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ABSTRACT Theory of vortex sound in the aeroacoustics can describe characteristic
features of the waves radiated by localized vortex motions at low Mach numbers. Some
experimental evidences and computational examples are presented from our studies to
show remarkable agreement between observed and computed wave profiles emitted by
two kinds of vortex motions in free space: head-on collision and oblique collision of two
vortex rings. In the oblique collision of two vortex rings, reconnection of vortex-lines
causes rapid change of geometrical structure of vortex-lines, resulting. in excitation of a
characteristic type of acoustic wave. As a last exmple, a supersomc interaction of a
vortex ring with an impinging plane shock wave is presented. A computer simulation
illustrates a strong local intensification of the wave caused by the presence of the vortex.

1. Introduction
Wave generation by the vorticity dynanics governed by the vorticity equation is

now recognized to be formulated in the frame of the theory of vortez sound. Recent
studies of the vortex sound are illustrated here by presenting two cases of the head-on
.collision and obliqu.e collision of two vortex rings. In addition, strong interaction of a
high-speed vortex nng with an impinging shock wave is described, in which remarkable
local intensification of the wave is observed $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{U}\mathrm{y}$. Characteristic Mach number
in the former case is assumed to be much less than unity, while the one in the latter is
larger than unity.

In the theory of vortex sound at low Mach number and high Reynolds number [1-
8], the source flow is characterized by a $1_{\mathrm{o}\mathrm{C}\mathrm{a}}\mathrm{J}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}$ vortex motion scaled on a length $l$

representing the vortex size. This flow field is surrounded by outer wave field scaled on
.

enables separate analysis of the two fields: inner flow and outer wave $\mathrm{r}\mathrm{e}\mathrm{g}_{\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{S}}$ , because
of the compactness of the source flow, $l\ll\lambda$ .

In our investigation of the vortex sound in the past decade or so, evidences showing
the validity of the theory are accumulating. Regarding the vort $e\mathrm{x}$ collisions, the first
stage of the vortex interaction is almost inviscid. This is followed by the second viscous
stage : cancellation of opposite signs of vorticity at the time of head-on collision [4],
reconnection of vortex-lines in the oblique $\mathrm{c}\mathrm{o}\mathrm{U}\mathrm{i}_{\mathrm{S}}\mathrm{i}_{0}\mathrm{n}[7,15]$ , and so on. Acoustic waves
are.generated by these motions and the waves can be detected $\mathrm{e}\mathrm{x}\mathrm{p}$. erimentally [4, 5, 7].
$\mathrm{M}\mathrm{a}\ln$ interest here is comparison of the wave proffies thus determned computationally
with the corresponding profiles deternined experimentally.

.2. Mathematical Formulation of Vortex Sound
Basic equation of the aerodynamic sound is given by the Lighthill’s equation [8]:

$\rho_{u}-C^{22}\nabla\rho=\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\tau_{:}j$ (1)
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where $T_{ij}=\rho v_{i}v_{\mathrm{j}}+(p-c^{2}\rho)\delta:\mathrm{j}-\mathcal{T}_{i\mathrm{j}}$ ,

$x=(x_{i})$ is the space coordinate vector, $p$ the pressure, $\rho$ the density, $v_{i}$ the i-th com-
ponent of velocity and $\tau_{i\mathrm{j}}$ the viscous stress tensor. Summation convention is assumed
on

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}(\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{C}\mathrm{r}\mathrm{h}\mathrm{s}\mathrm{J}_{\mathrm{e}\mathrm{d}\mathrm{b}}\mathrm{o}\mathrm{f}(1)\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{y}\mathrm{t}\mathrm{h}\mathrm{e}1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{h}l\mathrm{a}\mathrm{t}\mathrm{C}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{h}\mathrm{n}\mathrm{d}$

time $\tau$ , the ratio of the two terms
on the left hand side is estimated as $|\rho_{u}|/|c^{2}\nabla^{2}\rho|=O(l^{2}/\mathrm{c}^{2}\tau^{2})=O(M^{2})$ . In the first
approximation negl.eCting terms of $O(M^{2})$ and hence the term $\rho u,$, the $e$quation (1)
reduces to the Navier-Stokes equation for an incompressible fluid, governing solenoidal
vort$e\mathrm{x}$ motion treat$e\mathrm{d}$ as a source flow.

In the outer region, the rhs of (1) becomes vanishingly small and the pressure is
governed by the wave equation: $p_{\ell t}-C^{2}\nabla 2p=0$ , because of the (assumed) adiabatic
relation $\mathrm{d}p=c^{2}\mathrm{d}\rho$. In the theory $[7, 10]$ , an asymptotic representation of the velocity
potential of the inner flow is given first, and then a solution of the outer wave equation is
determined so as to be matched to the inner solution. The wave pressure $p^{(\mathrm{w})}$ matching
to .
fluid. The pressure takes a simple form in the acoustic far-field $(|x|/\lambdaarrow\infty)$ . The
wave pressure observed at a point $x=(x_{1},x_{2},x_{s})$ in the acoustic far-field is given as

$p^{(\mathrm{w})}(X,t)=- \rho \mathrm{o}P0((1)\iota_{\mathrm{r}})\frac{1}{r}-\frac{\rho_{0}}{c^{2}}Q_{i}(3)(jtr)\frac{x_{i^{X}\mathrm{j}}}{r^{3}}+\frac{\rho_{0}}{c^{3}}Qi\mathrm{j}k((4)t_{r})\frac{x_{i}x_{j^{X_{k}}}}{r^{4}}+\cdots$ (2)

where superscript $(n)$ denotes the n-th time derivative, and

$Q_{i}(t)= \frac{1}{8\pi}\int(y\cross\omega)i\mathrm{d}^{\epsilon}\mathrm{y}$ , (3)

$Q: \mathrm{j}(t)=-\frac{1}{12\pi}\int(y\cross\omega)_{i}y\mathrm{j}\mathrm{d}^{3}\mathrm{y}$ , (4)

$Q_{*\dot{g}k}.(t)= \frac{1}{32\pi}\int(y\cross\omega)_{i}yjyk\mathrm{d}\mathrm{s}_{\mathrm{y}}$ , (5)

$\omega=\omega(y,t)$ is the vorticity: $\omega=\Delta\cross v$ , and $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ vector $x=(x_{i})$ is used for the point of
observation and $y=(y_{i})$ for the point of integration (the souce point). The resultant
.impulse of the vort $e\mathrm{x}$ system is defined by $4\pi Q_{i}$ , defined by (3), which is an invariant
of motion in free space. Hence the dipole term disappears because the dipole $e$mission
is related to the rate of change of the impulse.

The second $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{u}\mathrm{p}\dot{\mathrm{o}}$le terms ( $\mathrm{M}\tilde{\mathrm{o}}\mathrm{h}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}_{\mathrm{S}}$

’ quadrupole [3]) can be shown to derive
from the non-isotropic part of the Reynolds stress $\rho_{0:}vv_{\mathrm{j}}$ [11]. The first isotropic
(monopole) term arises when the total kinetic energy $K$ of the system changes, where

$P_{0}(t)=- \frac{5-3\gamma}{12\pi}\frac{1}{c^{2}}K^{(1)}(t)$ , $K(t)= \frac{1}{2}\int v^{2}(\mathrm{y},t)\mathrm{d}^{\epsilon}\mathrm{y}$ , (6)

$K$ is the total kinetic energy .nd 7 the ratio of specific heats ($\gamma=7/5$ for the air). $K$

vanishes identically in an invlscid fluid. Here we have written the formula up to the
third order terms. An experimental observation (described in \S 4) shows existence of
this order.

Using the length scale $l$ , the vorticity scale $\omega=u/l$ and the time scale $\tau=l/u$ , the
scaling law of the wave pressure of the quadrupole sound is deduced as follows. The
tensor $Q_{:\mathrm{j}}$ is normalized by $l^{4}u$ and hence $Q_{:\mathrm{j}}^{(3)}$ by $l^{4}u/\tau^{3}=lu^{4}$ (the first monopole
term gives the same by (6) $)$ . Thus we find the scaling law for the quadrupole sound as

$pQ \sim\frac{\rho_{\mathrm{O}}}{c^{2}}lu\frac{1}{r}4=\frac{\rho_{0}u^{4}}{c^{2}}\frac{l}{r}$
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The sound intensity $I_{Q}$ is given by $p_{Q}^{2}/\rho_{0}c$ . Hence we obtain the well-known intensity
law $[5, 8]$ : $I_{Q}\sim(\rho_{0}u^{8}/c)5(l/r)2\mathrm{u}\propto 8$ .

3. Head-on Collision of-Two Vortex Rings
Axisymmetric collision of two vortex rings [4] is a particularly simple example of

the vortex sound. In an inviscid fluid, the first $\mathrm{t}e\mathrm{m}$ of the formula (2) vanishes and the
second quadrupole $\mathrm{t}e\mathrm{r}\mathrm{m}$ reduces to

$p=- \frac{\rho_{\mathrm{O}}}{12c^{2}}Q^{(}3)(t_{f})\frac{1}{r}(1-3\cos\theta 2)$ , $Q(t)= \int\omega(\sigma,z)\sigma^{2}Z\mathrm{d}\sigma \mathrm{d}Z$ (7)

where $t_{r}=t-r/c$ , and the vorticity is assumed to have only the azimuthal $\phi$-component
$\omega(\sigma,z)$ in the cylindrical coordinate system $(z, \sigma,\phi)$ , with $z=x_{3}$ and $\sigma=\sqrt{x_{1}^{2}+X^{2}2}$ and
$\theta=\arccos(z/r)$ . In this case the temporal behavior of the pressure is described by the
single scalar function of $3\mathrm{r}\mathrm{d}$-order derivative $Q^{(3)}(t)$ , and its spatial distribution is given
by $P_{2}^{0}=(3\cos^{2}\theta-1)/2$ , an axisymmetric four-lob$e$ directivity (Figure 1).

Figure 1. Directivity of the acoustic Figure 2. Head-on $\mathrm{c}\mathrm{o}\mathbb{I}\mathrm{l}\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{n}$ ot two vortex
pressure: 1–3 $\cos^{2}\theta$ . rings (definition sketch).

Computation : Suppose that we have two vortex rings having a common symmetry
axis $z$ with one vortex being a mirror image of the other with respect to the plane
$z=0$ (Figure 2), and that they approach each other according to the equation of
motion. When the vortex is charact$e$rized by its strength $-\Gamma$ , ring radius $R(t)$ (core
radius $\delta$ ) and the distance $Z(t)$ from the symmetry plane $z=0$ , the interacting motion
of two vortex rings of very thin cores is described by a system of first-order ordinary
differential equations [9]. Then the profile function $Q(t)$ is expressed $\mathrm{b}\mathrm{y}-2\Gamma R^{2}(t)Z(t)$ .
The wave pressure form is given by $Q^{(3)}(t)$ , which is calculated numerically by solving
the system of differential equations and shown by the curve I in Figure 3, together with
the observed one E. The first peak of the profile corresponds to the initial inviscid stage
of the colliding motion. Effect of finite core-size and core deformation on the wave
profile is studied in detail by the inviscid contour dynamics [12]. This analysis suggests
that the $\mathrm{d}\mathrm{i}\mathrm{p}_{\mathrm{o}\mathrm{b}}.\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}$ in the $\mathrm{C}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{e}-Q^{(}3$) $(t)$ is due to core deformation.

A numerical simulation of $\mathrm{a}_{1}\dot{\mathrm{n}}$-symmetric viscous vortex collision was carried out to
estimate the profile function $Q^{(3)}(t)$ , shown by the curve V in Figure 3, at the Reynolds
number $Re\approx 1.3\cross 10^{3}$ , based on the initial translation velocity $U=|\dot{Z}(0)|$ and ring
diameter 2$R_{\mathrm{O}}=2R(\mathrm{o})[13]$ .

Observation : Experimental observations of the corresponding acoustic waves due to
the vortex collision are reported in [4] and [14]. The Reynolds number $Re$ was of the
order $10^{4}$ or larger in the latter study.
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Figure 3.
Temporal profiles $-Q^{(3)}(t)$ ;
I: inviscid,

$\mathrm{E}$ : ex.perimental,
V : viscous simulation.

The observed pressures at 35 stations are represent$e\mathrm{d}$ in the truncated Fourier series:
$p(\theta,t)=a_{0}(t)+a_{1}(t)\cos\theta+b_{1}(t)\sin\theta+a_{2}(t)\cos 2\theta+b_{2}(t)\sin 2\theta$ . The two terms $a_{\mathrm{O}}(t)$

and $a_{2}(t)\cos 2\theta$ are found to be dominant and rewritten as

$p_{\mathrm{m}\mathrm{q}}(\theta,t)=p\mathrm{m}(t)+p\mathrm{q}(t)(1-3\cos\theta 2)$ ,

where $p_{\mathrm{m}}$ and $p_{\mathrm{q}}$ represent the monopolar and quadrupolar components respectively.
Significant amplitudes of $p_{\iota \mathrm{n}}(t)$ and $p_{\mathrm{q}}(t)$ are detected, and $p_{\mathrm{q}}(t)$ is shown as the curve
$\mathrm{E}$ in Figur$e3$ .
4. Oblique Collision of Two Vortex Rings
$\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{u}}}\mathrm{o}\mathrm{b}1\mathrm{i}\mathrm{q}\mathrm{u}_{\mathrm{i}\circ \mathrm{n}\mathrm{a}1}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}_{\mathrm{S}}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}1\mathrm{y}[7]$. $\mathrm{E}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{t}\mathrm{f}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{v}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{x}\mathrm{r}\mathrm{i}\mathrm{n}_{1}\mathrm{g}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{h}\mathrm{i}8\mathrm{o}\mathrm{b}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{u}^{\mathrm{h}1}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{n}\xi_{\mathrm{F}\mathrm{i}\mathrm{u}}\mathrm{e}\mathrm{s}\mathrm{i}_{\mathrm{S}\mathrm{S}}\mathrm{t}$

)
$\mathrm{g}\mathrm{r}\mathrm{e}4\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{a}\mathrm{X}\mathrm{i}_{\mathrm{S}}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{y}\mathrm{l}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{i}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{u}\mathrm{y}\mathrm{a}\mathrm{n}\mathrm{k}\mathrm{e}\mathrm{d}$

that in the previous case of head-on collision. At the oblique collision, opposite senses
of vortex lines are forced to come into contact at the inner part. This event is followed
by rapid change of vorticity structure and excitation of acoustic waves. Analysis of
the wave data provides some information of the complex vortex motion associated with
vortexline reconnection.

Consider a problem that the initial state is g.iven in such a way t.ha.$\mathrm{t}$ two vortex rings
are set to move along the paths intersecting at right angles at the ongin and collide with
one another. The bisecting straight line $\mathrm{b}$etween the two paths of the vortex center is
taken as the polar nis $\theta=0$ (along the $x_{3}$ axis) of the spherical coordinate system. The
plane perpendicular to the $x_{3}$ axis is the. $(X_{1}, x_{2})$ plane on which $\theta=.\pi/2$ . There are
two symmetry planes including the $x_{3}$ axis: one includes the trajectones of the vortex
centers which is defined as $(X_{2}, X_{3})$ plane and the plane $(X_{1}, x_{3})$ perpendicular to it is also
a symmetry plane which bisects the two trajectori$e\mathrm{s}$ . The plane $\phi=0$ is taken along
the positive $x_{1}$ a.ris. From the geometrical arrangement just mentioned, the acoustic
pressure $p(\theta, \emptyset,t)$ is characterized by the symmetry:

$p(\theta, -\phi, t)=p(\theta,\phi,t)$ , $p(\theta, \phi+\pi,t)=p(\theta, \phi,t)$ . (8)

The formula (2) is rewritten by using the spherical polar coordinates $(r, \theta, \phi):x_{1}=$

$r\sin\theta\cos\emptyset,$ $x_{2}=r\sin\theta\sin\emptyset,$ $x_{3}=r\cos\theta$ . In view of the symmetry (8), the pressure is
represented as

$p(\theta, \emptyset,t)$ $=$ $A_{0}(t)+A_{1}(t)P_{2}^{0}(\cos\theta)+A_{2}(t)P_{2}2(\cos\theta)\cos 2\phi$

$+B_{1}(t)P_{3}^{0}(\cos\theta)+B_{2}(t)P_{3}2(\cos\theta)\cos 2\phi$ , (9)

where higher order terms are omitted since observed amplitudes are not significant.
Thus it is found that the far-field acoustic pressure (2) is $\mathrm{r}e$presented in terms of the
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five normal modes with five coefficient functions of time $[A_{\mathrm{o}}(t), A_{1}(t), A2(t), B1(t), B2(t)]$ .
Here the Legendre functions are $P_{2}^{0}=(1/2)(3\cos\theta 2-1),$ $P_{2}^{2}=3\sin^{2}\theta$ , $\cdot$ .., and
$P_{3}^{0}=(1/2)(5\cos^{3}\theta-3\cos\theta),$ $P_{3}^{2}=15(\cos\theta-\cos^{\epsilon}\theta),$ $\cdots$ .

. Observation: The acousttic wavesemitted by the $90^{\mathrm{o}}$ collision were detected at 102
different angular positions on the three great $\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{l}\mathrm{e}8$ of radius $r=620$mm on the three
orthogonal planes: (1) $\phi=\pi/2,3\pi/2;(2)\phi=0,\pi;(3)\theta=\pi/2$ . The trajectories of
the vortex cores in the $(X_{2}, x_{3})$ plane observed by a photosensor are shown in Figure 4,
where the ring radius $R_{\mathrm{O}}=R(0)$ of the single (unperturbed) vortex’was 4. $7\mathrm{m}\mathrm{m}$.

Figure 4. Observed core trajectories of
two colliding vortices in the $(X_{2}, X_{3})$

plane including the vortex center.
The marked positions $a$ and $b$

correspond to the times of Figure 5 $t(ms)$

(broken lines).
Figure 5. Main mode amplitudes of

observed waves.

The symmetry relation (8) is found to be consistent with the observed data. In
fac.t, the acoustic pressure detected in the plane $\theta=\pi/2$ can be expanded into Fourier
senes with respect to the angle $\phi$ , and it is found that the Fourier coefficients of $\sin m\phi$

$(m=1\sim 4)$ and $\cos m’\emptyset(m’=1,3,4,5)$ ar$e$ negligible. Three sets of profile functions
of $[A_{0}, A_{1,2}A, B_{1}, B_{2}]$ can be determined from the observed data. It is found that they
coincide almost with each other. These profiles are shown in Figure 5.
Computation: A computer simulation [15] of the vortex collision is newly carried out in
order to have more realistic estimation of the acoustic emission than the previous one
[7], using the method of vorticity and $ve\mathrm{c}t_{op}$ potential [16]. The viscous incompressible
vorticity equation is solved numericaly, together with the continuity equation, by a new
algorism on $141^{3}$ grid points. Boundary condition of zero-vorticity is imposed on the
cubic bounding surface.

The isotropic component is proportional to the second time derivative of the kinetic
energy from (2) and (6), and the quadrupole components and higher modes are related
to the change of moments of vorticity distribution. Using the data from the simula-
tion, we can calculate the tensors $Q_{*\mathrm{j}}.(t)$ and $Q_{-}i\mathrm{j}k(_{-}t)$ of (4) and (5). Thus we readily
obtain the main mode coefficients $[\overline{A}_{\mathrm{O}},\tilde{A}_{1,2}\tilde{A},B_{1}, B_{2}]$. It is remarkable that the main
mode amplitudes obtained from the computation are in quantitative agreement with
the observed ones, unlike the previous computation for fatter cores of vortex.

107



Significance of dominant wave modes: Observed amplitudes $A_{1}$ and $A_{2}$ of the two

of $P_{3}^{2}\cos 2\phi$ is negligibly $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$, while significant amplitude of the mode $P_{3}^{0}$ is observed.
To see the significance of the wave signals, let us look into the distributions of the wave
source. The amplitudes $A_{1}(t)$ and $B_{1}(t)$ are represented by the integrals,

$A_{1}(t)= \int a_{1}(\mathrm{y},t)\mathrm{d}^{\epsilon}\mathrm{y}$, $a_{1}( \mathrm{y},t)=-\frac{1}{12\pi}y_{3}p3((3)\mathrm{y},t)$

$B_{1}(t)= \int b_{1}(\mathrm{y},t)\mathrm{d}^{\mathrm{s}_{\mathrm{y}}}$ , $b_{1}( \mathrm{y},t)=\frac{1}{32\pi}(y_{3}^{2}-\frac{1}{5}y^{2})p\mathrm{s}^{4)}((\mathrm{y},t)$

where $p_{3}=(y\cross\omega)_{3}$ .
The integrands $a_{1}(\mathrm{y},t)$ and $b_{1}(\mathrm{y},t)$ are considered to represent the source distributions
of each wave mode. In figure 6, distribution of the source function $b_{1}(\mathrm{y}, t)$ is projected
to the plane $(x_{1,s}x)$ (viewed from the $x_{2}$ axis) at three times: the time $\alpha$ (positive $B_{1}$

peak), the time $b$. (positive $A_{1}$ peak) and the time $\beta$ (negative $B_{1}$ peak), where projected
contours of the lso-vorticity surface are also plotted at the corresponding times. It is
remarkable that the wave sources at the times $b$ and $\beta$ are localized in the upper left
and right regions where $\mathrm{r}e$connection of vortex lines are observed. This is considered to
be a first identification of the acoustic signal related to the vortex-line reconnection.

(a)

(b)

Figure 6. Projection diagrams in the plane $(x_{1}, x_{3})$ of (a) the $\mathrm{i}\mathrm{s}\mathrm{o}$-vorticity surfaces and
(b) the source fimction $b_{1}(\mathrm{y},t)$ at the three times: $\alpha,$

$b$ and $\beta$ (see Fig. 5).

5. Interaction of a Vortex Ring with a Shock Wave
Problems of strong interaction between a rotational motion and compressive waves

are suited for computational study. Recently, experimental investigation is made for an
.axisymmetric problem of strong shock-vortex interaction [17], and computer simulations
show significant nonlinear effects in the interaction of a shock wave with a vortex. This
section is a brief account of a computational study by Takayama et al. [18] to simulate
the experiment.
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The computer simulation is carried out by discretizing.the axisymmetric forms of
the coservation laws of mass, momentum and energy for a VISCOUS and heat-conducting
gas model supplemented by the species conservation equation. Time integration of
the hyperbolic set of partial differential equations is made by the explicit second-order
$\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{c}_{\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{C}}$ method, com.plemented by the $\dot{\mathrm{s}}\mathrm{h}\overline{\mathrm{o}}\acute{\mathrm{C}}\mathrm{k}$ capturing FCT smoothing technique
[19]. Initially a vortex nng is generated in the computational domain by driving a
shock wave of nitrogen gas (wiht Mach number 1.4) through a small circular orifice
into a cylindrical tube of much larger dimension (Figure 7). Another plane shock wave
(driven at the other end of the tub$e$) is advancing&om the opposite direction, which
is shot at a later tine and impinging on the vortex with a shock disk, after interacting
with the first wave. The gaseous fluid in the cylindrical tube is assumed to consist of
nitrogen and oxygen, being at rest initiaUy, with the pressure $p_{0}$ , temperature $T_{0}$ and
specific heat ratio $\gamma$ set as $p_{0}=101.3\mathrm{k}\mathrm{P}\mathrm{a},$ $T_{\mathrm{O}}=300\mathrm{K}$ and $\gamma=1.3982$ , respectively. The
nomalization parameters are given such that $l_{0}=1$ cm and $t_{0}=1\mu \mathrm{s}\mathrm{e}\mathrm{c}$ . The results are
obtained for the mesh size of $\triangle x/l_{0}=\triangle r/l_{0}=0.01$ and the starting time of the the
second shock wave was at $t_{2}/t_{\mathrm{O}}=108$ from the ffist shock.

A remarkable property found in the simulation is that, during the passage of the
shock wave over the vortex ring, the part of the wave propaga.ting through the inside of
the ring-vortex is intensified spontaneously at a localized $\mathrm{r}\mathrm{e}\mathrm{g}_{\mathrm{l}\mathrm{o}\mathrm{n}}$ (Figure 8). Maximum
pressure occurs inside the vortex and attains a high value, about several times that of
the impinging shock of Mach number of around 1.2, the vortex translation Mach number
being 0.60 (Figure 9).

From detailed study. of the structure of the interaction, it is found that there exists
a gas dynamic mechamsm of intensification of shock waves in the flow field in which
two step processes are observed. The double-step mechanism of the self-intensification
consists of the first slight intensification of the impinging shock wave by the interaction
with the opposing flow due to the vortex, and the second intensification by the conver-
gence of outer diffract $e\mathrm{d}$ shock wave around the vortex on the central axis at the back
of the vortex ring. A possible application of the present mechanism is the spontaneous
ignition of a gas mixture with a reactive component by a shock wave.
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Figure 7. Computational domain and setup.

Figure 9. Perspective pressure plot

at $t/_{t_{2}=}153.32$ .

$t/t_{0}=$ 137.31 $t/t_{0}=$ 148.45
$t/t_{0}=$ 153.78

Figure 8. Pressure contours at three times for $M_{2}=1.225$ .
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