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ABSTRACT. We define the kernel of a relational morphism of finite or infinite, faith-
ful or non-faithful state-transition automata. We prove the Covering Lemma for these
automata, and a characterization of embedding in the wreath product in terms of this
kernel.

1. INTRODUCTION

For groups, the kernel $K$ of a morphism $\varphi$ : $Garrow H$ is again a group, and $C_{7}$ embeds
in the wreath product $K\mathrm{o}H$ , (“llndoing” the morphism in a Lagrange coordinates).
For semigroups and automata, the situation is analogous but more complex. In 1987,
B. Tilson published his seminal Derived Category Theorem paper [4] which defines the
kernel of a monoid (or semigroup) morphism. This kernel of a morphism turns out to be
a small category, rather than a monoid. Tilson’s Covering Lemma (the Derived Category
Theorem) says that wreathing a divisor1 of the kernel to the image allows one to “undo”
the morphism (up to division). In 1989, Rhodes and Tilson [3] gave a closely related
kernel and theorems for the two-sided wreath product (the block product).

The desirability for a corresponding theorem for wreath products of transformation
semigroups was mentioned in [1]. And in [2] the author has given a tighter analogue to
Tilson’s Covering Lemma for morphisms –and more generally relational morphisms $-$ ,

in the setting of (possibly $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{f}\dot{\Re}\mathrm{t}\mathrm{h}\mathrm{f}\mathrm{u}\mathrm{l}$, finite or infinite) transformation semigroups, and
has described an embedding condition for wreath products of transformation semigroups
in terms of this kernel, and has also given applications including a short proof of the
Krohn-Rhodes Theorem, wreath product coordinates on thc natural representation of
Teissier semigroups (right-simple idempotent free), and very tight Lagrange coordinates
on transformation groups.

This paper proves analogues of the kernel theorems of [2] in the setting of transition au-
tomata, a setting in which their proofs undergo some simplication. We define a new kernel
for relational morphisms of transition automata. By considering transition automata, we
are able to prove the Covering Lemma:
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In the case of a faithful transition automaton (X, $\Sigma$): Given a [relational] morphism
$R$ from (X, $\Sigma$ ) to $(\mathrm{Y},---)$ : The transition automaton (X, $\Sigma$) is emulated ($i.e$ . covered by,
$i.e$ . divides) $(Z^{a},\mathrm{r})\mathrm{o}(\mathrm{Y},---)$ inducing $R$ if and only ( $Z’,\mathrm{r}_{)}$ “computes” the kemel of the
[relational] morphism. For non-faithful (X, $\Sigma$) the “if” direction is also proved. (See
below for precise definitions.)

We also prove an Embedding Computation Theorem for transition automata, which
describes how to undo a surjective morphism to obtain an embedding of the morphism’s
domain into a wreath product with the morphism’s target. This is a characterization of
embedding in a wreath product in terms of the kernel, and thus has a stronger form than
the corresponding theorem for transformation semigroups [2].

These results apply to both finite and infinite transition automata.

2. DEFINITIONS

A transition automaton (X, $\Sigma$) consists of a set $X$ of states and a inputs $\Sigma$ which act
on $X$ in a fixed way

$\lambda:X\cross\Sigmaarrow X$ .
That is, if the state is currently $x\in X$ , and $s\in\Sigma$ is input, then the resulting state is
$\lambda(x, s)$ . We also denote the latter as $x\cdot s$ , notationally surpressing the transition function
$\lambda$ . The wreath product of transition automata (X, $\Sigma$) and $(\mathrm{Y},---)$ is a transition automaton
with states $X\cross \mathrm{Y}$ and inputs $\Sigma^{\mathrm{Y}}\mathrm{X}_{-}^{-}-$ : an input $f$ consists of an input $t\in---\mathrm{a}\mathrm{n}\mathrm{d}$ a function
$\overline{f}$ from $\mathrm{Y}$ to $\Sigma$ . A transition from a state $(\mathrm{x},\mathrm{y})$ to the the next state upon inputing $f$ is
computed by

$(x,y)f=(x\cdot\overline{f}(y), y\cdot t)$ .
The wreath product is a “generic” cascade product: any cascade of two automata embeds
into their wreath product.

A transtion automaton is faithful if $x\cdot s=x\cdot s’\mathrm{f}_{0}\mathrm{r}\mathrm{a}\mathrm{U}X$ implies $s=s’$ . One can pass
from the non-faithful to this case by identifying all $s,$ $s’\in\Sigma$ having the same action on
all $x\in X$ .

It is easily checked that the wreath product operation is associative on the class of
transition automata and that it preserves faithfulness.

For any set $Z$ , let $P(Z)$ denote its power set. A relational morphism $R:(X, \Sigma)\triangleleft(\mathrm{Y},---)$

is a pair of functions $\theta_{R}$ : $Xarrow P(\mathrm{Y})$ and $\varphi_{R}$ : $\Sigmaarrow P(_{-}^{-}-)$ satisfying for all $x\in X$ and
$s\in S$ :

(2.1) $\theta(x)\neq\emptyset,$ $\varphi(s)\neq\emptyset$

(2.2) $y\in\theta(x),t\in\varphi(s)\Rightarrow y\cdot t\in\theta(x\cdot s)$

One can naturally view $\theta$ as a subset of $X\cross \mathrm{Y}$ and $\varphi$ as a subset of $\Sigma\cross---$ . Indeed,
one may consider $\theta=\{(x,y)\in X\cross \mathrm{Y} : y\in\theta(x)\}$ and similarly $\varphi=\{(s,t)\in\Sigma\cross---$ :
$t\in\varphi(s)\}^{2}$. Notice how relational morphism is a generalization of morphism of transition
automata, which is pair of functions $\theta$ : $Xarrow \mathrm{Y}$ and $\varphi$ : $\Sigmaarrow---\mathrm{s}\mathrm{u}\mathrm{C}\mathrm{h}$ that $\theta(x)\cdot\varphi(s)=$

$\theta(x\cdot s)$ always holds.

2This is source the term relational
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Relational morphisms are intimately related with the wreath product decomposition
theory of automata.

We can compose relations in the usual way, yielding the composite of relational mor-
phisms as the componentwise composite of their component relations. Namely, the com-
posite $RR’$ of relations $R$ and $R’$ is the smallest relation satisfying: $xRx’$ and $x’R_{X}’\prime\prime$ implies
$xRR’x”$ . Also it becomes natural to write $x\theta y$ for $x\in\theta(y)$ (equivalently, $y\in\theta^{-1}(x)$ , etc.),
and to abbreviate condition (2.2) as $\theta\cdot\varphi\subseteq\theta$ .

We call a relational morphism $R=(\theta, \varphi)$ surjective if $\mathrm{Y}=\bigcup_{x\in \mathrm{x}^{\theta}}(x)$ and $—$

$\bigcup_{s\in\Sigma}\varphi(s)$ . Let $Im\theta$ denote $\bigcup_{x\in \mathrm{x}^{\theta}}(x)$ , the image of $\theta$ . We call $R$ injective if $\theta(x)\cap\theta(x)l\neq=$

$\emptyset$ implies $x=x’$ and the analogous condition also holds for $\varphi$ .
An injective relational morphism is also called an emulation or covering since it shows

how to use $(\mathrm{Y}, ---)$ to emulate the computation of (X, $\Sigma$). Namely, lifting a state $x\in X$

to any $y\in\theta(x)$ and lifting transformation $s\in S$ to any $t\in\theta(s)$ , we can compute $x\cdot s$ as
follows. By definition of relational morphism $y\cdot t$ lies in $\theta(x\cdot s)$ , but by injectivity in no
other $\theta(x’)$ . Hence $x\cdot s$ is the unique element of $X$ for which $y\cdot t$ is a lift. So $x\cdot s$ can be
recovered after computing with any lifts in $(\mathrm{Y},---)$ of $x$ and $s$ . This means that $(\mathrm{Y},---)$ is
computationally at least as powerful as (X, $\Sigma$ ). Any computation that can be dcne using
(X, $\Sigma$ ) can be carried out using $(\mathrm{Y},--)-$ via lifts given by the covering morphism $R$ . We
then say that $(\mathrm{Y},--)-$ covers or (in computer science terminology) emulates (X, $\Sigma$).

For covering we use the notation, (X, $\Sigma$ ) $\prec(\mathrm{Y},---)$ , which is pronounced “ex-sigma
divides why-xi ”and call the covering relational morphism a division.

Note that a injective (resp. surjective) morphism is an injective (resp. surjective) rela-
tional morphism. A morphism is an embedding if its component functions are injective.

The reader should immediately verify the following easy facts:

Facts 1. (1) A morphism of transition automata is a relational morphism.
(2) If $R$ is a surjective relational morphism, then so is $R^{-1}$ .
(3) The composite of relational morphisms is a relational morphism.
(4) The inverse of an embedding or surjective morphism is a covering.

Fact 2. If (X, $\Sigma$) divides $(z, \prime \mathrm{r})\circ(\mathrm{Y},---)$ , then lifting to ( $Z$, T)o(Y, $—$ ) followed by projection
to $(\mathrm{Y}, ---)$ is a relational morphism from (X, $\Sigma$) to $(\mathrm{Y},---)$ .

Proof: The division is a relational $\mathrm{m}\mathrm{o}1^{\cdot}\mathrm{p}\mathrm{h}\mathrm{i}_{\mathrm{S}\mathrm{m}}$ . Projection is a morphism. Hence their
composite is a relational morphism by facts 1.1 and 1.3 above. $\square$

3. THE KERNEL OF A RELATIONAL MORPHISM

The kernel $D_{R}$ of a relational morphism $R$ : (X, $\Sigma$) $\triangleleft(\mathrm{Y},---)$ of transition automata is
a structure with two types of objects, sets and arrows. $D_{R}$ consists of a collection of sets
$\theta^{-1}(y)$ as $y$ ranges through the image of $\theta$ and collections of arrows $Arr_{y,t}$ of the form
$[y, s,t]$ where $y\in Im\theta,t\in\varphi(s)$ .

Observe that $D_{R}$ is naturally a set with partial transformations, i.e. a partial automa-
ton. The pairs of $\theta$ are states and elements of $Im\theta\cross\varphi$ are the inputs. More precisely, $D_{R}$

is the set of states $(x, y)$ , where $x\in\theta^{-1}(y)$ , and input letters $[y’, s, t]$ , where $s\in\varphi^{-1}(t)$ ,
determining partial transformations such that $(x, y)\cdot[y’, s,t]$ is undefined for $y\neq y^{l}$ but
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equals $(x\cdot s, y\cdot t)$ otherwise. Note the definition of relational morphism then guarantees
that this $(x\cdot s,y\cdot t)$ is a state of $D_{R}$ .

4. THE COVERING LEMMA FOR TRANSITION AUTOMATA
Let $R=(\theta, \varphi)$ : (X, $\Sigma$) $\triangleleft(\mathrm{Y},---)$ be a relational morphism of transition automata and

$D_{R}$ be its kernel as defined above. Let a transition automaton $(z, \prime \mathrm{r})$ be given along with
the following data:

(1) (Lifting and Injectivity on States) Injective relations $w_{y}$ : $\theta^{-1}(y)arrow P(Z)$ for
each $y\in Im\theta$ . ( $\mathrm{N}\mathrm{B}$ : For distinct $y,$ $y’\in \mathrm{Y}$ with $\theta^{-1}(y)=\theta^{-1}(y’)$ , we are allowed
to have $w_{y}\neq w_{y’}.$ )

(2) (Lifting on Arrows) For $y\in Im\theta,$ $t\in Im\varphi$ , relations $w_{y,t}$ : $Arr_{y,t}arrow P(l)$

(where $Arr_{y,t}$ is the set of arrows $[y,$ $s,$ $t]$ of $D_{R}$) satisfying
$\forall[y, s,t]\in Arr_{y,t},$ $w_{y,t}([y, S, t])\neq\emptyset$

( $\mathrm{N}o\mathrm{t}\mathrm{C}$ : we may suppress the subscripts of $w_{y,t}$ when an argument is present.)
(3) (Separation Property) For each pair of distinct elements $s,$ $s’$ in $\Sigma$ ,

$t\in\varphi(_{S})\cap\varphi(_{S’})\Rightarrow\exists y\in Im\theta,$ $w_{y,t}([y, S^{l}, t])\cap wy,t([y, S, t])=\emptyset$.

(4) (Compatible Mapping) For all $y\in Im\theta,$ $t\in Im\varphi,$ $s\in\varphi^{-1}(t)$ ,
$w_{y}(x)\cdot wt(y,[y, s, t])\subseteq wt(y\cdot X. s)$ .

We then say that $(Z, l)$ computes the kernel of $R$ via the labelling $w$ .
The schematic figure (Fig. 1) illustrates this notion. (Note that the sets shown as

disjoint in the figure need not be.)
The condition

(3) (Injectivity on Arrows) The relations $w_{y,t}$ : $Arr_{y,t}arrow P(l)$ are injective.
implies condition (3):

Proposition 3. Suppose $R$ : (X, $\Sigma$ ) $\triangleleft(\mathrm{Y},---)$ is a transition automaton, and let $w$ be a
labelling for $D_{R}$ that satisfies the definition of “computes” except possibly the separation
property. Then injectivity on arrows implies the separation property.

Proof: Given $s\neq s^{l}$ in $\Sigma$ and $t\in\varphi(s)\cap\varphi(s’)$ . Let $y\in Im\theta$ be chosen arbitrarily.
Notice that $s\neq s’$ implies $[y, s, t]\neq[y, s’, t]$ . From injectivity of $w_{y\cdot t}$ , conclude that
$w_{y,t}([y, s, t])\cap w_{y,t}([y, S^{l}, t\lrcorner\rceil)=\emptyset$ as required. $\square$

Theorem 4 (Covering Lemma for Transition Automata).

I. Let $R$ be a relational morphism (X, $\Sigma$ ) $\triangleleft(\mathrm{Y},---)$ and let $(Z, l\mathrm{r})$ compute $D_{R}$ via a
labelling $w$ . Then we construct a covering

$(X,\Sigma)\prec(Z^{\prime \mathrm{r}},)\circ(\mathrm{Y},---)$ .
Moreover, $R$ is the composite of the covering and projection to $(\mathrm{Y},---)$ .

II. Let (X, $\Sigma$) be faithful. If (X, $\Sigma$) divides $(z, \prime \mathrm{r})\circ(\mathrm{Y}^{-}, --)$ , then the relational morphism
$R$ obtained by composing the division with the projection onto $(\mathrm{Y},---)$ has kernel $D_{R}$

computed by $(z, \prime \mathrm{r})$ .
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FIGURE 1. A Labelling $w$ of the Kernel $D_{\theta,\varphi}$ computed by $(Z’,\mathrm{r})$

Proof of I: Let $R=(\theta, \varphi)$ : (X, $\Sigma,$) $\triangleleft(_{\backslash }\mathrm{Y}, ---)$ be a relational morphism whose kernel $D_{R}$

is computed by $w$ . We define a covering morphism $(\psi, \mu)$ : $(_{\backslash }X, \Sigma)\prec(Z, \mathrm{Y})\circ(\mathrm{Y},---)$ as
follows:

(4.3) $\psi(x)=\{(z, y)\in Z\cross \mathrm{Y} : Z\in w_{y}(X), y\in\theta(x)\}$

(4.4) $\mu(s)=\{(f,t)\in 1^{\mathrm{Y}-}\cross--:t\in\varphi(S), \forall y\in Im\theta, f(y)\in w_{y,t}([\tau/, s,t])\}$

Obviously $\psi(x)\neq\emptyset$ and $\mu(s)\neq\emptyset$ .
In (4.4) note that for $y\in \mathrm{Y}\backslash Im\theta$ , the value $f(y)$ may be taken to be any $u\in\prime \mathrm{r}$ .
Then for $(z,y)$ in $\psi(x)$ and $(f, t)$ in $\mu(s)$ , we have:

$(z,y)\cdot(f,t)=(z\cdot f(y),y\cdot t)$ .

Since $R$ is a relational morphism

$y\cdot t\in\theta(X\cdot s)$ ,
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and using the definition of ‘computes’ (mapping compatibility)

$z\cdot f(y)\in w(_{X}y)\cdot wt(y,[y, s,t])\subseteq wt(y\cdot x\cdot s)$ .

Whence $(z,y)\cdot(f, t)$ lies in $\psi(x\cdot S)$ , showing
$\psi(x)\cdot\mu(_{S)\psi(x\cdot S}\subseteq)$ ,

as required. Thus $(\psi, \mu)$ : (X, $\Sigma$) $\triangleleft(Z, l)\circ(\mathrm{Y},---)$ satisfies the definition of a relational
morphism.

We must still verify $(\psi, \mu)$ is an injective relational morphism: For states, suppose
$(z,y)\in\psi(x)\cap\psi(x)’$ , then $z\in w_{y}(x)\cap w_{y}(x’)$ . But $w_{y}$ is an injective relation, so
$x=x’$ . Hence, $\psi$ is injective. For transformations, suppose $(f,t)\in\mu(s)\cap\mu(s’)$ . Then
$t\in\varphi(s)\cap\varphi(s’)$ . If $s\neq s’$ , there exists a $y\in Im\theta$ as in the separation property, $i.e$ .
$w([y, s, t])\cap w([y, s’,t])=\emptyset$ . But by definition of $\mu,$ $f(y)$ lies in this intersection. Hence
it must be that $s=s’$ . Thus $\mu$ is an injective relation, so our relational morphism is a
covering.

Let $p:(z, \prime \mathrm{r})\circ(\mathrm{Y},---)arrow(\mathrm{Y},---)$ be the projection: $p(z, y)=y$ and $p(f, t)=t$ . Obviously
$p(\psi(x))=\theta(x)$ and $\varphi(s)=p(\mu(s))$ .
Proof of II: Conversely, suppose we have a covering $(\psi, \mu)$ : (X, $\dot{\Sigma}$ ) $\prec(Z’,\mathrm{r})\circ(\mathrm{Y},---)$ . Let
$p$ be the projection to $(\mathrm{Y},---)$ , and let $R=(\theta=p\mathrm{o}\psi, \varphi=p\mathrm{o}\mu)$ be the induced relational
morphism (X, $\Sigma$) $\triangleleft(\mathrm{Y},---)$ . We construct a labeUing $w$ which shows $(z^{a},\mathrm{r})$ computes the
kernel $D_{R}$ of $R$ :
Lifting and Injectivity on States: If $y\in Im\theta$ , we define for $x\in\theta^{-1}(y)$ ,

$w_{y}(x)=\{_{Z\in}Z : (Z,y)\in^{\psi(_{X})}\}$ ,
which is always non-empty.

Since $\psi$ is an injective relation, $(z,y)\in\psi(x)\mathrm{n}\psi(x’)$ implies $x=x^{l}$ , hence $w_{y}$ : $\theta^{-1}(y)arrow$

$P(Z)$ is an injective relation.
Lifting on Arrows: For an arrow $[y, s,t]$ in $D_{R}$ , we have $t\in p(\mu(s))=\varphi(s)$ , and define

$w_{y,t}([y, s,t])=\{f(y)\in \mathrm{r}’ : (f,t)\in\mu(_{S})\}$ .
Notice this is $\mathrm{w}\mathrm{e}\mathrm{U}$-defined and non-empty.
Separation property: Assume $t\in\varphi(s_{1})\cap\varphi(s_{2})$ . And suppose for all $y\in Im\theta$ , there is a
$g(y)\in w_{y,t}([y, s1, t])\cap w_{y,t}([y, S2,t])$. Now suppose $(f_{i},t)$ are lifts of $s_{i}$ for $i=1,2$ . Take
any lift $(z, y)$ of any $x\in X$ . We claim $x\cdot s_{1}=x\cdot s_{2}$ : By definition of $w,$ $w([y, S_{i}, t])$

contains $g(y)$ for $\dot{i}=1,2$ . So for $i=1,2$ there exist $(f_{i},t)\in\mu(s_{i})$ with $f_{:}(y)=g(y)$ .
Therefore $(z,y)(fi, t)=(z\cdot g(y), y\cdot t)$ is a lift of $x\cdot s_{i}$ . Hence $(z\cdot g(y), y\cdot t)$ lies in both
$\psi(x\cdot s_{1})$ and $\psi(x\cdot s_{2})$ . Therefore $x\cdot s_{1}=x\cdot s_{2}$ by injectivity of $\psi$ . Since $x$ was chosen as
an arbitrary $x\in X$ , we conclude from faithfulness of (X, $\Sigma$) that $s_{1}=s_{2}$ .

FinaUy we check mapping compatibility:

$w_{\nu}(x)\cdot w_{u},t([y, s, t])$ $=$ $\{z\cdot f(y) : (z, y)\in\psi(x);(f, t)\in\mu(s)\}$

$=$ $\{z’ : (z’, y\cdot t)\in\psi(X)\cdot\mu(s)\}$

$\subseteq$ $\{z’ : (z^{l}, y\cdot t)\in\psi(x\cdot s)\}$

$=$ $w_{y\cdot\ell}(x\cdot s)$ .
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5. EMBEDDING $\mathrm{c}_{0}\mathrm{M}\mathrm{p}\mathrm{u}\mathrm{T}\mathrm{A}\mathrm{T}\mathrm{l}\mathrm{O}\mathrm{N}\mathrm{s}\mathrm{o}\mathrm{F}$ TRANSITION AUTOMATA

Let $R=(\theta, \varphi)$ be a surjective morphism. We call a labelling $w$ computing the kernel
$D_{R}$ via some transition automaton $(Z, l)$ an embedding computation if the sets $w_{y}(x)$ and
$w_{y,t}([y, s, t])$ are singletons whenever defined.

Theorem 5 (Embedding Computation Theorem for bansition Automata). Let
$\theta,\varphi$

a surjective morphism $R$ : (X, $\Sigma$) $arrow(\mathrm{Y},---)$ be given. A labelling $w$ of $D_{R}$ is an embedding
computation by $(Z’,\mathrm{r})$ if and only if

(X, $\Sigma$) embeds into $(z,$ $\prime \mathrm{r}_{)\circ}(\mathrm{Y},---)$

and the projection to $(\mathrm{Y},--)-$ induces $R$ .

Proof: Given the embedding computation labelling for $D_{R}$ , the proof of the Covering
Lemma yields a covering

$(\psi, \mu)$ : $(X, \Sigma)\prec(z, t\mathrm{r})\circ(\mathrm{Y}^{-}, --)$

as described above, with projection inducing $R$ . Now for all $x\in X,$ $\psi(x)=\{(z, y)$ : $z\in$

$w_{y}(X),y=\theta(x)\}$ is a singleton, as is $\mu(s)=\{(f,t) : f(y)\in w_{y,t}([y, s, t]), t=\varphi(s)\}$ for
each $s\in\Sigma$ (since $\theta$ and $\varphi$ are functions and $\theta$ is onto). And since this is a covering,
$\psi(x)\cdot\mu(s)$ is contained in–hence coincides with–the singleton $\psi(x\cdot s)$ .

By injectivity of $\psi$ as a relation, it now follows $\psi$ is injective when viewed as a function
from $X$ to $Z\cross \mathrm{Y}$ . Similarly $\mu$ is injective as a function. Thus $(\psi, \mu)$ is an embedding of
transition automata.

Conversely, given an embedding inducing $R$ , the $w$ as constructed in the proof for part
II of the Covering Lemma computes $D_{R}$ : Whether or not (X, $\Sigma$ ) is faithful, the separation
property in this case is easily checked (use injectivity of $\mu$ and surjectivity of $\theta$ ). The proof
that the other properties in the definition of ‘computes’ hold does not require faithfulness
and is exactly as in the theorem’s proof. Since the $w_{y,t}([y, s, t])$ and $w_{y}(x)$ are always
singletons, this is an embedding computation. $\square$

Remarks: (1) In applying the Embedding Computation Theorem, one may like to obtain
a surjective morphism from a given morphism by restricting the targct to be the mor-
phism’s image. (2) Also if embedding followed by projection as in the theorem’s converse
is not surjective, then $(\mathrm{Y},--)-$ may be replaced by the image $(\mathrm{Y}’,-^{l}--)$ of (X, $\Sigma$) and we still
have an embedding of (X, $\Sigma$ ) into $(Z, l\mathrm{r})\circ(\mathrm{Y}^{\iota-}, -^{l}-)$ by restricting the action of images of
elements of $\Sigma$ to $Z\cross \mathrm{Y}’$ . However, $(\mathrm{Y}’, \Xi’)$ may fail to be faithful even when $(\mathrm{Y},---)$ is.
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