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Abstract: For any (formal) language L, we consider the language Sub(L)
of all subwords of elements in L and define the function f;, : N — N having
the possibly minimal complexity such that p € Sub(L) implies gpr € L
for some pair ¢,r of words with | gr |< fr(] p |) ( where | p | denotes
the length of p). We show that, for any regular language L, there exists
a constant f of this type. Moreover, if L is context-free, then it can be
found a linear f;. Using well-known results, we give an example for a
context-sensitive language L having only non-recursive fr.
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1. Introduction

For all notions and notations not defined here, see [1 - 3]. An alphabet is a finite
nonempty set. The elements of an alphabet are called letters. A word over an alphabet
X is a finite string consisting of letters of X. For any alphabet X, let X* denote the
free monoid generated by X, i.e. the set of all words over X including the empty word
X and X+ = X*\ {)\}. The length of a word w, in symbols | w |, means the number
of letters in w when each letter is counted as many times as it occurs. By definition,
| A |=0. If u and v are words over an alphabet X, then their catenation uv is also
a word over X. Especially, for any word uvw, we say that v is a subword of uvw. A
language over X is a set L C X*. We extend the concept of catenation for the class
of languages as usual. Therefore, if L, and L, are languages, then L;L; = {p1p, |
| p1 € L1,p; € Ly} Let p be a word. We put p° = X and p* = p"~'p(n > 0). Thus
pF(k > 0) is the k-th power of p. If there is no danger of confusion, then sometimes we
identify p with the singleton set {p}. Thus we will write p* and p* instead of {p}* and
{p}*, respectively. The set of all subwords of any word p is denoted by Sub(p). For
any language L, we put Sub(L) = U{Sub(p) | p € L}. L is dense if Sub(L) = X*. A
generative grammar is an ordered quadruple G = (Vw, Vr, S, P) where Vy and Vr are
disjoint alphabets, S € Vy, and P is a finite set of ordered pairs (W, Z) such that Z is
a word over the alphabet V = VyUVr and W is a word over V containing at least one
letter of Viy. The elements of Vi are called nonterminals and those of Vp terminals.
S is called the start symbol. Elements (W, Z) of P are called productions and are
written W — Z. A word Q over V derives directly a word R, in symbols, @) = R, if
and only if there are words @1, @2, @3, Ry such that Q = Q2Q1Q3, R = Q2 R1Q3 and
Q1 — R, belongs to P. Q derives R, or in symbols, ) = *R if and only if there is
a finite sequence of words W,...,Wi(k > 0) over V where Wy = Q, W, = R and
W; = Wi, for 0 < i < k— 1. Thus for every W € (Vy U Vz)* we have W = *W.
The language L(G) generated by G is defined by L(G) = {w | w € Vz*, 5 = *w}.

2. Results

Suppose that G is regular. Then each production is one of the forms W — wZ or
W — w where W, Z € Vi and w € Vr*. It is obvious that for any p € Sub(L(G)),
there exists a derivation Wy => gWo = ...=2>q...¢Wi1 2> q1.. . ¢ipiWiga = ...
e @ qiD1 - P Wigma with Wy, .. .,I/VH_m e Wy, W, = S, VVi+m+1 e Vyu {)\},
and p = p;...Pm, such that the word W; ... W;,; has no letters with double occur-
rences. Clearly, then ¢ <| Vy |. On the other hand, we may suppose without loss of
generality that there exists a positive integer ¢ such that every nonterminal W has a
derivation W => xpy with py € Vr* and | pw |< t. We get the following result.

Theorem 2.1. For any reqular language L there exists a positive integer k having the
property that p € Sub(L) implies gpr € L for some pair ¢, of words with | gr |< k. O

Now we assume that G is context-free. Then every production has the form W —
— Z, where W € Vy and Z € (Viy U Vr)*. We may assume without loss of generality



that for a suitable positive integer ¢ every nonterminal W has a derivation W = xpy,
with pw € V7* and | pw |< t.

Denote s the maximal length of the right side of the productlons First we show
that for any derivation A = *¢'ar’, A € Vy,a € Vr there exists a pair ¢,r € V" such
that A = *gar,| gar |< (| V5 | s = 1)t + 1, moreover, ¢ = X provided ¢’ = X and
r = A provided 7’ = A. If A = %¢'ar’ holds for some pair ¢',7" € (Vny U Vr)*, then
there exist productions W; — Q:W; 1 Ri,i =1,...,5,7 > 1, W) = A, W41 = a with
Wi(= A),...,W; € Vi such that the word W ... W; has only distinct letters. Then
J <| Vi |. Thus the length of Q;...Q;aR;... Ry is not greater than | Viy | s and it
has not more than | Vv | s — 1 nonterminals. Therefore, we can obtain a derivation
A = xqar where gar € Vr* and | qar |< (| Vi | s — 1)t + 1. Especially, if ¢' = A then
for any derivation A = *Q;...Q;aR; ... Ry = *ar’ we obtain @); ...Q; = *\. Hence
we may assume ¢ = A whenever ¢ = A. Similarly, if ' = A, then for any derivation
A= xQ,...Q;aR; ... Ry = *¢'a we obtain R;...R; => *)\. Consequently, we may
assume r = X\ whenever 7’ = . _

Let us consider a positive integer n > 1. Now we suppose that for any deriva-
tion A = *¢'pr’, A € Vy,p € Vz',| p |< n there exists a pair ¢,7 € Vr* such that
A= xqpr,| gpr |< (| Va | s=1)t+1)(2 | p | —1), moreover, ¢ = X provided ¢’ = A
and r = X provided ' = A. Prove that the n-length words preserve these properties.
Take an n-length word p’ € Vp* such that A = *¢'p'r’ holds for some pair ¢’,7’' € -
€ (Vw U Vz)*. Then there exist productions W; — Q:W; 1 Ri,e =1,...,7, ‘
J 2 1 with Wi(= A),...,W; € Vu such that the word Wl...W has only dis-
tinct letters. Furthermore, Wis1 = Zy... 2, where Zy, .., 2 € VU Vp,m > 2,
| Q1...Q;R;... Ry |<| Vi | s — 2. Moreover, Z; = %wip1, Zm = *prWs,
| p1 || Pm |[> 0,20 = #pp, £ = 2,...,m —1,p' = p1...Ppm, and wy,w, € Vp*. Of
course, using our inductive assumptions, | wip; | < ((| Vo | s = 1)t +1)(2 | p1 | =1)
and | prws | ((| Vi | s = 1)t +1)(2 | Pm | =1). Then for an appropriate derivation
A = gp'r (q,r € Vr*) we have that gp'r has not more letters than (| Vi | s — 2)t+
+lp2 [+ .. +|pm (W s=1t+ D)2 |pr [ +2 ] pm | =2) (m22).
Therefore, | gp'r |< ((| Vv | s — 1)t +1)(2n — 1). On the other hand, for any deriva-
tion A = *Q; ... Q;wip'wyR; ... Ry = *p'r’ we obtain Q... Q;w; = *A. Hence we
may assume ¢ = A whenever ¢ = A. Similarly, if v = A, then for any derivation
A= %Qq...Q;wip'waR; ... Ry = ¢'p’ we obtain wyR;... Ry = *A. Consequently,
we may assume r = A whenever r’ = A. Therefore, the word p’ preserves the prop-
erties of our inductive assumptions. Especially, if A = S and A = *¢'p'r’ with
¢'p'r’ € Vr*, then by definition p’ € sub(L(G)). Thus, if k is a positive integer with
k> 2(| Vw|s—1)t+1, then we receive the following result.

Theorem 2.2. For any context-free language L there exists a positive integer k
having the property that p € Sub(L) implies qpr € L for some pair q,r of words with
lgr|<k|p]. O

Finally, it is well-known [2] that, for each recursively enumerable language L' C
C X*, there is a context-sensitive language L C {a'b | ¢ > 0}X* with a,b ¢ X such
that for each p € L’ there is a word a’bp € L, and for each a’bp € L we have p € L’ .



We may assume, for example, that L = {c"d | n € M}(c # d) where M is an arbitrary
recursively enumerable but non-recursive subset of positive integers. Let fr, : N — N
be a mapping of the set of all positive integers into itself such that for any p € Sub(L)
there exists a pair ¢, with gpr € Land | gr [< fr(| p |). If fL is recursive, then for any
positive integer k, we can costruct the language Ly = {a™bc*d | m < fr(k +2)} such
that k € M implies bc*d € Sub(L), which leads to bckd € Sub(Ly) and L N Ly # 0.
(Observe that bc*d € Sub(a‘bc’d),i,; > 0 if and only if k = j. Hence m < fr(k +2)
for some a™bckd € L provided bckd € Sub(L).) Conversely, if L N L # @ then
bckd € Sub(L), which results k € M. But L is context-sensitive, thus it is recursive
[2]. Then it can be decidable whether L N Ly is empty. Therefore, M is recursive,
a contradiction. This means that f; is non-recursive. Thus we have the following
statement.

Theorem 2.3. Let L be a language and fr, : N — N be a function such that for any
p € Sub(L) there exists a pair q,r with qpr € L and | qr |< fu(| p|). There exists a
context-sensitive language which has no recursive function fr having this property. O

We close our paper with some examples which show that we can not extend our
results in general.

Example 2.1. Consider the language L = {a"t" | n > 1} U bX*(X = {qa,b}). It
satisfies the conditions of Theorem 2.1 with ¥ = 1 but it is inherently context-free.
Therefore, the converse of Theorem 2.1 does not hold.

Example 2.2. L = {a™b"c" | n > 1} satisfies the conditions of Theorem 2.2 with
k = 2. And it is well-known that L is inherently context-sensitive. (More precisely, it
is inherently indexed.) Thus the converse of Theorem 2.2 is invalid.

Example 2.3. For any positive integer k define the language L = {a*lp | p € X*}
(X = {a,b}). It is clear that for any positive integer n, a*"b" is the shortest word in
L(G) which contains b" as subword. Thus, for any positive integer n, there exists an
n-length word p € Sub(L) such that gpr € L implies | gr |> k | p |. It is easy to prove
that L is context-free. ( Actually L is a linear dense language.) Consequently, we can
not extend our Theorem 2.1 for the class of context-free languages.
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