\ldots,$

$u_{n}>\mathrm{a}\mathrm{t}$ the j-th step in round $r$ or round $n+r$ if and only if
the following two conditions are satified.

(i) In the one-port broadcasting of $G_{r}$ from $s_{r}$ via $BT_{r}$ , the j-th step is the trallslnission from $u_{r}$ to
$u_{\mathrm{r}}’$ .

(ii) The $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{n}\dot{\mathrm{u}}\mathrm{s}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}$ from $u$ to $u’$ is legal in the broadcasting specified in Theorem 1, i.e., the message
$(k, m)$ that $u$ want to transmit to $u’$ is froln the father of $u$ in $T_{k}$ and $u’$ is one of the sons of $\mathrm{c}\iota$ in $T_{k}$ .

There can be at most one legal tmsmission from $u$ to $u’$ at the j-th step in round $r$ and round $n+r$ .
From round 1 to round $n+1$ , the sub-broadcasting via $T_{1}$ is completed. From round 2 to round

$n+2$ , the sub-broadcasting via $T_{\mathit{2}}$ is completed. ...
From round $n$ to round $2n$ , the sub-broadcasting via $T_{n}$ is completed. The whole broadcasting needs $2n$

rounds, totally 2 $\sum_{i=1}^{n}\mathit{0}_{i}$ steps. (Note: the sub-broadcastings via $T_{i^{\mathrm{S}}}$
’ do not conflict over any link

$\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\coprod$

the paths from any node $u$ in different $T_{i^{\mathrm{S}}}$
’ are node-disjoint.

3 Broadcasting with Random Faults
In the above Section, we proved that the product network $P(n.G_{i}|)$ can tolerate $\lfloor(n-1)/2\rfloor$ faults in the
worst case. However, in the reality the worst case appear with very small probability. The more reasonable
assumption is that faults are randomly distributed in the network. In this case the broadcasting succeeds
with high probability even much more than $\lfloor(n-1)/2\rfloor$ faults take place.

In this Section, we suppose that faulty nodes are randomly distributed ill the network. We study the
relation between the number of faulty nodes and the probability with which the broadcasting succeeds.

Suppose that there are $f$ faulty nodes randomly distributed in the network, i.e., we suppose that
each configuration of the network with $f$ faulty nodes is equally probable. We denote a configuration of
network $G$ with $f$ faulty nodes by $c_{G}^{f}$ , the set of all the configurations with $f$ faulty node by $\mathrm{c}_{G}^{f}$ . For any
$C_{G}^{f}\in \mathrm{c}_{G}^{f}$ , if the broadcasting succeeds in presence of $c_{G}^{f}$ , then we say $C_{G}^{f}$

’ is a successful configuration.
Otherwise $C_{G}^{f}$ is called a failed configuration. The probability of successful broadcasting in presence of
$f$ random faulty nodes is measured as the ratio of the number of successful $C_{G^{\mathrm{S}}}^{\prime f}$

’ to $|\mathrm{C}_{G}^{f}|$ . We denote
the set of all the successful configurations by $\mathrm{S}\mathrm{C}_{G}^{f}$ and the set of all the failed configurations by $\mathrm{F}\mathrm{C}_{G}^{f}$ .
Hence, the probability of successful broadcasting $=|\mathrm{s}\mathrm{C}^{f}|G/|\mathrm{C}_{G}^{f}|=1-|\mathrm{F}\mathrm{C}_{G}^{f}|/|\mathrm{C}_{G}^{f}|$ .

Now we consider the product network $P(n, G_{i})$ . We require each $G_{i}$ be a small graph. Suppose that
there is a bound to the node numbers of all the $G_{i^{\mathrm{S}}}’’$ , i.e., $|G_{i}’|\leq b$ for some constant $b,$ $1\leq i\leq n$ .

Let $u$ be a node of $P(n, G_{i})$ . There are $n$ node-disjoint paths $p_{1}(s, u),$ $p_{2}(s, u),$
$\ldots,$

$p_{n}(s, u)$ from $s$ to
$u$ . The message is disseminated from $s$ to $u$ through these $n$ paths in the broadcasting. It is easy to see
from the construction of Theorem 2 that there are less than $nb$ nodes on each $p_{i}(s, u)$ for any $1\leq i\leq n$ .
If in a configuration $C_{P(n,c_{:})}^{f}$ more than $\lfloor(n-1)/2\rfloor$ paths among $p_{1}(s, u),$ $p_{2}(s, u),$

$\ldots,$
$p_{n}(s, u)$ have

faulty nodes, then $C_{P(n,G_{i}}^{f}$

) is said to be a failed configuration on $u$ . Denote the set of all the failed
configuration on $u$ by $\mathrm{F}\mathrm{C}_{P\langle n}^{f},G_{t}$

)
$(u)$ . We have

$| \mathrm{F}\mathrm{c}_{G}^{f}|<\sum_{v\in P(n,G_{\mathrm{i}})}|^{\mathrm{p}}\mathrm{c}_{P}f((n,Gi)v)|$
.

Theorem 4 If there are $f$ faulty nodes randomly $di_{\mathit{8}}tributed$ in $P(n, G_{i})$ , the broadcasting $\mathit{8}ucceed\mathit{8}$ with

a probability higher than $1-( \frac{4b^{3}nf}{N})^{\lceil}n/2\rceil$ , where $Ni_{\mathit{8}}$ the node number of $P(n, G_{i})$ .

Proof: The probability of successful broadcasting in $P(n, G_{i})$ is

$\frac{|\mathrm{s}\mathrm{c}_{P(n,c.)}^{f}|}{|\mathrm{C}_{P(n,Gi)}^{f}|}=1-\frac{|\mathrm{F}\mathrm{C}_{P(n,G_{i}}^{f}|)}{|\mathrm{c}_{P(n,Gi)}^{f}|}>1-\frac{\sum_{v\in P(n},G_{i})|\mathrm{F}\mathrm{c}f(P(n,G_{\mathrm{i}})v)|}{|\mathrm{c}_{P(n,G_{i})}^{f}|}$
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For any node $v$ of $P(n, G_{i})$ , there are $n$ node-disjoint paths $p_{1}(s, v),$ $p_{2}(s, \mathrm{t})),$
$\ldots,$

$p_{n}(s, v)$ of length $<$

$bn$ . By reapedly $\mathrm{c}\mathrm{o}\iota \mathrm{m}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ , we have

$|\mathrm{F}\mathrm{c}^{f}(P(n,G_{i})v)|<(bn)^{\lceil}n/21(\lceil n/2\rceil n)(N-\lceil n/f-\lceil n/2’ 1-1)$

Hence

$\frac{|\mathrm{F}\mathrm{C}_{P(n,G_{i}}^{f}|)}{|\mathrm{C}_{P()}^{f}|n}<\frac{N(bn)^{\lceil n}/21(\lceil n/n_{21})(\begin{array}{ll}N -\lceil n/.2\rceil f -\lceil n/2\rceil\end{array})}{(\begin{array}{l}Nf\end{array})}$

$=N(bn)^{\lceil}n/ \mathit{2}1(\lceil n/n_{2\rceil})\frac{f(f-1)\cdot.\cdot.\cdot.(f+1-\mathrm{r}tl/2\rceil)}{N(N-1)(N+1-\mathrm{r}?l/21)}$

$<b^{n}(bn)^{\lceil}n/ \mathit{2}12n(\frac{f}{N})^{\lceil/2\rceil}n\leq(\frac{4b^{3}nf}{N})^{\lceil}n/2\rceil$

Hence, we obtain

$\frac{|\mathrm{s}\mathrm{c}_{P(n,G_{i}}^{f}|)}{|\mathrm{C}_{P(n))}^{f}|c_{i}}>1-(\frac{4b^{3}nf}{N})^{\lceil n/}2\rceil$

$\square$

Corollary 1 For any $k>1$ , if there are $\frac{N}{4b^{3}nk}$ faulty nodes randomly distributed in $P(n, c_{7}i)$ , the broad-

casting $\mathit{8}ucceed\mathit{8}$ with a probability higher than $1-k^{-\lceil n/2}\rceil$ .

In reference [1], a broadcasting in face of randomly distributed faults is said to be $\epsilon$-safe if the proba-
bility with which the broadcasting succeeds is higher than $1-N^{-\epsilon}$ . From Corollary 1, our broadcasting is
$\epsilon$-safe if there are $\frac{N}{4b^{3}nk}$ faulty nodes ralidomly distributed in $P(\uparrow?, G_{i})$ for aliy $k>1$ , wllere $\epsilon$ is dependent
on both $k$ and $b$ .

Similarly, we can also suppose that there are $f$ faulty links randomly distributed in the network
$P(n, G_{i})$ . By the same method, we have the following Theorem.

Theorem 5 If there are $f$ faulty links randomly $di_{\mathit{8}}tributed$ in $P(n, G_{i}’)$ , the broadcasti, $n,g$ succeeds with

a probability higher than $1-( \frac{4b^{3}nf}{L})^{\lceil}n/2\rceil$ , where $L$ is the link number of $P(n, G_{i})$ .

4 Tolerate $\Theta(L)$ Faulty Links

In Theorem 5, we consider the situation where $f$ faulty links are randomly distributed in the network

we show that in this situation we can modify the broadcasting such that the broadcasting succeeds with
a probability higher than $1-k^{-\lceil/2\rceil}n$ if $f=\ominus(L/k)$ .
$\mathrm{n}0\mathrm{d}\mathrm{e}\mathrm{S}\mathrm{o}\mathrm{f}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}P(n,G_{i})\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{t}n\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{S}\mathrm{o}\mathrm{f}1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\leq \mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}$.

$\mathrm{L}\mathrm{e}\mathrm{t}u=<u1,u_{\mathit{2}}\backslash \mathrm{e}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}P(n,G_{i})\mathrm{h}\mathrm{a}\mathrm{S}\mathrm{a}_{1\mathrm{e}}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{e}\tau.\mathrm{F}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{x}\mathrm{a}_{3\mathrm{b}\mathrm{e}\mathrm{e}\mathrm{n}\iota^{\mathrm{t}TT_{1}}}\mathrm{m}\mathrm{p}1\mathrm{e}_{\mathrm{W}}\mathrm{W}\mathrm{e}1\mathrm{e}=.\mathrm{F}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}\mathrm{P}^{\mathrm{a}\mathrm{i}}\mathrm{r}\ldots 0,\mathrm{f}\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{n}\mathrm{d}u_{n}>\mathrm{a}\mathrm{n}\mathrm{t}$

$u’=<u_{1},$
$\ldots,$ $u_{i1i}-,$$u’,$ $u_{i+}1,$ $\ldots,$

$u_{n}>\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}u_{i}$ is adjacent with $u_{i}’$ in $BT_{i}$ . The $n$ disjoint paths between $u$

and $u’$ are described as follows:
For $k=1,2,$ $\ldots,$

$n$ , we use $p_{k}(u, u’)$ to denote the k-th path from $u$ to $n’$ . (But this time the meaning
of $p_{k}(u, u’)$ is different from the above.)

If $k=i,$ $p_{k}(u, u’)$ is the link between $u$ and $u’$ .
If $k\neq i,$ $p_{k}(u, u’)$ is the path

$urightarrow$

$<u_{1},$ $\ldots,$ $u_{k-1},$ $t_{k},$ $u_{k}+1,$ $\ldots,$ $ui-1,$ $ui,$ $u_{i}+1,$ $\ldots,$
$un>rightarrow$

$<u_{1},$ $\ldots,$ $u_{k-1},$ $tk,$ $uk+1,$ $\ldots,$ $ui-1,$ $uui,$ $\ldots,$$uni’+1l>rightarrow$
$<u_{1},$ $\ldots,$ $u_{k-1},$ $uk,$ $uk+1,$ $\ldots,$ $ui-1,$ $u_{i}’,$ $ui+1,$ $\ldots,$ $un>=u’$

Here $t_{k}$ is any neighbor of $u_{k}$ in $G_{k}$ . Actually, It is not difficult to see that there exist 1 $+$

$\sum_{1\leq j\neq i\leq}degree(u_{i^{)}}$ node-disjoint paths of length $\leq 3$ between $u=<u_{1},$ $u_{2},$ $\ldots,$ $u_{n}>$ and $u’=<$
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$u_{1},$
$\ldots,$ $u_{i-1},$ $u_{i}’,$ $u_{i1}+,$ $\ldots,$ un $>$ . In this section, we only consider the results obtained by exploiting $n$

node-disjoint paths of length $\leq 3$ between any pair of adjacent nodes. It is easy to generalize $0\iota \mathrm{u}$
. results

to the situation where $1+ \sum_{1\leq j\neq i\leq}degree(u_{j})$ node-disjoint paths of length $\leq 3$ are exploited.
The modified broadcasting is simple: Consider the broadcasting on $P(n, C\tau j)$ via the spanning tree $T$ .

We replace each transmission in the broadcasting via $T$ by $n$ transmissions via the $n$ paths of length $\leq$

$3$ . We describe it more formally as in follows.

Figure 3: Each link of the spanning tree is replaced by $n$ disjoint paths of length $\leq 3$ .

Let $u$ and $u’$ be adjacent in $T$ . In the broadcasting via $T$ , the message is transmitted from $u$ to $u’$ .
In the modified broadcasting, the message is transmitted from $u$ to $u’$ through $p_{1}(u, u’),$ $p_{2}(u, u’),$

$\ldots$ ,
$p_{n}(u, u’)$ .

The modified broadcasting needs about $3n$ times of transmissions as the broadcasting via $T$ needs.
Hence, The modified broadcasting needs about 3 times of transmissions as needed by the broadcasting
descIibed in Section 2. The time (concurrent steps) needed by the modified broadcasting does not exceed
$3n$ times as needed by the the broadcasting in Section 2.

The modified broadcasting behaves much better in tolerating randomly distributed faulty links al-
though it also tolerates at most $\lfloor(n-1)/2\rfloor$ faulty links in the worst case.

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}themodifiedbroadcaSbing_{S}ucCeedSwithaprobabilityhigherthan1-(16Ifthereareffaultylink_{S}randomlydi_{S}tributedinP(n,c_{2}i)an_{L),es}b^{2}f/d|G_{i}\lceil n)_{2}\rceil\leq bfora_{Ld}nywhere1\leq i\leq enotthen$
,

link number of $P(n, G_{i})$ .

Proof: We denoted a configuration of $f$ faulty links in $P(n, G_{i})$ by $C_{P(n,G:}^{\prime f}$

) and the set of all the
$C_{P(n,)}^{f}G$

: by $\mathrm{c}_{P(n,G_{i})}^{f}$ . Sinlilarly as before, we denote the set of all the $C_{P(n,G_{i}}^{f}$

) which nlakes the modified
broadcasting succeed by $\mathrm{S}\mathrm{C}_{P}^{f}(n,G_{i})$

’ and the set of all the $C_{P(c_{:})}^{f}n$
, which makes the modified broadcasting

fail by $\mathrm{F}\mathrm{C}_{P(n,Gi)}^{f}$ . Let $(u, v)$ be a link of $T$ . Denote the set of all the $C_{P(n,G_{i}}^{f}$
) in which at least $\lceil n/2\rceil$

paths among $p_{1}(u, \iota\}),$ $p_{2}(u, v),\ldots,$ $pn(u, v)$ are faulty by $\mathrm{F}\mathrm{C}_{P(n,G_{i}}^{f}$

}
$(u, v)$ . Apparently,

$| \mathrm{F}\mathrm{C}_{P(n,c_{i}}^{f}|)<\sum_{\in(u,v)\tau}|\mathrm{F}\mathrm{C}_{Pn}^{f},((G_{i}\mathrm{I}u, v)|$

Since there are at most 3 links along each $p_{i}(u, v)$ , still by repeatedly counting, we have

$|\mathrm{F}\mathrm{C}^{f}(P(n,G_{i})l\mathrm{t},$ $v)|<(\lceil n/n_{2\rceil})3^{\lceil n}/21(L-\mathrm{r}n/21f-\lceil n/2\rceil)$

Hence

$\frac{|\mathrm{F}\mathrm{c}_{P(n,G.)}f.|}{|\mathrm{C}_{P(n,c_{i}}^{f}|)}<N(\lceil n/2\rceil n)3^{\lceil n/2}1_{\frac{(_{f-\lceil}^{L-\mathrm{r}n}n//21)2\rceil}{(\begin{array}{l}Lf\end{array})}}$

$=N( \lceil n/n_{2\rceil}\mathrm{I}^{3^{\lceil n/\mathit{2}1}}\frac{f(f-1)\cdots(f+1-\lceil n/21^{)}}{L(L-1)\cdots(L+1-\lceil\uparrow l/21)}$

$<b^{n}2^{n}3 \lceil n/2\rceil(\frac{f}{L})^{\mathrm{r}n/}2\rceil\leq(\frac{12b^{2}f}{L})^{\lceil n/\mathit{2}}\rceil$

255



Hence, we have

$\frac{|\mathrm{S}\mathrm{C}_{P(n,c_{\mathfrak{i}}}^{j}|)}{|\mathrm{c}_{P(n,G_{i}}^{f}|)}=1-\frac{|\mathrm{F}\mathrm{C}_{P\mathrm{t}n,G.)}^{f}|}{|\mathrm{c}_{P(n,G_{\mathrm{i}})}^{f}|}.>1-(\frac{12b^{2}f}{L})^{\lceil n/2}\rceil$

口

Corollary 2 The modified $broadCa\mathit{8}ting\mathit{8}ucceedS$ with a probability higher than $1-k^{-\lceil n/2}\rceil u’?bh\ominus(L)$

faulty links randomly distributed in $P(n, G_{i}^{l})$ , where the coefficient $of\ominus$ is dependent on $k$ and $b$ .

Corollary 2 shows that the modified broadcasting is $\epsilon$-safe even if there are $cL$ faulty links randomly
distributed in the network, where $c$ is a constanat dependent on both $\epsilon$ and $k$ .

5 Conclusions
In this paper we study the reliable broadcasting in product networks. We prove that an n-product
network is an $n$-channel graph by constructing $n$ spanning trees $T_{1},$ $T_{\mathit{2},\ldots,n}T$ . The reliable broadcasting
is naturally based on these $n$ spanning trees. It can tolerate $\lfloor(n-1)/2\rfloor$ faulty $\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{s}$ of arbitrary type
in the worst case. The relation between the number of randomly distributed faults and the probability
with which the broadcasting succeeds is analyzed. Actually, what we give in this paper is a lower bolmd
of the successful probability. The results are obtained under the assumption $|C_{7}i|\leq b$ . However, if the
concrete number of nodes for each $G_{i}$ is given, our method can be applied to deriving a tighter bound.
For the situation where only faulty links exist, we give another broadcasting which can tolerate $\ominus(L)$

randomly distributed faulty links with high probability.
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