Some remarks on Fibonacci infinite word

Giuseppe Pirillo

IAMI CNR viale Morgagni 67／A 50134 FIRENZE ITALIA

Abstract

This paper concerns some factorizations of the Fibonacci infi－ nite word．In particular，we recall two of them which use prefix codes and we present another one whose factors are never twice repeated and all belong to a biprefix code．

Terminology and notations are those currently used in theoretical computer science $[1,2,4,5]$ ．In this paper we use only the two letter alphabet $A^{+}=$ $\{a, b\}$ ．We call（finite）words the elements of the free monoid A^{*} ；we denote by 1 the empty word，by A^{+}the free semigroup on A and by $|u|$ the length of a word u ．We consider a word u of length $k \geq 1$ as a map $u:\{0,1, \ldots, k-1\} \rightarrow$ A and we write $u=u(0) \ldots u(i) \ldots u(k-1)$ ．We say that a word u is a factor of a word v if there exist two words $u^{\prime}, u^{\prime \prime} \in A^{*}$ such that $v=u^{\prime} u u^{\prime \prime}$ ．When $u^{\prime}=1$（resp．$u^{\prime \prime}=1$ ）we say that u is a left factor（resp．right factor）of v.

A right infinite word on A is a map g from the set of non－negative integers into A and we write it as an infinite sequence：

$$
g=g(0) g(1) \ldots g(i) \ldots
$$

We say that a word u is a factor of g if there exist a word u^{\prime} and a right infinite word g^{\prime} such that $g=u^{\prime} u g^{\prime}$. If $u^{\prime}=1$ we say that u is a left factor of g. We say that a right infinite word g is ultimately periodic if there exists $p \geq 1$ such that $g(j+p)=g(j)$ for each $j \geq i$ for some $i \geq 0$. Let i, j be integers such that $0 \leq i \leq j$ and g be a right infinite word; we denote by $g(i, j)$ the word $g(i) \ldots g(j)$.

Definition. We say that a subset X of a free semigroup A^{+}is a code over A if for all $n, m \geq 1$ and $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{m}^{\prime} \in X$ the condition

$$
x_{1} \ldots x_{n}=x_{1}^{\prime} \ldots x_{m}^{\prime}
$$

implies

$$
n=m
$$

and implies, for $i \in\{1, \ldots n\}$,

$$
x_{i}=x_{i}^{\prime}
$$

Definition. We say that a subset X of a free semigroup A^{+}is a prefix set (resp. suffix set) if, for all $u, v \in X$, the condition u is a left factor (resp. right factor) of v implies $u=v$. We say that X is biprefix if it is both prefix and suffix.

Clearly, a prefix or suffix or biprefix subset X is a code (see [1]). So we speak about prefix, suffix or biprefix code.

Now, let $\varphi:\{a, b\}^{*} \rightarrow\{a, b\}^{*}$ be the morphism whose restriction to $\{a, b\}$ is given by $\varphi(a)=a b, \varphi(b)=a$. Let us define the n-th Fibonacci finite word
f_{n} in the following way: $f_{0}=b$ and, for each $n \geq 0$,

$$
f_{n+1}=\varphi\left(f_{n}\right)
$$

In particular, we have: $f_{1}=a, f_{2}=a b, f_{3}=a b a, f_{4}=a b a a b, f_{5}=$ $a b a a b a b a, f_{6}=a b a a b a b a a b a a b, f_{7}=a b a a b a b a a b a a b a b a a b a b a \ldots$. It is clear that, for each $n \geq 2, f_{n}$ is the product (juxtaposition) $f_{n-1} f_{n-2}$ of f_{n-1} and f_{n-2}. Also, for each $n \geq 0,\left|f_{n}\right|$ is the n-th clement F_{n} of the sequence of Fibonacci numbers $1,1,2,3,5,8,13,21,34,55,89,144,233,377 \ldots$

We note that, for each $n \geq 1, f_{n}$ is a left factor of f_{n+1}. So there exists an unique infinite word, namely the Fibonacci infinite word f, such that, for each $n \geq 1, f_{n}$ is a left factor of f (see, [2, 4]). Recall that the Fibonacci infinite word f is also the Sturmian word associated with the golden ratio $\Phi=(\sqrt{5}+1) / 2$. We have

$$
f=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a \ldots
$$

For each $n \geq 2$, we denote by g_{n} the product $f_{n-2} f_{n-1}$ and by h_{n} the longest common left factor of f_{n} and g_{n}. In particular, we have: $g_{2}=b a$, $g_{3}=a a b, g_{4}=a b a b a, g_{5}=a b a a b a a b, \ldots$ and $h_{2}=1, h_{3}=a, h_{4}=a b a, h_{5}=$ abaaba \ldots. We note that if $f(i)=b$ then $i>0$ and $f(i-1)=f(i+1)=a$ and if $f(i, i+1)=a a$ then $i>0$ and $f(i-1)=f(i+2)=b$; in other words, $b b$ and $a a a$ are not factors of f.

Lemma 1 belongs to the folklore (see for example [2, 3, 4]), it is very simple and states the near-commutative property (see [4]).

Lemma 1. For each $n \geq 2$, i) $f_{n}=f_{n-1} f_{n-2}=f_{n-2} g_{n-1}=h_{n} x y$ and
$g_{n}=f_{n-2} f_{n-1}=f_{n-1} g_{n-2}=h_{n} y x$, where $x, y \in\{a, b\}, x \neq y$ and if n is even then $x y=a b$ and if n is odd then $x y=b a$.

In March 1994 in Leipzig during the workshop Logic and combinatorics of unary functions and related structures and in July 1994 in Prato during the Incontro di Combinatoria Algebrica we announced the amusing properties of the following two factorizations of f : in the first one (resp. in the second one) the lenghts of the factors are progressively given by the Fibonacci numbers of odd index (resp. even index).

Proposition 1. Let

$$
f=u_{0} u_{1} \ldots u_{i} \ldots
$$

be the factorization of f such that $\left|u_{i}\right|=F_{2 i+1}$. Then $\left\{u_{i} \mid i \geq 0\right\}$ is a prefix code.

Proposition 2. Let

$$
f=v_{0} v_{1} \ldots v_{i} \ldots
$$

be the factorization of f such that $\left|v_{i}\right|=F_{2(i+1)}$. Then $\left\{v_{i} \mid i \geq 0\right\}$ is a prefix code.

In [6] we proved the following result:

Theorem. Let g be a right infinite word. If g is not ultimately periodic then there exists an infinite set $\left\{h_{i} \mid i \geq 0\right\}$ of words such that $g=$ $h_{0} h_{1} \ldots h_{i} \ldots,\left\{h_{i} \mid i \geq 1\right\}$ is a biprefix code and $h_{i} \neq h_{j}$ for positive integers
$i \neq j$.
There are several biprefix factorizations of the Fibonacci infinite word "starting" from the beginning.

Proposition 3. Let $n \geq$ 4. Let $f=w_{0} w_{1} \ldots w_{i} \ldots$ be the factorization of f such that $\left|w_{0}\right|=F_{n}+F_{n-2}-1$ and, for $i \geq 1,\left|w_{i}\right|=F_{n+2(i-2)-1}+$ $2 F_{n+2(i-1)}$. Then $\left\{w_{i} \mid i \geq 0\right\}$ is a biprefix code and $w_{i} \neq w_{j}$ for positive integers $i \neq j$.

Suppose now that the alphabet $\{a, b\}$ is endowed with a total order and consider on $\{a, b\}^{+}$the lexicographic order induced by it.

We say that a word x is n-divided if it admits an n-divided factorization, i.e. a factorization

$$
x=x_{1} x_{2} \ldots x_{n}
$$

such that, for each $i \in\{1, \ldots n\}, x_{i} \in\{a, b\}^{+}$, and that, for each non trivial σ in the symmetric group $S_{n}, x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)}$ strictly precedes x in the lexicographic order.

We say that an infinite word t is ω-divided if it admits a factorization $t=t_{0} t_{1} t_{2} \ldots t_{i} \ldots$ such that for each $i \geq 0$ and, for each $n \geq 2$,

$$
t_{i} \ldots t_{i+n-1}
$$

is an n-divided factorization.
Remark 1. The factorizations

$$
f=u_{0} u_{1} \ldots u_{i} \ldots
$$

$$
=(a)(b a a)(b a b a a b a a)(b a b a a b a b a a b a a b a b a a b a a) \ldots
$$

and

$$
\begin{gathered}
f=v_{0} v_{1} \ldots v_{i} \ldots \\
=(a b)(a a b a b)(a a b a a b a b a a b a b)(a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a a b a) \ldots
\end{gathered}
$$ are ω-divisions respectively for the orders $a>b$ and $b>a$.

Remark 2. The factorizations $f=w_{0} w_{1} \ldots w_{i} \ldots$ are also ω-divisions. For example, for $n=4$, we have $f=(a b a a b a)(b a a b a a b a b a a)(b a b a a b a a b a b a a b a a b a b a a b a b a a b a a) \ldots$ and this is an ω-division for the order $a>b$,

Remark 3. At the origin of many other there is the following interesting factorization of f which holds for each $n \geq 1$:

$$
f=f_{n} f_{n-1} f_{n} f_{n+1} f_{n+2} f_{n+3} f_{n+4} \ldots f_{n+i} \ldots
$$

and, for example, the factorizations of Propositions 1-3 are strictly connected with it.

Remark 4. The proofs of Propositions 1-3 are based on Lemma 1 and are left to the reader.

REFERENCES

[1] J. Berstel and D. Perrin, Theory of codes, Academic Press, 1985.
[2] D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1968.
[3] D. E. Knuth, Sequences with precisely $k+1 k$-blocks, Solution to problem E2307, Amer. Math. Monthly, 79(1972), 773-774.
[4] D. E. Knuth, J. H. Morris and V. R. Pratt, Fast pattern matching in strings, SIAM J. Comput., 6, 1977, 323-350.
[5] M. Lothaire, Combinatorics on words, Addison-Wesley, 1983.
[6] G. Pirillo, Infinite words and biprefix codes, Information Processing Letters, 50 (1994) 293-295.

