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Abstract: For any (formal) language $L$ , we consider the language Sub$(L)$

of all subwords of elements in $L$ and define the function $f_{L}$ : $Narrow N$ having
the possibly minimal complexity such that $p\in Sub(L)$ implies $qpr\in L$

for some pair $q,$ $r$ of words with $|qr|\leq f_{L}(|p|)$ (where $|p|$ denotes
the length of $p$). We show that, for any regular language $L$ , there exists
a constant $f_{L}$ of this type. Moreover, if $L$ is context-free, then it can be
found a linear $f_{L}$ . Using well-known results, we give an example for a
context-sensitive language $L$ having only non-recursive $f_{L}$ .
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1. Introduction
For all notions and notations not defined here, see [1 -3]. An alphabet is a finite

nonempty set. The elements of an alphabet are called letters. A word over an alphabet
$X$ is a finite string consisting of letters of $X$ . For any alphabet $X$ , let $X^{*}$ denote the

free monoid generated by $X$ , i.e. the set of all words over $X$ including the empty word
$\lambda$ and $X^{+}=X^{*}\backslash \{\lambda\}$ . The length of a word $w$ , in symbols $|w|$ , means the number
of letters in $w$ when each letter is counted as many times as it occurs. By definition,
$|\lambda|=0$ . If $u$ and $v$ are words over an alphabet $X$ , then their catenation $uv$ is also
a word over $X$ . Especially, for any word $uvw$ , we say that $v$ is a subword of $uvw$ . A
language over $X$ is a set $L\subseteq X^{*}$ . We extend the concept of catenation for the class
of languages as usual. Therefore, if $L_{1}$ and $L_{2}$ are languages, then $L_{1}L_{2}=\{p_{1}p_{2}|$

$|p_{1}\in L_{1},p_{2}\in L_{2}\}$ . Let $p$ be a word. We put $p^{0}=\lambda$ and $p^{n}=p^{n-1}p(n>0)$ . Thus
$p^{k}(k\geq 0)$ is the k-th power of $p$ . If there is no danger of confusion, then sometimes we
identify $p$ with the singleton set $\{p\}$ . Thus we will write $p^{*}$ and $p^{+_{\mathrm{i}\mathrm{a}\mathrm{d}}}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{e}$ of $\{p\}^{*}$ and
$\{p\}^{+}$ , respectively. The set of all subwords of any word $p$ is denoted by Sub$(p)$ . For
any language $L$ , we put Sub$(L)=\cup\{Sub(p)|p\in L\}$ . $L$ is dense if Sub$(L)=X^{*}$ . A
generative grammar is an ordered quadruple $G=(V_{N}, V_{T}, S, P)$ where $V_{N}$ and $V_{T}$ are
disjoint alphabets, $S\in V_{N}$ , and $P$ is a finite set of ordered pairs $(W, Z)$ such that $Z$ is
a word over the alphabet $V=V_{N}\cup V_{T}$ and $W$ is a word over $V$ containing at least one
letter of $V_{N}$ . The elements of $V_{N}$ are called nonterminals and those of $V_{T}$ terminals.
$S$ is called the start symbol. Elements $(W, Z)$ of $P$ are called productions and are
written $Warrow Z$ . A word $Q$ over $V$ derives directly a word $R$ , in symbols, $Q\Rightarrow R$ , if
and only if there are words $Q_{1},$ $Q_{2},$ $Q_{3},$ $R_{1}$ such that $Q=Q_{2}Q_{1}Q_{3},$ $R=Q_{2}R_{1}Q_{3}$ and
$Q_{1}arrow R_{1}$ belongs to P. $Qde’\cdot ivesR$ , or in symbols, $Q\Rightarrow*R$ if and only if there is
a finite sequence of words $W_{0},$

$.$ . ., $W_{k}(k\geq 0)$ over $V$ where $W_{0}=Q,$ $W_{k}=R$ and
$W_{i}\Rightarrow W_{i+1}$ for $0\leq i\leq k-1$ . Thus for every $W\in(V_{N}\cup V_{T})^{*}$ we have $W\Rightarrow*W$ .
The language $L(G)$ genera$ted$ by $G$ is defined by $L(G)=\{w|w\in V_{T}^{*}, S\Rightarrow*w\}$ .

2. Results

Suppose that $G$ is regular. Then each production is one of the forms $Warrow wZ$ or
$Warrow w$ where $W,$ $Z\in V_{N}$ and $w\in V_{T}^{*}$ . It is obvious that for any $p\in Sub(L(G))$ ,
there exists a derivation $W_{1}\Rightarrow q_{1}W_{2}\Rightarrow\ldots\Rightarrow q_{1}\ldots q_{i}W_{i1}+\Rightarrow q_{1}\ldots q_{i}p_{1i+}W2\Rightarrow\cdots$

$...\Rightarrow q_{1}$ ... $q_{i}p_{1}\ldots p_{m}W_{i}+m+1$ with $W_{1},$
$\ldots,$

$W_{i+m}\in V_{N},$ $W_{1}=S,$ $Wi+m+1\in V_{N}\cup\{\lambda\}$ ,
and $p=p_{1}\ldots p_{m}$ , such that the word $W_{1}\ldots W_{i+1}$ has no letters with double occur-
rences. Clearly, then $i<|V_{N}|$ . On the other hand, we may suppose without loss of
generality that there exists a positive integer $t$ such that every nonterminal $W$ has a
derivation $W\Rightarrow*p_{W}$ with $p_{W}\in V_{T}^{*}$ and $|p_{W}|\leq t$ . We get the following result.

Theorem 2.1. For any regular language $L$ there exists a positive integer $k$ having the
property that $p\in Sub(L)$ implies $qpr\in L$ for some pair $q,$ $r$ of words with $|qr|\leq k$ . $\square$

Now we assume that $G$ is context-free. Then every production has the form $Warrow$

$arrow Z$ , where $W\in V_{N}$ and $Z\in(V_{N}\cup V_{T})^{*}$ . We may assume without loss of generality
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that for a suitable positive integer $t$ every nonterminal $W$ has a derivation $W\Rightarrow*p_{W}$

with $p_{W}\in V_{T}^{*}$ and $|p_{W}|\leq t$ .
Denote $s$ the maximal length of the right side of the productions. First we show

that for any derivation $A\Rightarrow*q’ar’,$ $A\in V_{N},$ $a\in V_{T}$ there exists a pair $q,$ $r\in V_{T^{*}}$ such
that $A\Rightarrow*qar,$ $|qar|\leq(|V_{N}|s-1)t+1$ , moreover, $q=\lambda$ provided $q’=\lambda$ and
$r=\lambda$ provided $r’=\lambda$ . If $A\Rightarrow*q’a\Gamma’$ holds for some pair $q’,$ $r’\in(V_{N}\cup V_{T})^{*}$ , then
there exist productions $W_{i}arrow Q_{i}W_{i+1}R_{i},$ $i=1,$ $\ldots,j,j\geq 1,$ $W_{1}=A,$ $W_{j+1}=a$ with
$W_{1}(=A),$

$\ldots,$
$W_{j}\in V_{N}$ such that the word $W_{1}\ldots W_{j}$ has only distinct letters. Then

$j\leq|V_{N}|$ . Thus the length of $Q_{1}\ldots Q_{j}aR_{i}\ldots R1$ is not greater than $|V_{N}|s$ and it
has not more than $|V_{N}|s-1$ nonterminals. Therefore, we can obtain a derivation
$A\Rightarrow*qar$ where $qar\in V_{T}^{*}$ and $|qar|\leq(|V_{N}|s-1)t+1$ . Especially, if $q’=\lambda$ then
for any derivation $A\Rightarrow*Q_{1}\ldots Q_{j}aR_{j}\ldots R_{1}\Rightarrow*ar’$ we obtain $Q_{1}\ldots Q_{j}\Rightarrow*\lambda$ . Hence
we may assume $q=\lambda$ whenever $q’=\lambda$ . Similarly, if $r’=\lambda$ , then for any derivation
$A\Rightarrow*Q_{1}\ldots Q_{j}aRj\cdots R1\Rightarrow*q’a$ we obtain $R_{j}\ldots R_{1}\Rightarrow*\lambda$ . Consequently, we may
assume $r=\lambda$ whenever $r’=\lambda$ .

Let us consider a positive integer $n>1$ . Now we suppose that for any deriva-
tion $A\Rightarrow*q’pr’,$ $A\in V_{N,p}\in V_{T^{+}},$ $|p|<n$ there exists a pair $q,$ $r\in V_{T}^{*}$ such that
$A\Rightarrow*qpr,$ $|qpr|\leq((|V_{N}|s-1)t+1)(2|p|-1)$ , moreover, $q=\lambda$ provided $q’=\lambda$

and $r=\lambda$ provided $r’=\lambda$ . Prove that the $n$-length words preserve these properties.
Take an $n$-length word $p’\in V_{T}^{*}$ such that $A\Rightarrow*q’’’pr$ holds for some pair $q’,$ $r’\in$

$\in(V_{N}\cup V_{T})^{*}$ . Then there exist productions $W_{i}arrow Q_{i}W_{i+1}R_{i},$ $i=1,$ $\ldots,j$ ,
$j\geq 1$ with $W_{1}(=A),$ $\ldots,$

$W_{j}\in V_{N}$ such that the word $W_{1}\ldots W_{j}$ has only dis-
tinct letters. Furthermore, $W_{j+1}=Z_{1}\ldots Z_{m}$ where $Z_{1},$

$\ldots,$
$Z_{m}\in V_{N}\cup V_{T},$ $m\geq 2_{s}$

$|Q_{1}\ldots Q_{jj}R\ldots R_{1}|\leq|V_{N}|s-2$ . Moreover, $Z_{1}\Rightarrow*w_{1}p_{1},$ $Z_{m}\Rightarrow*p_{m}w_{2}$ ,
$|p_{1}|,$ $|p_{m}|>0,$ $Z_{\ell}\Rightarrow*p_{t},$ $\ell=2,$

$\ldots,$
$m-1,p’=p_{1}\ldots p_{m}$ , and $w_{1},$ $w_{2}\in V_{T}^{*}$ . Of

course, using our inductive assumptions, $|w_{1}p_{1}|\leq((|V_{N}|s-1)t+1)(2|p_{1}|-1)$

and $|p_{m}w_{2}|\leq((|V_{N}|s-1)t+1)(2|p_{m}|-1)$ . Then for an appropriate derivation
$A\Rightarrow qp’r(q, r\in V_{T}^{*})$ we have that $qp’r$ has not more letters than $(|V_{N}|s-2)t+$

$+|p_{2}|+\ldots+|p_{m-1}|+((|V_{N}|s-1)t+1)(2|p_{1}|+2|p_{m}|-2)(m\geq 2)$ .
Therefore, $|qp’r|<((|V_{N}|s-1)t+1)(2n-1)$ . On the other hand, for any deriva-
tion $A\Rightarrow*Q_{1}\ldots Q_{j}w_{1}p’w_{2}Rj\cdots R1\Rightarrow*p’r’$ we obtain $Q_{1}$ ... $Q_{j}w_{1}\Rightarrow*\lambda$ . Hence we
may assume $q=\lambda$ whenever $q’=\lambda$ . Similarly, if $r’=\lambda$ , then for any derivation
$A\Rightarrow*Q_{1}\ldots Q_{jp2}w_{1}wR_{j}\ldots R_{1}’\Rightarrow q’p’$ we obtain $w_{2}R_{j}\ldots R_{1}\Rightarrow*\lambda$ . Consequently,
we may assume $r=\lambda$ whenever $r’=\lambda$ . Therefore, the word $p’$ preserves the prop-
erties of our inductive assumptions. Especially, if $A=S$ and $A\Rightarrow*q’pr\prime\prime$ with
$q”’pr\in V_{T^{*}}$ , then by definition $p’\in sub(L(G))$ . Thus, if $k$ is a positive integer with
$k\geq 2(|V_{N}|s-1)t+1$ , then we receive the following result.

Theorem 2.2. For any context-free language $L$ there exists a positive integer $k$

having the property that $p\in Sub(L)$ implies $qpr\in L$ for some pair $q,$ $r$ of words with
$|qr|\leq k|p|$ . $\square$

Finally, it is well-known [2] that, for each recursively enumerable language $L’\subseteq$

$\subseteq X^{*}$ , there is a context-sensitive language $L\subseteq\{a^{i}b|\dot{i}\geq 0\}X^{*}$ with $a,$ $b\not\in X$ such
that for each $p\in L’$ there is a word $a^{i}bp\in L$ , and for each $a^{i}bp\in L$ we have $p\in L’$
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We may assume, for example, that $L=\{c^{n}d|n\in M\}(c\neq d)$ where $M$ is an arbitrary
recursively enumerable but non-recursive subset of positive integers. Let $f_{L}$ : $Narrow N$

be a mapping of the set of all positive integers into itself such that for any $p\in Sub(L)$

there exists a pair $q,$ $r$ with $qpr\in L$ and $|qr|\leq f_{L}(|p|)$ . If $f_{L}$ is recursive, then for any
positive integer $k$ , we can costruct the language $L_{k}=\{a^{m}b_{C^{k}}d|m\leq f_{L}(k+2)\}$ such
that $k\in M$ implies $bc^{k}d\in Sub(L)$ , which leads to $bc^{k}d\in Sub(L_{k})$ and $L\cap L_{k}\neq\emptyset$ .
(Observe that $bc^{k}d\in Sub(a^{i}b\dot{d}d),$ $i,j\geq 0$ if and only if $k=j$ . Hence $m\leq f_{L}(k+2)$

for some $a^{m}bc^{k}d\in L$ provided $bc^{k}d\in Sub(L).)$ Conversely, if $L\cap L_{k}\neq\emptyset$ then
$bc^{k}d\in Sub(L)$ , which results $k\in M$ . But $L$ is context-sensitive, thus it is recursive
[2]. Then it can be decidable whether $L\cap L_{k}$ is empty. Therefore, $\mathrm{M}$ is recursive,
a contradiction. This means that $f_{L}$ is non-recursive. Thus we have the following
statement.

Theorem 2.3. Let $L$ be a language and $f_{L}$ : $Narrow N$ be a function such that for any
$p\in Sub(L)$ there exists a pair $q,$ $r$ with $qpr\in L$ and $|qr|\leq f_{L}(|p|)$ . There exists a
context-sensitive language which has no recursive function $f_{L}$ having this property. $\square$

We close our paper with some examples which show that we can not extend our
results in general.

Example 2.1. Consider the language $L=\{a^{n}b^{n}|n\geq 1\}\cup bX^{*}(X=\{a, b\})$ . It
satisfies the conditions of Theorem 2.1 with $k=1$ but it is inherently context-free.
Therefore, the converse of Theorem 2.1 does not hold.

Example 2.2. $L=\{a^{n}b^{n}C^{n}|n\geq 1\}$ satisfies the conditions of Theorem 2.2 with
$k=2$ . And it is well-known that $L$ is inherently context-sensitive. (More precisely, it
is inherently indexed.) Thus the converse of Theorem 2.2 is invalid.

Example 2.3. For any positive integer $k$ define the language $L=\mathrm{f}^{a^{k|p}p}\mathrm{I}|p\in X^{*}$}
$(X=\{a, b\})$ . It is clear that for any positive integer $n,$

$a^{kn}b^{n}$ is the shortest word in
$L(G)$ which contains $b^{n}$ as subword. Thus, for any positive integer $n$ , there exists an
$n$-length word $p\in Sub(L)$ such that $qpr\in L$ implies $|qr|\geq k|p|$ . It is easy to prove
that $L$ is context-free. (Actually $L$ is a linear dense language.) Consequently, we can
not extend our Theorem 2.1 for the class of context-free languages.
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