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Introduction

A simplicial complez A on the verter set V = {z;,z,,...,z,} is a col-
lection of subsets of V' such that (i) {z;} € A for every 1 < i < v and (i)
0 €A, 7Co=7¢€o. Each element o of A is called a face of A. Let §(0)
denote the cardinality of a finite set . We set d = max{fi(c) | ¢ € A} and
define the dimension of A to be dimA =d — 1.

Let A = k[z;,z3,...,T,] be the polynomial ring in v-variables over a
field k. Here, we identify each z; € V with the indeterminate z; of A.
Define I, to be the ideal of A which is generated by square-free monomials
Ly Ty - Ty, 1 < il < iZ < - < ir < v, with {mil,mi27..'7mir} ¢ A.
We say that the quotient algebra k[A] := A/I, is the Stanley-Reisner ring
of A over k. In what follows, we consider A to be the graded algebra
A = @,5¢ A, with the standard grading, i.e., each degz; = 1, and may
regard k[A] = @,50(k[A]), as a graded module over A with the quotient
grading.

We are interested in a minimal free resolution of k[A].

Let Z (resp. Q) denote the set of integers (resp. rational numbers). We
write A(j), j € Z, for the graded module A(j) = @,cz[A(F)]~ over A with
[A(4)]n := Anyj- When k[A] is regarded as a graded module over A with
the quotient grading, it has a graded finite free resolution

0— @D A(=j)" 2o 2 DA 2 AL KAl — 0 (1)

i€z jeZ

where each @,z A(—j)%i, 1 < i < h, is a graded free module of rank
0 # Yjez Bi; < oo, and where every ¢; is degree-preserving. Moreover, there
exists a unique such resolution which minimizes each 3;;; such a resolution is



called minimal. If a finite free resolution (1) is minimal, then the homological
dimension hd 4(k[A]) of k[A] over A is the non-negative integer h and

Bi = BA(k[A]) := T,ez Bi; is called the -th Betti number of k[A] over
A.

Even though hds(k[A]) may depend on the base field k, (with a fixed
field k) the integer v — hd 4(k[A]) is topological [Mun], i.e., it depends only
on the geometric realization of A. Since the first Betti number 8{'(k[A])
is equal to the minimal number of generators of the ideal I, Bf(k[A]) is
independent of the base field k. However, in general, 8{(k[A]) may depend
on k. It is known, e.g., [Bru~Hery] that the second Betti number §3'(k[A])
does not depend on the base field k. We give a short proof of this result by
using the Alexander duality theorem of topology. Moreover, when the ideal
I, is generated by square-free monomials of degree two (e.g., A is the order
complex of a finite partially ordered set), we show that both the third and
fourth Betti numbers of k[A] over A are independent of k. On the other
hand, it would be of interest to find a natural class of simplicial complexes
A for which all Betti numbers B7(k[A]) are independent of k. We show
that, for example, if the geometric realization of A is either a 3-sphere or a
3-ball, then all Betti numbers of k[A] are independent of k.

Finally we give a ring-theoretical short proof of the following result,
which was first proved by Barnette.

Theorem. The 1-skelton of a simplicial (d — 1)-sphere is d-connected.

§1. Hochster’s formula

We first recall some notation on simplicial complexes and Hochster’s
topological formula on Betti numbers of Stanley-Reisner rings. We refer the
reader to, e.g., [Bru—Her,], [H;], [Hoc] and [Sta,] for the detailed information
about combinatorial and algebraic background.

(1.1) Given a subset W of V, the restriction of A to W is the subcomplex
Aw ={c € A|oC W}

of A. In particular, Ay = A and Ag = {#}. On the other hand, if s is a
face of A, then we define the subcomplexes linka (o) and stara(o) to be

linka(oc)={r€AlonT=0,0UT €A}
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stara(0) = {r € A|oUTE A}

Thus, in particular, linka(0) = stara(@) = A.
Let H;(A; k) denote the i-th reduced simplicial homology group of A with
the coefficient field k. Note that H_;(A; k) = 0 if A # {0} and

mrn={ 7 (2%,

(1.2) In the above notation Hochster’s formula [Hoc, Theorem (5.1)] is
that _
,Bi,- = E dimkHj_,-_l(AW; k) (2)

wcv, (W)=j

Thus, in particular,

B (kA]) = w;:v dimy, Hyw)-i-1(Aw; k)- (3)

Some combinatorial and algebraic applications of Hochster’s formula
have been studied. Munkres [Mun] proved that v —hd4(k[A]) depends only
on the geometric realization of A. Moreover, if A is the order complex of
a modular lattice, then the last Betti number of k[A] can be computed by
means of the Mobius function of the lattice ([Hz], [Hs]). See also [Bac],
[B-H,], [B-Hz), [Frd] and [H,] for related topics and results.

§2. Second Betti numbers of Stanley—Reisner rings

It is known, e.g., [Bru—Hery] that the second Betti number of a Stanley-
Reisner ring is independent of the base field. By virtue of Hochster’s formula
together with the Alexander duality theorem of topology, we give a short
proof of this result. Let | A | denote the geometric realization of a simplicial
complex A.

(2.1) LEMMA. Let A be a simplicial complez on the vertez set V with
(V) =v and k a field Then dim H,_3(A; k) is independent of k.

Proof. Let 2V denote the set of all subsets of V. Thus, the geometric
realization X of the simplicial complex 2V — {V'} is the (v — 2)-sphere. We
may assume that V ¢ A; in particular, | A | is a subspace of X. Note
that H,_s(| A |;k) = H*73(] A |; k) since k is a field. Now, the Alexander
duality theorem guarantees that H*"3(| A |; k) & Ho(X— | A |; k). On the
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other hand, dimy Ho(X~ | A |;k) + 1 is equal to the number of connected
components of X— | A |. Thus, dimg H,_3(A; k) = dim Ho(X— | A |; k) is
independent of the base field k as required. Q. E.D.

(2.2) THEOREM. The second Betti number B4(k[A]) of the Stanley-
Reisner ring k[A] = A/Ia of a simplicial complez A is independent of the
base field k.

Proof. By virtue of Hochster’s formula (4), the second Betti number
B4(k[A]) is equal to Ty dimy Hyw)-3(Aw; k), which is independent of
k by Lemma (2.1) as desired. Q.E.D.

§3. Ideals I, generated by monomials of degree two

The purpose of this section is to show that the third and fourth Betti
numbers of a Stanley-Reisner ring k[A] = A/I, are independent of the base
field k when the ideal I, is generated by square-free monomials of degree
two. For example, the ideal I5 associated with a simplicial complex A is
generated by square-free monomials of degree two when, e.g., A is the order
complex ([Stas, p.120]) of a finite partially ordered set.

Let A (resp. A') be a simplicial complex on the vertex set V (resp. V')

and suppose that V N V' = 0. Recall that the simplicial join A x A’ of A -

and A’ is the simplicial complex on the vertex set V U V' which conmsts of
all subsets of V U V' of the form ¢ U7 with 0 € A and 7 € A'.

(3.1) LEMMA. Let A be a simplicial complex on the vertex V with
§(V) = v and suppose that the ideal I is generated by square-free monomials
of degree two. Then H,(A;k) = 0 if v < 2(n+1). Moreover, if v =
2(n + 1), then H,(A; k) # 0 if and only if A is the simplicial join ofn +1
copies of the 0-sphere S°(= o o).

(3.2) COROLLARY. Suppose that the ideal I is generated by square-
free monomials of degree two and that a finite free resolution (2) of k[A] =
A[Ia over A is minimal. Then, B;; = 0 for alli and j with j > 2i.

Proof. By Lemma (3.1), we have I:Iu(W)—i—-l(Aw;k) = 0 if §(W) <
2(§(W) — 9), ie., f(W) > 2i. Hence, thanks to Hochster’s formula (3),
Bi; = 0 for all 7 and j with j > 2i. Q.E.D.
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Taylor [Tay| constructed an explicit (not nesessarily minimal) finite free
resolution of k[A] = A/Io over A. The above Corollary (3.2) also follows
immediately from Taylor resolutions.

(3.3) LEMMA. Let A be a simplicial complez on the vertez set V with
§(V) = 7. Suppose that I5 is generated by square-free monomials of degree
two and that Hy(A; k) # 0. Then, one of the following conditions (i) and
(ii) is satisfied:

(i) A is the simplicial join of the cycle of length 5 and 0-sphere S°;

(ii) there exists x € V such that Ay_g; = S° % S? % S°.

We are now in the position to state the main result of this section. .

(3.4) THEOREM. Let A be a simplicial complez and suppose that the
ideal Ip is generated by square-free monomials of degree two. Then, both
the third Betti number B2(k[A]) and the fourth Betti number B3 (k[A]) of
k[A] = A/Ia over A are independent of the base field k.

Proof. First, we study the third Betti number B3 (k[A]) of k[A] over
A. Let V be the vertex set of A. Thanks to Proposition (3.2), what we
must prove is that J;; is independent of the base field k for every j < 6.
Thus, by virtue of Hochster’s formula (3), what we must prove is that
dim Hyw)-4(Aw; k) is independent of k for every W C V' with §(W) < 6.
If (W) = 5, then H;(Aw;k) = 0 for every i > 2 by Lemma (3.1). Thus,
since the reduced Euler characteristic ¥(A) and dimy Ho(Aw; k) are inde-
pendent of k, it follows from Euler-Poincaré formula that dim Hi(Aw; k) is
independent of k. On the other hand, if j(W) = 6, then dim Hy(Aw; k) =0
unless Aw is the simplicial join of three copies of the 0-sphere by Lemma
(3.1). Moreover, if Ay is the simplicial join of three copies of the 0-sphere,
then dim Hy(Aw; k) = 1 for an arbitrary field k.

Secondly, we show that the fourth Betti number G4'(k[A]) of k[A] over A
is independent of the base field k. We must prove that dim Hyw)-s(Aw; k)
is independent of k for every W C V with (W) < 8. If either (W) =6
or §(W) = 8, then we can show that dim I:Iu(w)_s(Aw; k) is independent of
k by the similar technique with Lemma (3.1) as above. Let §(W) =7 and
suppose that Hy(Aw; k) # 0. Then, by Lemma (3.3), we easily see that Ay
has the homotopy type of one of the following spaces: (i) the 2-sphere; (ii)
the disjoint union of the 2-sphere and a single point; (iii) the space X UY,
where X is the 2-sphere and Y is either the 1-sphere or the 2-sphere, such
that X NY consists of a single point. Hence, dimj Hy(Aw; k) is independent
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of the base field k as desired. Q. E. D.

§4. Finite free resolutions of the n-sphere

In general, it is possible to define the Stanley-Reisner ring Z[A] = A/Ia
of A over the commutative ring Z. However, a minimal free resolution of
Z[A] over the polynomial ring A = Z[z;,x,,...,z,] does not necessarily
exist. On the other hand, there exists a minimal free resolution of Z[A]
over A if and only if all Betti numbers 82(k[A]) are independent of the
base field k (see, e.g., [H-K]). Thus, it might be of interest to find a natural
class of simplicial complexes A for which all Betti numbers G/(k[A]) are
independent of k. The main purpose of this section is to show that if | A |
is the n-sphere S™ (or the n-ball B®) with n < 3, then all Betti numbers
BA(k[A]) of k[A] are independent of k. Moreover, we construct a shellable
simplicial complex A with | A |= S* such that some Betti number 8#(k[A])
does depend on the base field k.

(4.1) PROPOSITION. (a) Let A be a simplicial complex and suppose
that the geometric realization | A | of A is a connected 3-manifold without
boundary. Then, all Betti numbers B#(k[A]) are independent of the base
field k if | A | is orientable and Hy(A;Z) = 0.

(b) Let A be a simplicial complex such that| A | is a connected 2-manifold
without boundary. Then, all Betti numbers B{(k[A]) are independent of the
base field k if and only if | A | is orientable. :

Proof. By virtue of Hochster’s formula, in order for all Betti numbers
B(k[A]) to be independent of the base field k, it is necessary and sufficient
that dim A;(Aw; k) is independent of k for every subset W of the vertex
set V and for each integer j > —1.

On the other hand, it follows easily that, for a simplicial complex A on
the vertex set V, all Betti numbers 8 (k[A]) are independent of k if one of
the following conditions is satisfied: (i) dimA < 1; (ii) A is a 2-manifold
with non-empty boundary; (iii) f(V) < 5.

(4.2) THEOREM. Let A be a simplicial complex and suppose that the
geometric realization | A | of A is the n-sphere S™ (or the n-ball B*) with
n < 3. Then, the Betti number B£(k[A]) is independent of the base field k
for every 1 > 0.
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Proof. If | A |= S™, then the above Proposition (4.1) guarantees that
all Betti numbers 3/(k[A]) are independent of the base field k.

On the other hand, suppose that | A |= B™ and define A’ to be the
simplicial complex A U (A * { a single point }). Thus, | A’ |= 8™, Let V
denote the vertex set of A. Then A}, = A. Hence, it follows that, for every
subset W of V and for each integer j > —1, dimg fI,-(AW; k) is independent
of the base field & as required. Q.E. D.

(4.3) EXAMPLE. Let I' denote the simplicial complex on the vertex
set V = {1,2,3,4,5,6} which is the minimal triangulation of the real pro-
jective plane (see [Rei]). Let A denote the simplicial complex which consists
of all subsets o of V with o # V. Thus, | A | is the 4-sphere. We consider I’
to be a subcomplex of A in the obvious way. Let Sd(A) denote the barycen-
tric subdivision of A. If W is the vertex set of Sd(I'), then (W) = 31 and
Sd(A)w = Sd(T). Thus, we have

dimgz /o7 ﬁsl—zs—l(Sd(A)W; Z/2Z) > dimq ﬁ31—28—1(Sd(A)1;V§ Q);

dimz,2z Hsy_50_1(Sd(A)w; Z/2Z) > dimq Ha3y_20-1(Sd(A)w; Q).
Hence
Ba((Z/22)[Sd(A)]) > Bz(Q[SA(A)]);
B((Z/2Z)[Sd(A)]) > Bs(Q[SA(A)]).
Note that hd 4(K[SA(A)]) = 57 and SA(K[SA(A)]) = BA(K[SA(A)]). Since

A is the boundary complex of the 5-simplex, it follows that A is shellable
(defined in, e.g., [B-M]). Hence, thanks to [Bj61], Sd(A) is also shellable.

(4.4) EXAMPLE. Let A denote the simplicial complex as in Example
(4.3) and define A’ to be A —{{1,2,3,4,5}}. Then | A’ | is the 4-ball. The
similar technique as in Example (4.3) enables us to see that some Betti num-
bers BA(k[SA(A’)]) of the Stanley-Reisner ring k[Sd(A')] of the barycentric
subdivision Sd(A’) of A’ depend on the base field k. The simplicial complex
Sd(A') is also shellable.

The above Examples (4.3) and (4.4) illustrate the following

(4.5) PROPOSITION. Fiz an integer n > 4 and let V denote the
finite set {1,2,...,n,n+1,n+ 2}. Define A, to be the simplicial complex
which consists of all subsets 0 of V with 0 # V. Moreover, let Al denote
the simplicial complex A, — {{1,2,...,n+1}}. Then, there ezist integers
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and j such that B{(k[SA(A,)]) and B (k[SA(A})]) depend on the base field
k. Note that both Sd(A,) and Sd(A}) are shellable with | Sd(A,) |= S™ and
| Sd(A!) |= B™. ‘

§5. 1-skeltons of simplicial spheres

In this section we give a ring-theoretical short proof of the following
result, which was first proved by Barnette.

Theorem. The 1-skelton of a simplicial (d — 1)-sphere is d-connected.

Proof. Suppose A is a simplicial d — 1-sphere on the vertex set V' with
#(V) = v. Since k[A] is Gorenstein, f;,,(k[A]) = 0 for ¢ > v —d. Thus
we have Ho(Ay_w; k) = 0 for every subset W of V with §(W) < d—1 by
Hochster’s formula. That is, Ay_w is connected. Hence, the 1-skelton of
A is d-connected. S Q.E.D.
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