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For a (fmite or infmite) set $X$, let $T(X)$ be the full transformation semigroup on $X$, i.e. the set
of all maps from $X$ to $X$, the semigroup operation being composition of maps.

When $X$ is a partially ordered set, we let
$T_{RE}(X)=$ { $f\in T(x)|X^{x})\leq x$ for all $x\in X$ },

$\tau_{OP(}X\tau=$ { $f\in T(x)|X^{x})\leq Xy)$ if $x\leq y$ for $x,$ $y\in X$}.
Then, both of them are subsemigroups of $T(X)$ with the identity $id\tau(x_{)}^{-}\cdot$ We call $T_{RL}(X)$ the

full regressive transformation semigroup on $X$ , and $\tau_{OP}(\mathrm{x})$ the full order-preserving

transformation semigroup on $X$.
Recently, some interesting results on $\tau_{RE(X)}$ have been obtained (cf. [1], [4], [5]).

It is known that, for partially ordered sets $X,$ $\mathrm{Y}$, if $\tau_{OP}(x)$ and Top$(\mathrm{Y})$ are isomorphic as
semigroups, then $X$ and $\mathrm{Y}$ are isomorphic or $\mathrm{a}\mathrm{n}\mathrm{t}\ddot{\mathrm{H}}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}_{\mathrm{C}}$ as ordered sets (see [3], Theorem
V.8.9).

It is natural to ask whether the above result holds or not for regressive transformation
semigroups. In general, it does not hold. However, we obtain a necessary and sufficient
condition on partially ordered sets $X$ and $\mathrm{Y}$ for $T_{RE}(X)$ and $T_{RE}(\mathrm{Y})$ to be isomorphic.

Umar showed in [6] that, when $X$ and $\mathrm{Y}$ are totally ordered sets, any idempotent in $T_{RE}(X)$

whose image is an $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}arrow \mathrm{d}\mathrm{e}\mathrm{a}\mathrm{l}$ is mapped to an idempotent in $T_{RE}(\mathrm{Y})$ with the same property by
isomorphisms from $T_{RE}(X)$ to $T_{RE}(\mathrm{Y})$ , and he considered the above problem through this result.
If the result holds even if $\mathrm{t}\dagger \mathrm{a}\mathrm{n}$ order-ideal\dagger \dagger in it is replaced by \dagger \dagger a principal $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-\dot{\prec}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{l}$”, then it

can be shown that if $T_{RE}(\mathrm{x})\underline{\simeq}\tau RE(\mathrm{Y})$ as semigroups then $X\cong \mathrm{Y}$ as ordered sets. At the present
time, this is unsolved.

In here, we achieve our purpose by showing that any idempotent of defect 1 in $\tau_{RE(X)}$ is
mapped to an idempotent of defect 1 in $T_{R}d_{\backslash }\mathrm{Y}$) by isomorphisms from $\tau_{RE(X)}$ to $T_{RE}(Y)$ , where

the defect of $a$ in $T_{RE}(X)$ means the cardinality of the set of idempotents in $X$ which do not

belong to the image of $a$ .

For partially ordered set $X$, an element in $X$ is said to be isolated if it is incomparable with
every element in $X$ except itself. Let Is$(\mathrm{x})$ be the set of all isolated elements in $X$. Then, it is
easy to see that $T_{RE}(X)$ and $T_{RE}(X\backslash Is(X))$ are isomorphic. Therefore, we may assume that every
partiaUy ordered set, treated in this paper, does not contain any isolated elements.

Let $X$ be a partially ordered set under the order relation $\leq$.
For $a\in X$, the set of (resp. strict) upper bounds of $a$ is denoted by $U(a)$ (resp. $SU(a)$), $\mathrm{i}$. $\mathrm{e}$.

$U(a)=\{x\in X|x\geq a\}$ and $SU(a)=\{x\in X|x>a\}$ ,

and the set of an minimal elements in $X$ is denoted by ${\rm Min}(X)$ ,

This is an abstract and the details will be published in Semigroup Forum.

数理解析研究所講究録
910巻 1995年 82-86 82



$b$ , we have that $j’u$a, $b$), $k(a, b))=a$ and $k’0(a, b),$ $k(a, b))=b$.

Lemma 2. (1) $k(a, b)=k(c, d)$ ifand only if$b=d$.
(2) If$a<c<b$, then $k(a, c)=j(c, b)andj(a, b)=j(a, c)$.
(3) $X$a, $b$) $=j(c, d)$ ifand only if$a=c$ .

Proof. (1) It is easy to see that
$b=d\Leftrightarrow$ $\lambda_{Ca\mathcal{O}}^{d}0\lambda^{b}=\lambda^{b}$ $\Leftrightarrow\lambda^{k(C,d})\lambda^{k}j(c,d)\circ(a,b)=\lambda^{a,b})\lambda^{ka}(,b)Xa,$ $b)\Leftrightarrow$ $k(a, b)=k(C, d)$ .
This assertion means that $k(a, b)$ depends only on $b$ .

(2) The proof is omitted.
(3) To show the assertion, we need that $X$ and $\mathrm{Y}$ are adjusted. Let $a=c$. If $a$ is not minimal
in $X$, then $e<a$ for some $e\in X$. From (2), we have thatj$(a, b)=k(e, a)=j(a, d)=j(c, d)$.

If $a$ is minimal in $X$, then $b$ and $d$ are connected in $SU(a)$ , since $X$ is adjusted, so that there
exist $e_{1},$ $e_{2},$ $\ldots$ , $e_{n}\in SU(a)$ such that $b=e_{1}\leq^{s}e_{2}\leq^{s}\ldots\leq^{s}e_{n}=d$. Since $e_{i}$ and $ei+1$ are
comparable, by (2) we have that $j(a, e_{i})=j(a, e_{i+}1)(i=1,2, \ldots, e_{n-1})$ . Thus, we have that
$j(a, b)=\mathrm{X}a,$ $d)=j(C, d)$ .

Let $j(a, b)=j(c, d)$ . If we apply the above fact to $j’$, then we have that $a=j’\propto a,$ $b$), $k(a$,
$b))=j^{\prime \mathrm{o}}(c, \emptyset, k(C, d))=c$.

Tluis assertion means that $j(a, b)$ depends only on $a$.

We write $j(a, b)=j(a)$ and $k(a, b)=k(b)$ for $a,$ $b\in X$ with $a<b$ . In this case, if $a$ is
maximal in $X$, then $j(a)$ is undefmed, and if $b$ is $\dot{\mathrm{r}\mathrm{n}}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}$ in $X$, then $k(b)$ is undefmed. Sincej$(a)$

$<k(b)$ if $a<b$ , we have that if $a$ is not maximal in $X$ , then neither is $j(a)$ in Y. By (2) of
Lemma 2, if $c$ is neither maximal nor $\dot{\mathrm{r}}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}$ in $X,$ $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}j(c)=k(c)$ .

Similarly, we write $j’(a’, b’)=j’(a’)$ and $k’(a’, b’)=k’(b’)$ for $a’,$ $b’\in \mathrm{Y}$ with $a’<b’$ . Then,
we have that $j’(i(a))=a,$ $k’(k(b))=b,j(i’(a’))=a’$ and $k(k’(b’))=b’$.

Let $a$ be maximal in $X$. Then, we can show that $k(a)$ is maximal in $Y$.

Define a map $h$ : $Xarrow Y$ by $h(a)=j(a)$ if $a$ is not maximal in $X$ , and $h(a)=k(a)$ if $a$ is
maximal in $X$. Then, we can show that the $h$ is an order.$\dot{\{}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{S}\mathrm{m}$ of $X$ onto $Y$.

Since any totauy ordered set is clearly adjusted, we obtain:

Corollary 3.
Let $X$ and $\mathrm{Y}$ be totally ordered sets. Then, $T_{RE}(X)$ and $T_{RE}(Y)$ are isomorphic as

semigroups ifand only $ifX$ and $\mathrm{Y}$ are isomorphic as ordered sets.

Let $X,$ $Y$ be partially ordered sets. From Theorem 1 and Theorem 2, we have that
$T_{RE}(x)\underline{\simeq}\tau RE(\mathrm{Y})\Leftrightarrow TRE(A(X))\underline{\simeq}\tau_{R}E((A(\mathrm{Y}))\Leftrightarrow A(X)\underline{\simeq}A(T)$ .

Thus, we obtain the folowing main theorem:

Theorem 4.
Let $X$ and $\mathrm{Y}$ be partially ordered sets. Then, $T_{RE}(X)$ and $T_{RE}(\mathrm{Y})$ are isomorphic as

semigroups ifand only if their adjusted sets $A(X)$ and $A(Y)$ are isomorphic as ordered sets.
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and the set of $\mathrm{a}\mathrm{U}$ minimal elements in $X$ is denoted by ${\rm Min}(X)$ .
Let $\leq^{s}$ be the symmetric relation generated $by\leq$ , i.e. $a\leq^{s}b$ if and only if $a\leq b$ or $b\leq a$ , and

let $\leq^{e}$ be the equivalent $rela\dot{n}_{O}n$ generated $by\leq$ , i.e. $a\leq^{e}b$ if and only if there exist $c_{1},$ $c_{2},$ $\ldots$ , $c_{n}$

$\in X$ such that $a=c_{1}\leq^{s}c_{2}\leq^{s}\ldots\leq^{s}c_{n}=b$ (see [2], I). In this case, we say that $a$ and $b$ are
connected in $X$. A subset $\mathrm{Y}$ of $X$ is connected if every $a,$ $b\in Y$ are comected in $Y,$ $\mathrm{i}$ . $\mathrm{e}$. there
exist $c_{1},$ $c_{2},$ $\ldots,Cn\in \mathrm{Y}$ such that $a=c_{1}\leq^{s}c_{2}\leq^{s}\ldots\leq^{s}c_{n}=b$

A partially ordered set $X$ is said to be adjusted if it does not contain any minimal elements ,
or for every $m\in{\rm Min}(X),$ $sU(m)$ is connected.

Theorem 1.
Let $X$ be a partially ordered set. Then, there $e\dot{\mathrm{r}}stS$ an adjustedpartially ordered set $A$ such

that $T_{RE}(A)$ is isomorphic to $T_{RE}(X)$ as semigroups.

We can constr $u\mathrm{c}\mathrm{t}$ an adjusted partially ordered set $A(X)$ from $X$ such that $T_{RE}(A(X))$ is
isomorphic to $T_{RE}(X^{arrow})$ . In this case, the $A(X)$ is called the adjusted $pa\Gamma\dot{n}ally$ ordered set $ofX$.

Theorem 2.
Let $X,$ $Y$ be adjusted partially ordered sets. Then, $T_{RE}\langle x$) and $\tau_{R}4Y$) are isomorphic as

semigroups ifand only $ifX$ and $Y$ are isomorphic as ordered sets.

Suppose that $X$ and $\mathrm{Y}$ are isomorphic. Let $h$ be an isomorphism from $X$ onto $Y$. Then, it is
easy to show that the map $i:T_{RE}(X)arrow T_{RE}(\mathrm{Y}),farrow i(fl$ defmed by $i(mh(x))=h(y)$ $\mathrm{i}\mathrm{f}f(X)=y$, is
an isomorphism.

To show the only if-part, we need two lemmas (Lemmas 1 and 2).

For each pair $a,$ $b\in Z$ with $a<b$, where $Z$ is a partially ordered set, we define $\lambda^{b_{a}}$ in $T_{RE}\langle Z)$

by
$\lambda^{b_{a}}(b)=a,$ $\lambda^{b_{a}}(x)=x$ if $x\neq b$ .

From now until the end of the proof of Theorem 2, $X$ and $\mathrm{Y}$ will denote adjusted partially
ordered sets, and $i$ will denote an isomorphism from $T_{RE}(X)$ onto $T_{RE}(\mathrm{Y})$.

Lemma 1. For each pair a, $b\in X$ with $a<b$ , there exist a’, $b’\in Y$ such that $i(\lambda^{b_{a}})=\lambda^{b_{a’}’}$ .
The assertion can be easily shown by using the following facts:

For $g\in T_{RE}(X)$,
$\lambda_{a}^{b}\circ g=\lambda_{a}^{b}$ if and only if $g=id\tau(\mathrm{x})$ or $g=\lambda_{a}^{b}$,

$g\mathrm{o}\lambda_{a}^{b}=g$ if and only if $g(a)=g(b)$ and $a<b$ .

For each pair $a,$ $b\in X$ with $a<b$, the pair $a’,$ $b’$ in Lemma 1 is clearly unique. So we write
$a’=j(a, b)$ and $b’=k(a, b)$, namely $i(\lambda^{b_{a}})=\lambda^{k(a,b)}X^{a_{j}b)}$.

We similarly have that for eac.h pair $a’,$ $b’$ in $Y$ with $a’<b’$, there exist unique elements
$j’(a’, b’),$ $k’(a’, b’)$ in $X$ such that $\dot{\tau}^{1}(\lambda^{b}a’)’=\lambda^{k’(_{\mathcal{O}’,}b’)_{j}}’(a’.b’$} $\cdot$ Then, for each $a,$ $b$ in $X$ with $a<$
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Corollary 5.
Let $X$ and $A$ be as in Theorem 1. Then $A$ is uniquely detemined by $X$ up to isomorphisms.

We next aim to refme Theorem 2 to the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$ :

Theorem 6.
Let $X$ and $\mathrm{Y}$ be as in Theorem 2, and let $i$ be a semigroup isomorphism from $T_{RE}(X)$ onto

$T_{RE}(Y)$ . Then, there exists an order isomorphism $h$ from $X$ onto $\mathrm{Y}$ such that $h(\pi a))=i\omega(h(a))$

for all$f\in T_{RE}(X)$ and all $a\in X$.

Let $h$ be an isomorphism from $X$ onto $Y$ determined by $i$ in Theorem 6 as in the proof of
Theorem 2. $\mathrm{R}\mathrm{u}\mathrm{s},$ $i(\lambda^{b}a)=\lambda^{h(b)}h(\mathcal{O})$ for each $a,$ $b\in X$ with $a<b$. We show that this $h$ serves as
a desired $h$ in Theorem 6. To show the theorem, again we need two lemmas (Lemmas 3 and
4).

For each$f\in T_{RE}(X)$ and each $a\in X$, we defme $f^{a}$ and $f_{a}$ , as folows:
$f^{a}(x)=x$ if $x\geq a,$ $f^{a}(x)=f(x)$ otherwise, and $f_{a}(x)=f(x)$ if $x>a,$ $f_{a}(x)=x$ otherwise.

Then, it is easy to check that $f=fa\circ\lambda^{a}Xa$ ) $\circ f^{a}$ for all $a\in X$, where $\lambda^{a}fia)=id\tau(\mathrm{x})$ if $a=J(a)$.

Lemma 3. For any$f\in T_{R}d_{\backslash }X$) and any $b,$ $c\in X$ with $c\leq b$,
(1) $f(b)=f(c)$ ifand only if $i\varphi(h(b))=i\omega(h(c))$ . In particular,
(2) if $a\leq b$, then $i(f^{a})(h(b))=i(T^{a})(h(c))$ implies that $h(b)=h(c)$, and
(3) if $b\mathrm{y}a$ , then $i(f_{a})(h(b))=i(f_{a})(h(C))$ implies that $h(b)=h(c)$, where $b$ } $a$ means that $b\leq$

$a$ or $a$ and $b$ are incomparable.

From Lemma 3, we have :

Lemma 4. For every a, $b\in X$,
(1) if $h(b)\geq\chi a)$ , then $i(f^{a})(h(b))=\mathrm{X}b)$,
(2) if$h(b)\}h(a)$ , then $i(\mathrm{r}_{a})(h(b))=h(b)$.

Since $f=fa\circ\lambda^{a}fla$) $\mathrm{o}f^{a}$ for all $a\in X$ , and since $h(\pi a))\leq h(a)$ , we have that
$i(f)(h(a))=i(f_{a})_{\mathit{0}}i(\lambda_{Xa)}^{a})_{\mathit{0}i}(f^{a})(h(a))=i(f_{a})\circ\lambda^{h}(a))h(\pi a)(h(a))$

$=i(\Gamma a)\circ\lambda h(a)(h(\mathrm{A}a))h(\mathit{0}))=i(\gamma_{a})(h(\pi a)))=h(\pi a))$ .
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