Shintani Functions and Rankin-Selberg Convolution

I. Local Theory

京都産業大·理 村瀬 篤 (Atsushi Murase)

広島大·理 菅野 孝史 (Takashi Sugano)

In this note, we report a recent progress of the local theory of Shintani functions on split orthogonal groups (joint work with Shin-ichi Kato).

§1. Notation

Let F be a non-archimedean local field with char(F) $\neq 2$ and denote by o the integer ring of F. Fix a prime element π of F and put $q = \#(o/\pi o)$. For a positive integer n, we put

$$S_{n} = \begin{cases} \begin{bmatrix} 0 & J_{v} \\ J_{v} & 0 \end{bmatrix} & \text{if n is even} \\ \begin{bmatrix} 0 & 0 & J_{v} \\ 0 & 2 & 0 \\ J_{v} & 0 & 0 \end{bmatrix} & \text{if n is odd} \end{cases}$$

where $v = \begin{bmatrix} \frac{n}{2} \end{bmatrix}$ and $J_v = \begin{bmatrix} 0 & 1 \\ \cdot & \cdot \\ 1 & 0 \end{bmatrix} \in GL_v(F)$. Let G_n be the orthogonal group of S_n over F: $G_n = \{g \in GL_n(F) \mid {}^tg \, S_n \, g = S_n \}$. We define an embedding ι_n of G_{n-1} into G_n as follows (we put $v' = \left\lceil \frac{n-1}{2} \right\rceil$):

(a) If n is even,

$$\iota_{n}\left[\begin{bmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{bmatrix}\right] = \begin{bmatrix} a_{1} & \frac{a_{2}}{2} & \frac{a_{2}}{2} & a_{3} \\ b_{1} & \frac{b_{2}+1}{2} & \frac{b_{2}-1}{2} & b_{3} \\ b_{1} & \frac{b_{2}-1}{2} & \frac{b_{2}+1}{2} & b_{3} \\ c_{1} & \frac{c_{2}}{2} & \frac{c_{2}}{2} & c_{3} \end{bmatrix}$$

where $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \in G_{n-1}$ is the block decomposition according to the partition n-1=v'+1+v'.

(b) If n is odd,

$$\iota_{\mathbf{n}} \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & 0 & b \\ 0 & 1 & 0 \\ c & 0 & d \end{bmatrix}$$

where $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G_{n-1}$ is the block decomposition according to the partition n-1=v'+v'.

In what follows, we write G and G' for G_n and G_{n-1} respectively. Let v = [n/2] (resp. v' = [(n-1)/2] be the Witt index of S_n (resp. S_{n-1}). We identify G' with a subgroup of G via ι_n . Put $K = G \cap GL_n(o)$ (resp. $K' = G' \cap GL_{n-1}(o)$), and let $\mathcal{H} = \mathcal{H}(G,K)$ (resp. $\mathcal{H}' = \mathcal{H}(G',K')$) be the Hecke algebra of (G,K) (resp. (G',K')). To parametrize $Hom_C(\mathcal{H},C)$, let $X_{unr}(F^\times)^V$ be the group of v-tuples of unramified characters of F^\times . Let P be the subgroup of upper triangular matrices in G (the standard minimal parabolic subgroup of G). Then $\chi \in X_{unr}(F^\times)^V$ is regarded as a character of P in a natural manner. Define a function Φ_χ on G to be $\Phi_\chi(pk) = (\chi \delta_P^{1/2})(p)$ for $p \in P$ and $k \in K$, where δ_P is the module of P. For $\varphi \in \mathcal{H}$, put

$$\chi^{\wedge}(\varphi) = \int_{G} \varphi(g) \; \Phi_{\chi}(g) \; \mathrm{d}g.$$

Then $\phi \mapsto \chi^{\wedge}(\phi)$ defines an element of $\operatorname{Hom}_{\mathbb{C}}(\mathcal{H},\mathbb{C})$. The correspondence $\chi \mapsto \chi^{\wedge}$ gives rise to a bijection from $X_{\operatorname{unr}}(F^{\times})^{\mathsf{v}}/W_{G}$ onto $\operatorname{Hom}_{\mathbb{C}}(\mathcal{H},\mathbb{C})$, where W_{G} is the Weyl group of G (cf. [Sa]). Similarly we can identify $\operatorname{Hom}_{\mathbb{C}}(\mathcal{H}',\mathbb{C})$ with $X_{\operatorname{unr}}(F^{\times})^{\mathsf{v}'}/W_{G'}$, where $W_{G'}$ is the Weyl group of G'.

§2. Main results

As in [MS1], we define the space $Sh(\chi, \chi')$ of local Shintani functions on G attached to $(\chi, \chi') \in X_{unr}(F^{\times})^{V} \times X_{unr}(F^{\times})^{V'}$ by

$$Sh(\chi,\chi') = \{ W: G \to C \mid (i) \ W(k'gk) = W(g) \ (k' \in K', k \in K, g \in G) \\ (ii) \ \phi'*W*\phi = \chi'^(\phi') \ \chi^{(\phi)} \ W \ (\phi' \in \mathcal{H}', \phi \in \mathcal{H}) \}.$$

Here we put

$$(\phi' * W * \phi)(g) = \int_{G'} dx' \int_{G} dx \; \phi'(x') \; W(x'^{-1} \; g \; x) \; \phi(x).$$

Note that Shintani functions can be regarded as spherical functions on a spherical homogeneous space $X = G^{\text{diag}} \setminus G' \times G$, where $G^{\text{diag}} = \{ (g', g') \mid g' \in G' \}$ is a spherical subgroup of $G' \times G$ in the sense of [Br]. The following has been conjectured in [MS1].

Theorem 1 Let $(\chi, \chi') \in X_{unr}(F^{\times})^{\vee} \times X_{unr}(F^{\times})^{\vee'}$. Then we have $\dim_{\mathbb{C}} Sh(\chi, \chi') = 1$. Moreover, there exists a $W_{\chi,\chi'} \in Sh(\chi, \chi')$ with $W_{\chi,\chi'}(1) = 1$.

To state an explicit formula for $W_{\chi,\chi'}$, we need several preparations. Let $\Lambda_v = \{ (m_1, \ldots, m_v) \in \mathbf{Z}^v \mid m_1 \geq \ldots \geq m_v \geq 0 \}$. For $m = (m_1, \ldots, m_v) \in \Lambda_v$, we put $\Pi_m = \mathbf{d}_n (\begin{bmatrix} \pi^{m_1} & 0 \\ \vdots & \ddots \\ 0 & \pi^{m_v} \end{bmatrix}) \in G$, where

$$\mathbf{d}_{\mathbf{n}}(\mathbf{A}) = \begin{cases} \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & J_{\mathbf{v}}^{t} \mathbf{A}^{-1} J_{\mathbf{v}} \end{bmatrix} & \text{if n is even} \\ \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} & J_{\mathbf{v}}^{t} \mathbf{A}^{-1} J_{\mathbf{v}} \end{bmatrix} & \text{for } \mathbf{A} \in \mathrm{GL}_{\mathbf{v}}(\mathbf{F}). \end{cases}$$

Similarly we define $\Pi'_{m'} \in G'$ for $m' \in \Lambda_{v'}$. Let g_o be an element of G given by

$$g_o = \begin{cases} d_n(A_o) & \text{if n is even} \\ \begin{bmatrix} 1_v - 2\eta - \eta^t \eta J_v \\ 0 & 1 & {}^t \eta J_v \\ 0 & 0 & 1_v \end{bmatrix} & \text{if n is odd} \end{cases}$$

where
$$A_0 = \begin{bmatrix} 1 & 0 & 1 \\ & \ddots & \vdots \\ 0 & 1 & 1 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \in GL_v(F)$$
 and $\eta = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in F^v$. The following result is

the "Cartan decomposition" for X.

Proposition 2 We have

$$G = \coprod_{m \in \Lambda_{\mathbf{v}'}} K' g(m, m') K \qquad (disjoint union)$$

where $g(m, m') = \Pi'_{m'} g_0 \Pi_m \in G$.

Put

$$Q_n(q) = \prod_{i=1}^{\nu-1} (1 - q^{-2i}) \times \begin{cases} 1 & \text{if n is even} \\ (1 - q^{-\nu}) & \text{if n is odd.} \end{cases}$$

Let $\chi=(\chi_1,...,\chi_{\nu})\in X_{unr}(F^{\times})^{\nu}$ and $\chi'=(\chi'_1,...,\chi'_{\nu'})\in X_{unr}(F^{\times})^{\nu'}$. To simplify notation, we often write χ'_i and χ_j for the values $\chi'_i(\pi)$ and $\chi_j(\pi)$ respectively. Define

$$\mathcal{D}(\chi,\chi') = \frac{\displaystyle\prod_{1 \leq i \leq \nu', 1 \leq j \leq \nu} (1 - q^{-1/2} (\chi_i'^{-1} \chi_j)^{\epsilon_{ij}}) (1 - q^{-1/2} (\chi_i' \chi_j)^{-1})}{\Delta_G(\chi) \cdot \Delta_{G'}(\chi')}$$

where

$$\varepsilon_{ij} = \begin{cases} 1 & \text{if } i < j \\ -1 & \text{if } i \ge j \end{cases}$$

and

$$\Delta_{G}(\chi) = \prod_{1 \leq k \leq \ell \leq \nu} (1 - \chi_{k}^{-1} \chi_{\ell}) (1 - \chi_{k}^{-1} \chi_{\ell}^{-1}) \times \begin{cases} 1 & \text{if n is even} \\ \prod_{1 \leq k \leq \nu} (1 - \chi_{k}^{-2}) & \text{if n is odd} \end{cases}$$

($\Delta_{G'}(\chi')$ is similarly defined).

Theorem 3 Let $W_{\chi,\chi'} \in Sh(\chi,\chi')$ be as in Theorem 1. Then, for $(m,m') \in \Lambda_{V} \times \Lambda_{V'}$, we have

$$W_{\chi,\chi'}(g(m,m'))$$

$$= \frac{1}{Q_n(q)} \sum_{\substack{w \in W_G \\ w' \in W_{G'}}} \mathcal{D}(w\chi, w'\chi') \ (w\chi \cdot \delta_P^{1/2})(\Pi_m) \ (w'\chi' \cdot \delta_{P'}^{1/2})(\Pi_{m'}'),$$

where W_G (resp. $W_{G'}$) is the Weyl group of G (resp. G') and δ_P (resp. $\delta_{P'}$) is the module of the standard minimal parabolic subgroup P (resp. P') of G (resp. G').

§3. Sketch of proof

The existence part of Theorem 1 is proved by using an integral expression of Shintani functions similar to that of [MS2]. We can prove Theorem 3 following the method of [KM], where an explicit formula for local Shintani functions on GL(n) is shown.

We now give an outline of the proof of the uniqueness part of Theorem 1. For $(m, m') \in \Lambda = \Lambda_v \times \Lambda_{v'}$, we define an element $\{m, m'\}$ of $\mathbf{Z}^{v+v'}$ by

$$\{m,m'\} = \begin{cases} (m_1,m_1',m_2,m_2',...,m_{v'},m_{v'}',m_v) & \text{if n is even (in this case } v=v'+1) \\ (m_1,m_1',m_2,m_2',...,m_{v'},m_{v'}') & \text{if n is odd (in this case } v=v'). \end{cases}$$

We define a total ordering of Λ as follows: $(\ell, \ell') \prec (m, m')$ if and only if $\{\ell, \ell'\} < \{m, m'\}$ (in the usual lexicographic ordering of $\mathbf{Z}^{\nu+\nu'}$). The proof of the uniqueness of Shintani functions is reduced to the following:

Proposition 4 Let $W \in Sh(\chi, \chi')$ and $(m, m') \in \Lambda$. Then we have

$$W(g(m,m')) = \sum c_{\ell,\ell'}(\chi,\chi') W(g(\ell,\ell')),$$

where the summation is over $(\ell,\ell') \in \Lambda$ with $(\ell,\ell') \prec (m,m')$, and $c_{\ell,\ell'}(\chi,\chi')$ is an element of $C[\chi_1^{\pm 1},...,\chi_v^{\pm 1},(\chi_1')^{\pm 1},...,(\chi_v')^{\pm 1}]$ depending only on (ℓ,ℓ') and (χ,χ') and not on W.

The proposition follows from the next result, which is an analogue of Proposition (4.4.4) in [BT].

Key lemma Let (m, m'), $(\ell, \ell') \in \Lambda$ and $k \in K$, and suppose that $\Pi'_{m'} k \Pi_m \in K' g(\ell, \ell') K$. Then we have $(\ell, \ell') \leq (m, m')$.

References

[Br] Brion, M.: Classification des espaces homogènes sphériques, Compositio Math. **63**, 189-208 (1987)

[BT] Bruhat, F. and Tits, J.: Groupes réductifs sur un corps local: I. Données radicielles valuées, I.H.E.S. Publ. Math. 41, 5-252 (1972)

[KM] Kato, S. and Murase, A.: in preparation

[MS1] Murase, A. and Sugano, T.: Shintani function and its application to automorphic L-functions for classical groups: I. The orthogonal group case, Mathematische Annalen **299**, 17-56 (1994)

[MS2] Murase, A. and Sugano, T.: Shintani functions and automorphic L-functions for GL(m), preprint

[Sa] Satake, I.: Theory of spherical functions on reductive algebraic groups over p-adic fields, I.H.E.S. Publ. Math. 18, 5-69 (1963)