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1. Introduction

Localized structures in multidimensions are one of the recent interests for

researchers in various fields. They are worth studying both from a theoretical and a

practical point of view. $\mathrm{D}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{i}_{0}\mathrm{n}[1]$ is one of the examples of such structures which

appears in the system described by the Davey-Stewartson $(\mathrm{D}\mathrm{S})1\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{s}}[2]$

$\mathrm{i}A_{t}+A_{xx}+A_{yy}-2|A|^{2}A+(Q_{x}+Q_{y})A=0$ , (1)

$Q_{xy}--|A|^{2}x+|A|_{y}^{2}$ . (2)

One of the characters of the dromion solutions to emphasize is that the main flow

$A$ is localized in two-dimensional space, while the mean flow $Q$ is not. The mean

flow is driven at the boundaries like one-dimensional $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{t}_{0}\mathrm{n}^{[3]}$ , and plays an im-

portant role on conveying the localized structures of the main $\mathrm{f}\mathrm{l}_{\mathrm{o}\mathrm{w}^{[3}}$ ], $[4]$ . The DS1

equations arc derived in many branches of physics, such as fluid $\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{s}^{[5]}$ or

plasma $\mathrm{p}\mathrm{h}\mathrm{y}\mathrm{s}\mathrm{i}_{\mathrm{C}}\mathrm{s}^{[6]}$ . The stability of dromions can assure us observation of local-

ized structures $\mathrm{i}\mathrm{r}\mathrm{l}$ real rnulti-dimansional systems. In our previous $\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}^{[7}$], we

have analyzed the time evolutions of the dromion solutions numerically. We have

shown that a single dromion propagates stably in the Lyapunov sense, and that in

a special case of a collision of two $\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{i}_{0}\mathrm{n}\mathrm{S}$ , the initial dromions break into four

stable pulses after the collision. This paper is devoted to the nunerical analysis

of the stability of dromions against their collisions in detail. Speaking of the ap-

pearance of four stable pulses in the final stages, the exact $(2,2)- \mathrm{d}\mathrm{r}\mathrm{o}\mathrm{I}\dot{\mathrm{m}}\mathrm{o}\mathrm{n}$ solutions

also show that dromions are annihilated or created due to collisions, where the no-
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tation $(M, N)- \mathrm{d}\mathrm{r}\mathrm{o}\mathrm{I}\mathrm{n}\mathrm{i}\mathrm{o}\mathrm{n}$ solution represents the solution which has asymptotically

$M$ mean flows in $y=-\infty$ and $N$ in $x=-\infty$ . These exact solutions are close

to our configuration. It should be noted, however, that our cases are different

from exact $(2,2)$-dromion solutions, since the boundary conditions of the mean

flows in our simulations are different from the exact ones.[7] Since little is known

about behaviors of the solutions which deviate from exact ones, it is significant to

carry out numerical $\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{s}$ and clarify the behaviors of the collisions of two

one-dromions.

We would like to emphasize that the Lyapunov $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}_{\mathrm{S}\mathrm{i}_{\mathrm{S}}}[8]$ cannot be used to

investigate the stability of the dromion solutions. This analysis is applicable only

when the equation in consideration has a Hamiltonian. The stability of localized

pulses is studied in detail by this method in the case of the nonlinear Schr\"odinger

equation. To the contrary, for the dromion solution of the DS1 equations, we

cannot construct the Hamiltonian (Appendix). This is why we investigate the

stability numerically in this paper.

The outline of this paper is as follows. In Sec.2, we briefly explain the numeri-

cal method and boundary conditions of the simulation. In Sec.3, numerical results

of collisions of dromions in various cases are presented and concluding remarks are

given in Sec.4.

2. The one-dromion solution and the nunlerical method

2.1 The one-dromion solution

Le\dagger , us sunumarize the one-dromion $\mathrm{s}\mathrm{o}1\tau 1\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of the DS1 eqllat.ions. Eqs. (1) and

(2) can be rewrited in another form:

$\mathrm{i}A_{t}+A_{xx}+A_{yy}+(U+V)A=0$ , (.3)

$U_{y}=(|A|^{2})_{x}$ , $V_{x}=(|A|^{2})_{y}$ , (4)
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where $U=Q_{x}-|A|^{2}$ and $V=Q_{y}-|A|^{2}$ . The one-dromion solution is given $\mathrm{b}\mathrm{y}^{[4]}$

$A= \frac{C_{7}}{F}$ (5)

here we choose

$F=1+\exp(\eta_{1}+\eta_{1}^{*})+\exp(’?2+’\uparrow^{*}2)+\gamma\exp(\eta_{1}+\eta_{1}+*+\eta_{2}\eta_{2}^{*}),$

$\}$ (6)
$c=\rho \mathrm{c}\mathrm{x}\mathrm{p}(\eta 1+\eta 2)$ .

The parameters in (6) are given as

$\eta_{1}=(k_{r}+ik_{i})x+(\Omega_{r}+i\Omega_{i})t$, $\eta_{2}=(l_{r}+il_{i})y+(\omega_{r}+i\omega_{i})t$ ,

$\Omega_{r}=-2k_{r}k_{i}$ , $\omega_{r}=-2l_{r}l_{i}$ , $\omega_{i}+\Omega_{i}=k_{\Gamma}^{2}+l_{\Gamma^{-}}^{2}k^{2}i-l^{2}i$
’

where constants $\gamma,$
$k_{r},$ $k_{i},$ $l_{r}$ and $l_{i}$ are real and we take $\Omega_{i}$ as 1/2 in this paper.

There are five substantial free parameters in the dromion solution. The constant

$\gamma$ determines an anlplitude, $k_{\gamma}$ the width of the pulse in the $x$-direction and $l_{r}$ that

in the $y$-direction. The quantities $k_{i}$ and $l_{i}$ are $x$ and $y$ components of velocity,

respectively.

Potentials $U$ and $V$ are determined by integrating (4), and we obtain

$U=2(\ln F)xx$ , $V=2(\ln F)yy$ . $(7, 8)$

From (7) and (8), we can $\mathrm{g}\mathrm{e}_{J}\mathrm{t}$ the cross section of $U$ and $V$ at the boundary

$y,$ $x=-\infty$ , respectively:

$U|_{y=-\infty}= \frac{8k_{r}^{2}\exp(\eta_{1}+\eta_{1})*}{(1+\exp(\eta 1+\eta^{*}1))2}$ , (9)

$V|_{x=-\infty}= \frac{8l_{r}^{2}\exp(\eta_{2}+\eta_{2})*}{(1+\exp(\eta 2+\eta^{*}2))2}$ . (10)

It is crucial for the dromion solution driving the potentials from boundaries as (9)

and (10).
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2.2 Numerical method

Next, we describe the numerical method briefly. We carry out the computation

in a region $[-p,p]\cross[-p,p]$ , wbere this Ineans tlle area $|x|\leq p\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{d}|y|\leq p$ in

$\mathrm{t}_{J}\mathrm{h}e,$

$xy$-plane. This area is transformed into $[0,2\pi]\cross[0,2\pi]$ by $\mathrm{t},\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{s}\mathrm{f}_{0}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t},\mathrm{i}o\mathrm{n}\iota \mathrm{S}$ of

variables $xarrow\pi(x+p)/p$ and $yarrow\pi(y+p)/p$ . We take $p$ as 15 throughout

simulations, and the grid has been taken $64\cross 64$ . The space derivatives in (3)

has been performed by using the psudospectral method with periodic boundary

condition. Time integration is performed by both the Burilsh and Store method [9]

and the fourth order Runge-Kutta method with appropriate accuracy of adaptive

step size control. The equation (4) is calculated by the fourth order $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}- \mathrm{I}\mathrm{t}\mathrm{u}\mathrm{t}\prime \mathrm{t}\mathrm{a}$

lnethod with boundary conditions (9) and (10). We use cubic spline when the

midpoint value between meshes is needed. We evaluate the first conserved quantity

$I_{1}=/|A|^{2}dv$ with appropriate accuracy.

Finally, let us examine the accuracy of using the boundary conditions (9) and

(10) in these simulations. In an exact sense, because the simulations have been

performed in the region $[-p,p]\cross[-p,p]$ , we must choose the value of $U(x, y=-p)$

as the boundary conditions of $U$ and $V(x=-p, y)$ as that of $V$ , respectively.

The functions of (9) and (10), however, is useful in a practical sense because of

$\mathrm{i}\mathrm{f}_{1\mathrm{S}}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{C}\mathrm{i}\mathrm{t}_{1}\mathrm{y}$. Of course the $\mathrm{t}_{\mathfrak{l}}\mathrm{w}o$ conditi $o\mathrm{n}\mathrm{s}$ are $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{z}}\mathrm{i}(,\mathrm{a}1$ if we could take $p=\infty$ .

Hereafter in this paper, we choose the cross sections (9) and (10).

3. Results of simulations

In this section, we present the numerical results of the collision of single

dromions. We take superpositions of the two one-dromion solutions as initial

conditions. It is obvious that these cannot be exact solutions of this nonlinear

equations, since we take only superpositions of a single dromion solution.
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To start with, we study by$\cdot$ changing the relative velocity with keeping the mass

ratio as 1 and the impact parameter as zero (i.e. head-on collisions of two identical

dromions in various relative velocities). We take $k1_{r}=k2_{r}=l1_{r}=l2_{r}=0.8$ and

$\gamma 1=\gamma 2=3.0$ , and we choose the following cases for the velocities:

$(k1_{i}, k2_{iii}, l1, l2)=(W/8, -W^{r}/8, \mathrm{T}l/\mathit{7}/8, -W/8)$ , $W=3,4,5,6$ .

We see that the constant of Inotion $I_{1}= \int|A|^{2}dv$ have been conserved with

high accuracy in all of the computations reported here (Inaximum fluctuation of

$I_{1}$ during calculation is at most $\triangle I_{1}/I_{1}\sim 10^{-15}$ ).

The collision for $W=5$ is shown in Fig.1. These figures show the typical

aspccts of thc collision. As two dromions approach each othcr, both of them emit

their parts and a third pulse is formed midway between them. The pulse becomes

higher and fiat on $x=-y$, while two dromions become slnaller (Fig. $1(\mathrm{b})$ and

$(\mathrm{c}))$ . These dromions remain as small side pulses. In the next stage, the side

pulses approach each other and become larger again crawling the midway pulse

(fig. $1(\mathrm{d})$ ). Then, the midway pulse becomes smaller and two pulses on $x=y$

become larger. We call observe two small lumps appear on $x=-y$, which are the

rcmainders of cdgcs of the midway $\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{S}\mathrm{e}(\mathrm{f}\mathrm{i}\mathrm{g}.1(\mathrm{e}))$. Finally, $\mathrm{t}\mathrm{h}\mathrm{c}$ two lumps becomc

larger and there appear four pulses. These four pulses gradually separate away

and $1^{\mathrm{J}\mathrm{r}\mathrm{o}}\mathrm{P}^{\mathrm{a}}$

. gate alrnost stably(Fig. $1(\mathrm{f})$ and $(\mathrm{g})$ ). There are also small ripples of tlle

main flow along potentials $U$ and $V$ . The amplitudes of the ripples are less than

8% of the heights of pulses. We find that the two pulses on $x=-y$ are similar.

It should be noted that the aspects of the collision are highly symmetrical with

respects to $x=y$ throughout the calculations. Theoretically speaking, this system

has this symmetry, and the results of the simulation agree with this.

The reason that four pulses appear in the final stage can be understood as

follows. Figs.2,3,4 and 5 are the contour plots of the quantities $A,$ $U$ and $V$
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during the collisions with different relative velocities. It is observed that the four

pulses are located around the cross points of $U$ and $V$ , where the peaks of the

potentials overlap. Considering (3) and (4), we easily see that the potentials $U$

and $V$ are attractive in this case. Then the cross points of them are the most

attractive points in the entire region. This explains the fact that the cross points

of potentials attract main flow $A$ , and it is natural that four pulses appear after

collision.

It is interesting to note here that the two on $x=y$ are bigger than those on

$x=-y$ in the cases of figs.2 and 3, although in the cases of figs.4 and 5 the two on

$x=-y$ are bigger than that on $x=y$ . Let us explain this phenomenon in detail.

From tllese figures, especially froIn Fig.5, the large midway pulse OI1 the origiIl
$\mathrm{O}\mathrm{S}\mathrm{C}\mathrm{i}11\mathrm{a},\mathrm{f}_{\mathrm{I}\mathrm{e}}\mathrm{S}$ between $\mathrm{t},\mathrm{w}o\mathrm{s}\mathrm{t}_{1\mathrm{a}}\mathrm{t}\mathrm{e}\mathrm{S}$ : a pulse flafc in t,he direction along $x=y$ and $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}_{}$

along $x=-y$ . This oscillation occurs during the period that the two pulses of $U$

and those of $V$ are sufficiently close, respectively. We can evaluate the periods of

the oscillations from these figures. The periods do not change remarkably in all of

these cases, the half of them, $T/2$ , is 1\sim 1.5. Thus we think that the period may

be irrelevant to the relative velocity. In order to examine this assertion we simulate

the collision with the velocities $(k1_{i}, k2i, l1i, l2_{i})=(1/8, -1/8,1/8, -1/8)$ (Fig.6).

We observe that the midway pulse oscillates during four periods of it,, and confirm

the universal nature of the oscillation that the half period of each oscillation is

1\sim 1.5.

This oscillation plays an important role in the final stages of collisions. Before

the collision, we observe four common points of the peaks of the mean flow, which

play a role of attracting point. As these four points approach, a strong attractive

point is formed around the origin. Then, since structures of the main flow are

attracted to this point, some parts of the dromions flow into the area around
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the origin to form the midway pulse. The new pulse is strongly bounded to the

attractive point, so that it oscillates because of the inertia of the fluid. When

the pulses of the mean flows sufficiently separate away in the course of time, the

attracting point at the origin will be divided again into four intersections of the

mean flows. The oscillation stops at this stage and the midway pulse is separated

into four, each of which is located at the intersections of the mean flows. Therefore,

the timing of the separation of the potentials determines “how initial two dromions

break into four pulses in the $\mathrm{f}\mathrm{i}_{1}\mathrm{f}\mathrm{f}\mathrm{i}$ stage of their collision.” [7] We call this mechanism

as ”the distribution law” in this paper. In Figs.2 and 3, the potentials separate

when the midway pulse is flat along $x=y$ , then as a $\mathrm{r}\mathrm{e}\mathrm{s}\iota 1\mathrm{l}\mathrm{t}$ the two pulses on $x=y$

are larger than the other two in their final stages. The situations in Figs.4 and 5

are opposite to those in Figs.2 and 3. Thus we have explained the differences in

tbe final stages.

Next, we $\mathrm{c}\mathrm{a}\mathrm{I}\iota \mathrm{y}$ out llulIlericdl siKnulatioIls under other conditions, by changing

t,he impact parameter slightly from zero and the mass ratio slightly from $\tau \mathrm{m}\mathrm{i}\mathrm{t}\mathrm{y}$.

We can conclude by the numerical results that a small impact parameter does not

affect the aspects of the collision. We then change the mass ratio slightly from

unity. In this case the initial dromions exchange their masses each other through

the interaction, breaking into four pieces.

4. Concluding remarks

In this paper, collisions of dromions are studied in detail numerically. We

confirm that in general, the initial two dromions will break into four pulses af-

ter collisions. This holds even if we make small changes on the mass ratio and

the impact parameter. The four pulses in the final stage are located around the

cross point of the potentials, the area where the peaks of the mean flows inter-
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sect, and these intersections are the most attractive points in this system. We

also observe the new phenomena that the intermediate pulse created due to col-

lision shows an oscillation duling the potentials overlap sufficiently. The pulse

is observed to oscillate on between two states, the directions along which $\mathrm{t}_{\text{・}}\mathrm{h}\mathrm{e}\mathrm{y}$

are flat are completely different. One of the remarkable feature of the oscil-

lation is that the period is independent of the relative velocity. Moreover, we

find that the state of the oscillation and the relative velocity determine the dis-

tribution of total mass into four in the final stage. At present, we think that

it is difficult to explain the distribution law by using exact $(2,2)$-dromion so-

lutions. Therefore, $\mathrm{i}\mathrm{t}_{1}$ will be considered tllat the law is essentially new one.

Appendix

In this Appendix, we discuss the problem of constructing the $\mathrm{H}\mathrm{a}\mathrm{l}\mathrm{n}\mathrm{i}\mathrm{l}\mathrm{t}_{\mathrm{o}\mathrm{n}}\mathrm{i}\mathrm{a}\mathrm{n}$ of

the DS1 equations for the dromion solution. For sufficiently localized pulses of $A$

and $Q$ , we can get $\mathrm{e}\mathrm{q}\mathrm{s}$ . (1) and (2) from variational problems:

$\frac{\delta H}{\delta A^{*}}=\mathrm{i}A_{t}$ , (A.1)

$\frac{\delta H}{\delta Q}=0$ , (A.2)

where the Hamiltonian is

$H= \int(|A_{x}|2+|A_{y}|^{2}+|A|^{4}-(Q_{x}+Q_{y})|A|^{2}+\frac{Q_{x}Q_{y}}{2})dV$ . (A.3)

In the calculation of the variation in $\mathrm{e}\mathrm{q}\mathrm{s}$ . (A.1) and (A.2), surface terms must

vanish to obtain the DS1 equations. When we consider a dromion solution, the

variable $A$ decays exponentially in all the direction. Then all of the surface terms

disappear in the variation (A.1) and we obtain (1). On the other halud, we can-

not succeed in having the eq.(A.2) because the function $Q$ is not localized. In

calculating the left-haIld side of (A.2), the $\mathrm{v}\Re\cdot \mathrm{i}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{I}\mathrm{l}$ of the last $\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{I}\mathrm{l}\mathrm{l}$ in (A.3) is

$\delta\int\frac{1}{2}Q_{x}Q_{y}dV=\frac{1}{2}\int B_{Q}^{(x)}dy+\frac{1}{2}\int B_{Q}^{(y)}dx-\int Q_{xy}\delta QdV$ .
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$B_{Q\infty}^{(x)}\equiv[Q_{y}\delta Q]_{x}^{x\infty}==-$ , $B_{Q}^{(y)}\equiv[Q_{x}\delta Q]_{y-\infty}y=\infty=$ (A.4)

The first two terms of the right-hand side of (A.4) must vanish to get a non-trivial

Hamiltonian. This occurs only when the cross sections of $Q$ at $x=+\infty$ and $y=$

$+\infty$ coincide with those at $x=-\infty$ and $y=-\infty$ , respectively. However, it is easily

seen that these conditions are not satisfied in the case of the dromion solution,

because it is not symmetrical wvith $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}_{\nu}\mathrm{c}\mathrm{t}\mathrm{S}$ to $x$ and $y$ axes. Thus we cannot

construct the Haniltonian in this case. Consequently, the Lyapunov analysis is not

applicable to examine the stability of dromion. This fact is quite natural from the

$1^{\mathrm{J}}1_{1}\mathrm{y}\mathrm{s}\mathrm{i}_{\mathrm{C}}\mathrm{a}1$ point of view.[7] A dronliorl is located at a cross point of the peaks of two

mean flows, We have to $\mathrm{c}\mathrm{h}\cdot \mathrm{i}\mathrm{v}\mathrm{e}$ these mean flows from boundaries of a system. From

tllis reason, this system has an energy interaction with an external system through

its boundaries. Therefore, it is apparent that this systeln is not a Hamilton system.
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Solid profiles $\mathrm{o}\mathrm{f}|A|^{2}$ in the case of the collision with parameters $\gamma 1=\gamma 2=$

3, $k1_{r}=k2_{r}=l1_{r}=l2_{r}=4/5,$ $k1_{i}=l1_{i}=5/8$ , and $k2_{i}=l2_{i}=-5/8$ at

$(\mathrm{a})t=-3.0,$ $(\mathrm{b})t=-0.76,$ $(\mathrm{c})t=0.\mathrm{O},$ $(\mathrm{d})t=0.23,$ $\langle \mathrm{e})t=0.5,$ $(\mathrm{f})t=1.5$ ,

$(\mathrm{g})t=3.5$ . After the collision, there appears four pulses and propagate

almost stably.
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Fig. 2
ナ $=-1$ 寡寡 ナ $=\cap\hslash_{-}\mathrm{a}$ ナ $=$ ? 寡寡

$\iota=$ -U.25 $t=1.12$

Contour Graphics of. the $\mathrm{c}.011|i|\mathrm{o}\mathrm{n}$ of .inilu dromions with velocities

$(k1,.k2,.\mathfrak{l}1,.12.)\Leftrightarrow(6/8. -6/8,6/8. -6/8)$ . Contours are at 0.03. 0.1

and 0.2 $i\mathrm{o}\mathrm{r}|4|,$ $\mathrm{n}\mathrm{d}.t_{0}tU$ and V. 90% of the muimum values of them.

Fig. \prec ト

Coniour Graphics of the collision $\mathrm{o}t.\mathrm{i}\dot{\mathrm{m}}1*$ dromionl with $\mathrm{v}\mathrm{e}\mathrm{I}\mathrm{o}\mathrm{c}’\iota_{1}\mathrm{C}$ .
$\mathrm{t}k1..k2_{(},l1..l2‘)-(4/8, -4/8.4/;. -\ell/8)$. Contours are the mme
$\mathrm{r}\hslash\iota 1$.

Fig. 6

$t=-1.00$

Fig. 3
$l–,$ $\mathrm{o}A$ $’-\cap A$’ $’-\mathrm{q}‘\cap$

$t=-0.38$ $t=1.50$

ContQur $\mathrm{C}r\mathrm{a}_{\mathrm{P}^{\mathrm{h},\infty}}$ bf tbe $\infty 11i*\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{o}t*\mathrm{i}\mathrm{m}\mathrm{i}1u$ dromions $\mathrm{w};\iota \mathrm{h}\mathrm{v}\mathrm{e}\mathrm{I}\mathrm{o}\mathrm{c}\dot{\mathrm{l}}\iota’ \mathrm{e}l$

[ $k1_{1}.,k2,.\iota\iota.,l2,)\approx(S/8, -6/8. f/8.-\/8)$. Contoun $u\mathrm{c}$ the $*\mathrm{m}\mathrm{c}$

$u\hslash_{*}.\mathrm{a}$ .

Fig. 5

Contour $\mathrm{G}\mathrm{r}\cdot \mathrm{p}\mathrm{b}\mathrm{i}\infty \mathrm{o}l$ tbe $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{i}\cdot;\mathrm{o}\mathrm{n}$ of $\cdot \mathrm{i}_{\dot{0}1}u\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{m};_{\mathrm{o}\mathrm{n}l}$ witb $\mathrm{v}\epsilon \mathrm{l}\mathrm{o}\mathrm{c}’ \mathrm{t}\mathrm{i}e\iota$

{ $k1,,k2,,11..\iota 2_{\mathrm{t}^{)}}-(3/8. -3/8.3/8, -S/l)$. Contoun $u\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}.\mathrm{m}*$

$u\mathrm{f}\mathrm{l}\iota 2$

$t=\cup.\perp l$

Contou $\mathrm{G}\mathrm{r}*\mathrm{p}\mathrm{h}$] $u\mathrm{o}i$ . period oi tho $\mathrm{i}\mathrm{n}l\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{d}|\cdot leoe\dot{\alpha}1|.\mathrm{t}\mathrm{i}\mathrm{o}\mathfrak{n}l$in $\mathrm{t}$be col $\cdot$

$\mathrm{U}\cdot \mathrm{i}\mathrm{o}\mathrm{n}\mathrm{W}|$th $\mathrm{v}*10\dot{\mathrm{d}}l\mathrm{i}*l\mathrm{t}k1,,k2,,\iota 1:,\iota 2;$ ) $\Leftrightarrow(1/8, -1/8.1/8, -1/8)$. $\mathrm{C}\mathrm{o}\mathrm{n}$.

toul re $\mathrm{t}\mathrm{b}**\mathrm{m}*u$ ig.2. The $u\mathrm{c}\mathrm{i}\iota|.\iota$ ion occul lour timu in $\mathrm{t}\mathrm{h}|$. cue.
md the $\mathrm{h}\lrcorner \mathrm{f}$ Period $i$. obrne4 to $\mathrm{b}\cdot*\mathrm{b}\mathrm{o}\mathrm{u}l1\sim 1.b*$ .
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