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1. Introduction

The purpose of this paper is to proceed with the classification of slender OL languages. Slender languages

are introduced in [1] and many decision problems for them are investigated in [10]. Slender OL languages

are considered in [2], [9], and [12]. Since all finite OL languages and DOL languages are known to be slender

[9], we consider nondeterministic and infinite OL systems.

The first result is that all quasi-deterministic OL systems (or $\mathrm{D}’\mathrm{O}\mathrm{L}$ systems for short, cf. [6]) are
slender (Theorem 2.1). Next we establish a necessary condition for slender OL systems. To describe the

condition, we first establish the notion of unbounded letters. Let $G=(\Sigma,$ $\tau,w\rangle$ be a OL system. A letter

$a$ $\in\Sigma$ is said to be unbounded if, for any integer $C,$ $L(G)$ has a word $u$ in which $a$ occurs more than $C$ .
Then, if $L(G)$ is slender, $G$ satisfies the next condition (Theorem 3.1):

For every unbounded letter $a$ and for every positive integer $n$ , there exist $zz’\in\Sigma^{*}$ and a finite set $I$

of nonnegative integers such that $\tau^{n}(a)=\{(zZ’)^{i_{Z}}|i\in I\}$ .
This condition is not sufficient (see Examples 2.3 and 3.1 below). Putting $z$ the empty word and $I=\{1\}$ ,

every deterministic letter trivially satisfies this condition. Of course, every $\mathrm{D}’\mathrm{O}\mathrm{L}$ system satisfies this

condition because all unbounded letters for a $\mathrm{D}’\mathrm{O}\mathrm{L}$ system are deterministic (cf. [6]). If a word has $n$

occurrences of a nondeterministic letter, then there are at least $n$ possibilities in making words of the same

length by substituting them. But these possibilities must yield the same word in a slender OL language.

Therefore the condition forces for nondeterministic unbounded letters to have a restricted form on the

right hand side of the substitution, which makes it to be decidable whether they satisfy this condition or

not.

We establish a subclass of slender OL languages, other than $\mathrm{D}’\mathrm{O}\mathrm{L}$ systems, which are effectively

decidable. This class, called ultimately extended free-generated, is based on nondeterministic unbounded

letters (Theorem 4.3). The characterization of slender OL languages is, however, not completed. For
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example, it is an open problem to decide for a given OL system which is not $\mathrm{D}’\mathrm{O}\mathrm{L}$ and does not have any

nondeterministic unbounded letters whether or not it generates a slender language.

2. Slender OL systems and $\mathrm{D}’\mathrm{O}\mathrm{L}$ systems

Slender languages, first introduced by Andrapiu et al. [1], are defined as follows:

Deflnition $(1^{1}])$ . Let $L$ be a language over $\Sigma$ and $k$ be a positive integer.

(i) $L$ is said to be thin if, for some $n_{0}$ ,

card $(\{w\in L||w|=n\})\leq 1$ whenever $n_{0}\leq n$ .

(ii) $L$ is said to be $k$ -thin if, for some $n_{0}$ ,

card $(\{w\in L||w|=n\})\leq k$ whenever $n_{0}\leq n$ .

(iii) $L$ is called slender if it is $k$-thin for some $k$ . $\square$

Since we are interested in slender OL languages, we mention OL systems briefly. We assume the reader

to be familiar with OL systems and their variations (see [3] and [11]).

Deflnition. A $\mathrm{O}L$ system $G$ is a triple $(\Sigma, \tau,w)$ , where $\Sigma$ is a finite alphabet, $\tau$ is a substitution on $\Sigma^{*}$ ,

and $w$ is a word over $\Sigma$ called the axiom of $G$ . If $\tau$ is an endomorphism on $\Sigma^{*}$ rather than a substitution,

then $G$ is called a deteministic $\mathrm{O}L$ system or a $D\mathrm{O}L$ system for short. The language generated by $G$ is

denoted by $L(G)$ and defined by $L(G)=\tau^{*}(w)$ . A language $L$ is called a OL language if it is generated

by some OL system. $\square$

We call a OL system slender if it generates a slender language.

Let ( $\Sigma,\tau,w\rangle$ be a OL system. We will use the following classification of letters in $\Sigma$ in the sequel.

(1) A letter $a$ is said to be deteministic if the restriction of $\tau$ on alph $(\tau^{*}(a))\dagger$ is an endomorphism, in

other words, $a$ and every descendant of $a$ have only one descendant. A letter which is not deterministic

is called nondeteminisbc.

(2) A letter $a$ is called infinite if card $(\mathcal{T}(*a))=\infty$ . A letter $a$ is called finite if card $(\tau*(a))<\infty$ .
(3) A letter $a$ is said to be persistent if $uav\in\tau^{n}(a)$ for some $uv\in\Sigma^{*}$ and $n>0$ . The smallest positive

integer $k$ satisfying $uav\in\tau^{k}(a)$ is called the period of $a$ .
(4) A letter which always generates 1 (the empty word is denoted by 1) is called mortal. We note that

$\tau^{m}(a)=1$ for every mortal letter $a$ where $m=\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\Sigma)$ .
(5) A persistent letter $a$ is said to be self-productive if it has a descendant which has more than one

occurrences of $a$ , i.e., $u\in\tau^{+}(a)$ such that $|u|_{a}\geq 2\ddagger$ .
(6) A persistent letter $a$ is said to be stem if $a$ satisfies the following conditions:

\dagger alph $(L)$ denotes the set of all and only letters appearing in the words of $L$ .
\ddagger $|u|_{a}$ denotes the number of occurrences of $a$ in $u$ .
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(i) $a$ is not self-productive.

(ii) $uav\in\tau^{n}(a)$ for some $n>0$ such that $uv$ has occurrences of some persistent letters.

We note that a letter is effectively decided whether it belongs each class defined above or not. Finally we
define unbounded letters.

Deflnition. Let $G=(\Sigma, \tau,w)$ be a OL system. A letter $a\in\Sigma$ is said to be unbounded in $L(G)$ if, for

every integer $N$ , there exists a words $w$ in $L(G)$ such that $|w|_{a}>N$ . $\square$

A letter is effectively decided whether it is unbounded or not by the following considerations. A letter
$b$ is an unbounded product of $a$ if

(i) $a$ is self-productive and $b$ is a descendant of $a$ ,

(ii) $a$ is a stem letter and $b$ is persistent which occurs in $uv$ where $uav\in\tau^{k}(a)$ for some $k>0$ , or
(iii) $b$ is a descendant of a letter which satisfies (ii).

Now a letter $a$ is unbounded in $G$ if and only if $a$ is an unbounded product of $c \in \mathrm{a}\mathrm{l}\mathrm{p}\mathrm{h}(\bigcup_{n=0}m\mathcal{T}n(w))$ where
$w$ is the axiom and $m=\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\Sigma)$.

The notion of quasi-deterministic OL systems somewhat resembles that of slender OL systems (there-

fore in [12] it is called derivation slender). Let $\mathrm{N}$ and $\mathrm{N}_{+}$ denote the sets of nonnegative and positive

integers, respectively.

Definition ([6]). Let $G=(\Sigma,\tau,$ $w\rangle$ be a OL system. Then $G$ is said to be quasi-determini8tic OL system,

or $\mathrm{D}’\mathrm{O}\mathrm{L}$ system for short, if there is a positive integer $k$ and $G$ satisfies

card $(_{\mathcal{T}^{n}())}w\leq k$

for every $n\in \mathrm{N}$. $\square$

There is a close relation between slender OL systems and $\mathrm{D}’\mathrm{O}\mathrm{L}$ systems.

Theorem 2.1. Every $D’\mathrm{O}L$ language is slender.

Since every $\mathrm{D}’\mathrm{O}\mathrm{L}$ language is an HDOL language [7], this theorem follows from the next lemma.

Lemma 2.2. Every HDOL language is slender.

Proof. Since $\mathcal{L}(\mathrm{H}\mathrm{D}\mathrm{o}\mathrm{L})=\mathcal{L}(\mathrm{C}\mathrm{P}\mathrm{F}\mathrm{D}\mathrm{O}\mathrm{L})$ (see [5]), we will show every CPFDOL language is slender. Let $L$

be a CPFDOL language and let $G=(\Sigma,\theta,\Gamma, h, F)$ be a CPFDOL system which generates $L$ . Then

$L= \theta(h^{*}(F))=.\bigcup_{w.\in F}\theta(h*(w_{i}))$

provided $F=\{w_{1},w_{2}, \ldots,w_{n}\}$ where $w_{i}\in\Gamma^{*}$ with $i=1,2,$ $\ldots$ , $n$ . Now $\theta(h^{*}(w:))$ is a CPDOL language

generated by the CPDOL system $G_{i}=\mathrm{t}\Sigma,\theta,\Gamma,$ $h,wi$ ). Therefore $L$ is slender because every PDOL language

is slender [9] and the family of slender languages is closed under coding and finite union [10]. $\square$
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There are OL systems which are not $\mathrm{D}’\mathrm{O}\mathrm{L}$ and have no nondeterministic unbounded letters. Some of

these systems are slender and the others are not, that is, the converse of Theorem 2.1 is not true.

Example 2.1. Let $G_{1}=(\{a, b, C1, \tau 1, a)$ where $\tau_{1}(a)=\{ab, a, \mathrm{c}b\}$ , $\tau_{1}(b)=b$ , and $\tau_{1}(c)=cb$ . Then $G_{1}$

is not $\mathrm{D}’\mathrm{O}\mathrm{L}$ while $L_{1}=L(G_{1})=\{ab^{i}|i\in \mathrm{N}\}\cup\{cb^{i}|i\in \mathrm{N}_{+}\}$ is slender. But $L_{1}$ is a $\mathrm{D}’\mathrm{O}\mathrm{L}$ language

generated by $G_{1}’=(\{a, b, c\},\tau_{1}’,$ $a\rangle$ where $\tau_{1}’(a)=\{ab, cb\}$ , $\mathcal{T}_{1}’(b)=b$ , and $\tau_{1}’(c)=cb$ . $\square$

Example 2.2. Let $G_{2}=\langle\{a,b\},\mathcal{T}_{2},$ $a)$ where $\tau_{2}(a)=\{bab, b\}$ and $\tau_{2}(b)=b$ . Then $G_{2}$ is not $\mathrm{D}’\mathrm{O}\mathrm{L}$ and

$L_{2}=L(G_{2})=\{b^{i}ab^{i}|i\in \mathrm{N}\}\cup\{b^{2i+1}|i\in \mathrm{N}\}$ is slender. But $L_{2}$ is not a $\mathrm{D}’\mathrm{O}\mathrm{L}$ language.

Assume that a $\mathrm{D}’\mathrm{O}\mathrm{L}$ system $G_{2}’=(\{a,b\}, \mathcal{T}_{2}’,w)$ generates $L_{2}$ . Then $\tau_{2}’(b)=b^{n}$ for some $n>0$ and

$a$ is not erased for otherwise $b^{2i}$ is contained in $\mathcal{T}_{2}^{l^{*}}(w)$ . Since no word derives shorter words, $a$ is the

axiom. If $\tau(b)=b$ , then all words in $b^{+}$ are repeatable which is impossible with $\mathrm{D}’\mathrm{O}\mathrm{L}$ system (cf. [6]).

If $\mathcal{T}_{2}^{l}(a)$ has two words $b^{i}ab^{i}$ and $b’ a\mathcal{U}$ with $j<i$ , then $\tau_{2}^{\prime k}(a)$ contains at least $k$ words, namely $b^{x}ab^{x}$

where $x= \frac{in^{\iota_{-}\iota}(n-\iota 1)+j\mathrm{t}nk-\mathrm{t}-1)}{n-1}$ for $l=0,1,$ $\ldots$ , $k-1$ . Again $G_{2}’$ is not $\mathrm{D}’\mathrm{O}\mathrm{L}$ . Thus $\tau_{2()}’a\cap b^{*}ab^{*}=bab$.

But now bbabb cannot be generated because $\tau_{2}’(bab)\cap b^{*}ab^{*}=b^{n+1}ab^{n+}1$ and $n+1>2$ . $\square$

Example 2.3. Let $G_{3}=(\{a, b, c\},\mathcal{T}3,$ $a\rangle$ where $\tau_{3}(a)=\{bab, caC\},$ $\tau_{3}(b)=b$ , and $\tau_{3}(c)=c$ . Then

$L(G_{3})=\{waw^{R}|w\in\{b, c\}^{*}\}$ is not slender. $\square$

As the above examples suggest, it would be difficult for a OL system which is not $\mathrm{D}’\mathrm{O}\mathrm{L}$ and has no

nondeterministic unbounded letters to decide whether or not it generates a slender language. Or the

problem might be undecidable. Anyway, the problem is left for future investigation.

3. A necessary condition for slender OL systems

Theorem 3.1. If a $\mathrm{O}L$ system $G=\langle\Sigma,\tau,$ $w$ ) is slender, then $G$ satisfies the following condition:

For every unbounded letter $a$ in $\Sigma$ and for every $n\in \mathrm{N}_{+}$ there exist $zz’\in\Sigma^{+}$ and
(3.1)

a finite set $1\subset \mathrm{N}$ such that $\tau^{n}(a)=\mathrm{t}(Zz’)^{i_{Z}}|i\in I\}$ .

Proof. Let $x,y$ be words in $\tau^{n}(a)$ . Let $w$ be aword in $L(G)$ with $k$ occurrences of $a$ , i.e., $w=u_{0}$aula $\cdots au_{k}$

for some $u_{0}u_{1k}\ldots u\in\Sigma^{*}$ . Let $u_{i}’$ be a word in $\tau^{n}(u_{i})$ for every $i=0,1,$ $\ldots,$
$k$ . Then $\tau^{n}(w)$ contains the

next subset:
$L(w,n)=\{u_{0}’yuu_{0}Xuy1\ldots xu_{k}\prime 1^{X\cdots xu}k’,;l’, \ldots , u_{0}’xu_{1^{X}}r\ldots\prime yuk\}$,

that is, $L(w,n)$ consists of the words which are obtained by substituting one occurrence of $a$ in $w$ with $y$

and the others with $x$ . Obviously all words in $L(w, n)$ have the same length. Because $G$ is slender, the

cardinality of $L(w,n)$ is bounded. Then we have $xuy=yux$ for some $u\in\Sigma^{*}$ and hence $uxuy=uyux$ . By

Lyndon and Sch\"utzenberger’s theorem on free monoids, we have that if $xy=yx$ for some $x,y\in\Sigma^{+}$ , then

$x=z^{m}$ and $y=z^{n}$ for some $z\in\Sigma^{+}$ and $m,n\in \mathrm{N}_{+}$ (see [4] and [13]). Now the theorem immediately

follows. $\square$
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This theorem, unfortunately, does not give sufficient condition for a OL system to generate slender

language. In addition to Example 2.3, the following example show that the converse of Theorem 3.1 does

not hold.

Example 3.1. Let us consider $\tau(a)=abc,$ $\tau(b)=\{b, 1\},$ $\tau(c)=c$ . The letters $b$ and $c$ are unbounded

and satisfy the condition of Theorem 3.1. But $\tau^{*}(a)$ is not slender. $\square$

Condition (3.1) is a statement on all words in $\tau^{*}(a)$ . But we will show that (3.1) is decidable. If $a$ is

a deterministic letter, then (3.1) is trivially fulfilled. As for nondeterministic letters, the next proposition

guarantees the decidability of condition (3.1). The proof of Proposition 3.2 will be found elsewhere [8].

Proposition 3.2. (i) Let $a$ be a nondeterministic unbounded letter and let $\tau^{n}(a)=\{(u_{n}u_{n}’)^{i}u_{n}|i\in I_{n}\}$

for each $n>0$ . For every $n\in \mathrm{N}_{+},$ $|u_{n}u_{n}’|\leq\alpha^{k}$ where $\alpha=\max_{w\in\tau(\Sigma)}|w|$ and $k$ is the period of a.

(ii) A nondeterministic unbounded letter satisfies Condition (3.1) if and only if $\tau^{n}(a)=\{(u_{n}u_{n}’)^{t}u_{n}|i\in$

$I_{n}\}$ for every $n\leq(\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\Sigma))\alpha^{k}$ and $u_{n}u_{n}’=u_{m}u_{m}’$ for some $n<m\leq(\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\Sigma))\alpha^{k}$

Proposition 3.2 suggests a characterization of slender OL systems which have occurrences of nonde-

terministic unbounded letters. This will be done in the next section

4. Classification of slender OL systems

In this section, we show that slender OL systems are classified into four types: $\mathrm{D}’\mathrm{O}\mathrm{L}$ , free-generated, not
$\mathrm{D}’\mathrm{O}\mathrm{L}$ and generating no nondeterministic unbounded letters, and mixture of these types. The first type is

already known. The second type is defined here and we show that every OL system is decidable whether

it generates free-generated slender language or not.

Definition. Let $\tau$ be a substitution over $\Sigma$ . Let $\Lambda=(L_{0}, L_{1}, \ldots)$ be a sequence of languages over $\Sigma$ such

that every $L_{i}$ is finite and the ‘flat language’ $\mathcal{U}(\Lambda)$ of A given by

$\mathcal{U}(\Lambda)=\bigcup_{=i0}L_{i}\infty$

is infinite.

(i) A is said to be free-generated with respect to $\tau$ if there exist $2k$ words $u0,$ $u_{0}’’,$$\ldots,$ $uk-1,$ $u_{k}-1$ such that

$L_{i+nk}\subset\{(u_{i}u_{i}’)jui|j\in \mathrm{N}\}$

and that
$\tau(u_{ii}u’)=\{(u_{i1}+ui;+1)^{j}u_{i+1}|j\in I_{i}\}$ $(i<k-1)$

$\tau(u_{i})=\{(u_{i+}1u_{i})^{j}l+1u_{i+1}|j\in I_{i}’\}$ $(i<k-1)$

$\tau(u_{k-1}u_{k-1}’)=\{(u0u_{0}’)^{j}u0|j\in I_{k-1}\}$

$\tau(u_{k-1})=\{(u0u_{0})\prime ju_{0}|j\in I_{k-}\prime 11$
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where $I_{i}$ is a finite subset of $\mathrm{N}$ and card$(I_{i})\geq 2$ at least one $i(i=0,1, \ldots, k-1)$ . The words

$u_{0},u’0$ , . .., $u_{k-1},u_{k-}’1$ are called the generating words of A and $k$ is called the period of $u_{i}u_{i}’$ . We call

simplely A free-generated if $\tau$ is understood.

(ii) A is said to be extended free-generated if there exist a finite language $F$ such that

$L_{i}=F_{i}\overline{L}_{1}F_{1}’.$ , $F_{i}\subseteq F$, and $F_{i}’\subseteq F$

for every $0\leq i$ and that the sequence $(\overline{L}_{i})$ is free-generated.

(iii) A is called ultimately (extended) free-generated if there exists a positive integer $N$ and $p$ (extended)

free-generated sequences $(L_{i}^{(1)}),$
$\ldots$ , $(L_{i}^{(p)})$ such that

$L_{i}=\cup L_{i-N}j=1p(j)$

for every $i\geq N$ . $\square$

As shown in the next property, the flat language of a ultimately extended free-generated sequence is

slender.

Property 4.1. Let $(L_{i})_{i\geq 0}$ be a ultimately extended free-generated sequence. Then

$L=\mathcal{U}((L_{i})_{i}\geq 0)=(\cup Fi\{(uiu_{i})ju_{i}|ji=1n’\in \mathcal{I}_{i}\}F_{i}’)\cup F$

for $so\mathrm{m}e$ finite languages $F,$ $F_{i}$ , and $F_{i}’(i=1, \ldots,n)$ and $L$ is slender.

Proof. Let $(K_{i})_{i\geq 0}$ be an extended free-generated sequence and let $(\overline{K}_{i})_{i\geq 0}$ be the free-generated se-

quence of $(K_{i})$ , i.e., $K_{i}=E_{i}\overline{K}_{\dot{\iota}}E’i$ for every $i\in \mathrm{N}$ , where $E_{i}$ and $E_{i}’$ are subsets of a finite set. Let

$u_{0},u\ldots,u_{k1}0’-,uk-1l$’ be the generating words of $(\overline{K}_{i})$ . Then $L_{kn++}t=E_{kn}i\{(u_{i}u)^{j}\prime iu_{i}|j\in I_{kn+i}\}E_{k}’n+i$

for $0\leq n$ and $0\leq i<k$ and hence

$\bigcup_{n=0}^{\infty}Lkn+i=Fi\{(uiui’)^{j}u_{i}|j\in \mathcal{I}_{i}\}F’i$

where $F_{i}= \bigcup_{n=0^{E}k}^{\infty}n+$ : and $F_{\dot{\iota}}’= \bigcup_{n=0}^{\infty}E_{k+i}\prime n$ are finite and $\mathcal{I}_{i}=\bigcup_{n=0}^{\infty}I_{k+i}n$ . Then we have

$\mathcal{U}((K_{i})i\geq 0)=\bigcup_{i=1}^{k}F_{i}\{(u_{i}u^{l}i)^{j}ui|j\in \mathcal{I}_{i}\}F_{i}$
’

and it is obviously slender. Since a ultimately extended free-generated sequence is a finite union of

extended free-generated sequences after an initial mess, the conclusion follows immediately. $\square$

By the definition of extended $\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e},\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ sequences, the next property, which give a necessary

and sufficient condition for a catenation of two extended free-generated sequences to be extended free-

generated, is obvious.
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Property 4.2. Let $(L_{1j})_{j\geq 0}$ and $(L_{2,j})_{j\geq 0}$ be extended free-generated sequences with the following

descriptions $(i=1,2)$

$L_{:,k:n+}j=Fi,j\overline{L}i,k:n+jF’i,j$

and let $u_{i,0},u_{i,0}’,$ $\ldots$ , $u_{i,l.,,\iota}u_{i}’$ . be the generating words of $(\overline{L}_{\dot{\iota},j})_{j\geq}0$ for $i=1,2$, respectively. Then
$(L_{1,j}L_{2,j})$ is extended free-generated if and only if $l_{1}=l_{2},$ $F_{1,j}’=F_{2,j}=1$ for $0 \leq j\leq\max(k_{1}, k_{2})$ ,

and $u_{1,j}’u1,j=u_{2,j\mathrm{j}}u_{2}’$ for $j=0,$ $\ldots,$
$l_{1}$ . $\square$

Example 4.1. Let $\tau(a)=\{aba, a\},$ $\tau(b)=b$, and $\tau(c)=a$ be a substitution over $\{a, b, c\}$ . Then
$(\tau^{i}((ab)^{j}))_{i\geq 0},$ $(\tau^{i}((ba)\mathrm{j})):\geq 0$ , and $(\tau^{i}((ab)ja))_{i\geq 0}$ are free-generated for every $j\in \mathrm{N}$ an$dc$ is ultimately

free-generated. $\square$

Theorem 4.3. Let $G=(\Sigma,$ $\tau,$
$w\rangle$ be a $\mathrm{O}L$ system.

(i) If $L(G)$ is slender, then one of the $foll_{o\mathrm{W}^{r}}ing$ conditions holds:

(1) $G$ is $D’\mathrm{O}L$ .
(2) $(\tau^{i}(w))_{i\geq 0}$ is a ultimately extended free-generated sequence.

(3) $L(G)$ has no nondeterministic unbounded letters but $G$ is not $U\mathit{0}L$ .
(4) $w$ has a factorization $w=W_{1}w_{2}\ldots w_{l}$ such that, for every $i\in\{1,2, \ldots, l\}$ , the $\mathrm{O}L$ system

$G_{i}=(\Sigma,\tau, w_{i})$ generates a slender language of type (1), (2), or (3).

(ii) $G$ is effectively decidable whether or not it is type (1) or (2).

Type (1) is already known. The proof for the other assertions is lengthy and will appear in [8].

At the end of this section, we give some examples of type (2) and type (4) slender languages.

Example 4.2. Let $G=(\{a,b, c\},\mathcal{T},w\rangle$ be a OL system where $\tau$ is given in Example 4.1. Then $L(G)$ is

slender if the axiom $w$ is of the form: $w=(ab)^{j},$ $w=(h)^{j}$ , or $w=(ab)^{j}a$ for some $j\in \mathrm{N}$ or $w=c$. But

the other cases, for example, if $w=cc$, then $L(G)$ is not slender. $\square$

Example 4.3. Let $G=(\{a, b, c\},\tau,$ $ab_{\mathrm{C}\rangle}$ be a OL system where $\tau(a)=\{aba, a\},$ $\tau(b)=b$ , and $\tau(c)=c^{5}$ .
Then

$\tau^{i}(abc)=\{(ab)^{j}c^{5}:|j\in\{1,2, \ldots,2^{i}\}\}$

for every $i\in$ N. Because the length sets of $\tau^{k}(a)$ and $\tau^{l}(a)$ do not overlap for every $k\neq l,$ $L(G)$ is slender,

indeed it is thin. $\square$
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