On representations of locally inverse *-semigroups¹

Teruo IMAOKA (今岡 輝男)

Isamu INATA (稲田 勇)

Hiroaki YOKOYAMA (横山 浩明)

Abstract

The purpose of this paper is to obtain an analogous representation of the Preston-Vagner Representation for locally inverse *-semigroups which is a generalization of [7].

Firstly, by introducing a concept of a π -set (which is slightly different from the one in [7]), we shall construct the π -symmetric locally inverse *-semigroup $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ on a π -set $X(\pi';\omega;\{\sigma_{e,f}\})$, and show that $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ is a locally inverse *-semigroup and that any locally inverse *-semigroup can be embedded up to *-isomorphism in $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ on a π -set $X(\pi';\omega;\{\sigma_{e,f}\})$. Moreover, we shall show that the wreath product (in the sense of Cowan[1]) of locally inverse *-semigroups is also a locally inverse *-semigroup.

1 Introduction

A semigroup S with a unary operation $*: S \to S$ is called a regular *-semigroup if it satisfies

$$(i) (x^*)^* = x,$$

$$(ii) (xy)^* = y^*x^*,$$

(iii)
$$xx^*x = x.$$

Let S be a regular *-semigroup. An idempotent e in S is called a *projection* if it satisfies $e^* = e$. For any subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively. The following result is well-known, and we use it frequently throughout this paper.

¹This is the abstract and the details will be published elsewhere. The results of § 2 and 4 were obtained after the conference.

Result 1.1 (see [4]). Let S be a regular *-semigroup. Then we have the followings:

- (1) $E(S) = P(S)^2$, more precisely, for any $e \in E(S)$, there exist $f, g \in P(S)$ such that $f \mathcal{R} e \mathcal{L} g$ and e = f g;
- (2) for any $a \in S$ and $e \in P(S)$, $a*ea \in P(S)$;
- (3) each \mathcal{L} -class and each \mathcal{R} -class have one and only one projection.

A regular *-semigroup S is called a locally inverse *-semigroup if, for any $e \in E(S)$, eSe is an inverse subsemigroup of S.

Lemma 1.2 A regular *-semigroup S is a locally inverse *-semigroup if and only if, for each $e \in P(S)$, eSe is an inverse subsemigroup of S.

A regular *-semigroup S is called a generalized inverse *-semigroup if E(S) forms a normal band, that is, E(S) satisfies the identity xyzx = xzyx. It is obvious that a generalized inverse *-semigroup is a locally inverse *-semigroup.

Remark. It is clear that a regular *-semigroup S is a generalized inverse *-semigroup if and only if it satisfies the following condition:

for any
$$e, f, g, h \in P(S)$$
, $efgh = egfh$ (in S).

However, we remark that even if a locally inverse *-semigroup S satisfies the condition

for any
$$e, f, g \in P(S)$$
, $efge = egfe$ (in S),

it is not always a generalized inverse *-semigroup. The second remark of [6] is its counterexample.

Let X be a set. If $X = \bigcup \{X_i : i \in I\}$ is a partition of X, denote it by $X = \sum \{X_i : i \in I\}$. For a mapping $\alpha : A \to B$, denote the domain and the range of α by $d(\alpha)$ and $r(\alpha)$, respectively. For a subset C of A, $\alpha|_C$ means the restriction of α to C.

Let \mathcal{I}_X be the symmetric inverse semigroup on a set X. For a subset A of X, 1_A means the identity mapping on A. Let \mathcal{A} be an inverse subsemigroup of \mathcal{I}_X and $\theta: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ a mapping. Denote the image $(\alpha, \beta)\theta$ of an ordered pair (α, β) by $\theta_{\alpha, \beta}$. Set $\mathcal{M} = \{\theta_{\alpha, \beta}: \alpha, \beta \in \mathcal{A}\}$. If \mathcal{M} satisfies the following conditions:

- (C1) $\theta_{\alpha,\beta}^{-1} = \theta_{\beta^{-1},\alpha^{-1}},$
- (C2) $\theta_{\alpha,\alpha^{-1}} = 1_{r(\alpha)},$
- (C3) $\theta_{1_{d(\alpha)},\alpha} = 1_{d(\alpha)},$
- (C4) $\theta_{\alpha,\beta}\beta\theta_{\alpha\theta_{\alpha,\beta}\beta,\gamma} = \theta_{\alpha,\beta\theta_{\beta,\gamma}\gamma}\beta\theta_{\beta,\gamma},$

we call it the structure sandwich set of A determined by θ .

Result 1.3 (see [7]) Let A be an inverse subsemigroup of the symmetric inverse semigroup \mathcal{I}_X on a set X, and M the structure sandwich set of A determined by a mapping $\theta: A \times A \to A$. Define a multiplication \circ and a unary operation * on A as follows:

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta,$$
$$\alpha^* = \alpha^{-1}$$

Then A(0,*) becomes a regular *-semigroup.

Hereafter, we call such a semigroup $\mathcal{A}(0,*)$ a regular *-semigroup of partial one-to-one mappings determined by the structure sandwich set \mathcal{M} , and denote it by $\mathcal{A}(\mathcal{M})$. The notation and terminology are those of [3] and [4], unless otherwise stated.

In § 2, we shall firstly consider a π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$ which is a set X with a partition $\pi': X = \sum \{X_e : e \in \Lambda\}$, a reflexive and symmetric relation ω on Λ and a set of mappings $\{\sigma_{e,f} : (e,f) \in \omega\}$, where $\sigma_{e,f}$ is a bijection of X_e onto X_f . We remark that a π -set, defined in this paper, is slightly different from the one in [7], which is called a strong π -set in this paper. The set $\mathcal{LI}_{X(\pi')}$, say, of all partial one-to-one π -mappings on $X(\pi'; \omega; \{\sigma_{e,f}\})$ is an inverse subsemigroup of \mathcal{I}_X . By using $\{\sigma_{e,f} : (e,f) \in \omega\}$, we shall construct a structure sandwich set \mathcal{M} , and show that $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ is a locally inverse *-semigroup. We call such a semigroup $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ the π -symmetric locally inverse *-semigroup on a π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$ with the structure sandwich set \mathcal{M} .

In § 3, we shall show that any locally inverse *-semigroup is embedded up to *-isomorphism in the π -symmetric locally inverse *-semigroup $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ on a π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$.

As a generalization of [2], Cowan [1] gave us the definition of the wreath product SwrT(X) of inverse semigroups S and T(X), where T(X) is an inverse subsemigroup of \mathcal{I}_X . And he showed that the wreath product SwrT(X) is also an inverse semigroup. In § 4, we shall show that the wreath product of locally inverse *-semigroups S and T(X) ($\subseteq \mathcal{LI}_{X(\pi')}$) is a locally inverse *-semigroup. Moreover, we shall obtain that the wreath product of generalized inverse *-semigroups is also a generalized inverse *-semigroup.

2 π -Symmetric locally inverse *-semigroups

Let X be a non-empty set. If there exist a partition $X = \sum \{X_e : e \in \Lambda\}$ and a reflexive and symmetric relation ω on Λ such that

- (i) for each $(e, f) \in \omega$, there exists a bijection $\sigma_{e, f}: X_e \to X_f$,
- (ii) for all $e \in \Lambda$, $\sigma_{e,e} = 1_{X_e}$,
- (iii) for any $(e, f) \in \omega$, $\sigma_{f,e} = \sigma_{e,f}^{-1}$,

then X is called a π -set with a partition $\pi': X = \sum \{X_e : e \in \Lambda\}$, a relation ω and a set of mappings $\{\sigma_{e,f} : (e,f) \in \omega\}$, and denote it by $X(\pi'; \omega; \{\sigma_{e,f}\})$, or simply by $X(\pi')$. If a π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$ satisfies the following two conditions

- (iv) ω is transitive, that is, it is an equivalence relation,
- (v) for $(e, f), (f, g) \in \omega$, $\sigma_{e, f} \sigma_{f, g} = \sigma_{e, g}$,

it is called a strong π -set.

Let $X(\pi'; \omega; \{\sigma_{e,f}\})$ be a π -set. A subset A of X is called a π -single subset of X if for each $e \in \Lambda$, there exists at most one element $f \in \Lambda$ such that $X_f \cap A \neq \square$ and $(e, f) \in \omega$. We consider the empty set as a π -single subset. Denote the family of all π -single subsets of $X(\pi'; \omega; \sigma_{e,f}\})$ by T.

A mapping α in the symmetric inverse semigroup \mathcal{I}_X on X is called a partial one-to-one π -mapping of $X(\pi'; \omega; \{\sigma_{e,f}\})$ if $d(\alpha)$ and $r(\alpha)$ are π -single subsets. Let $\mathcal{LI}_{X(\pi')}$ be the set of all partial one-to-one π -mappings of $X(\pi'; \omega; \{\sigma_{e,f}\})$, that is, $\mathcal{LI}_{X(\pi')} = \{\alpha \in \mathcal{I}_X : d(\alpha), r(\alpha) \in \mathbf{T}\}$. The following lemma is clear.

Lemma 2.1 The set $LI_{X(\pi')}$, defined above, is an inverse subsemigroup of I_X .

For $A, B \in \mathbf{T}$, define a mapping $\theta_{A,B}$ as follows:

$$d(\theta_{A,B}) = \{ x \in A : \text{ there exist } e, f \in \Lambda \text{ such that } (e, f) \in \omega, \\ x \in X_e \text{ and } x\sigma_{e,f} \in B \},$$

(3.1)
$$r(\theta_{A,B}) = \{ y \in B : \text{ there exist } e, f \in \Lambda \text{ such that } (e, f) \in \omega, \\ y \in X_f \text{ and } y\sigma_{f,e} \in A \}, \\ x\theta_{A,B} = x\sigma_{e,f} \qquad (x \in d(\theta_{A,B}) \cap X_e, (e, f) \in \omega).$$

For any $\alpha, \beta \in \mathcal{LI}_{X(\pi')}$, define $\theta_{\alpha,\beta} = \theta_{r(\alpha),d(\beta)}$. Since a subset of π -single subset is also a π -single subset, we have that $\theta_{\alpha,\beta} \in \mathcal{LI}_{X(\pi')}$ for all $\alpha,\beta \in \mathcal{LI}_{X(\pi')}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in \mathcal{LI}_{X(\pi')}\}$.

Lemma 2.2 The set \mathcal{M} , defined above, is the structure sandwich set of $\mathcal{LI}_{X(\pi')}$ determined by a mapping $\theta: \mathcal{LI}_{X(\pi')} \times \mathcal{LI}_{X(\pi')} \to \mathcal{LI}_{X(\pi')}$ $((\alpha, \beta) \mapsto \theta_{\alpha,\beta})$. Therefore, $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ is a regular *-semigroup.

We call the set \mathcal{M} , defined above, the structure sandwich set determined by a π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$.

It is clear that each projection of $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ is the identity mapping 1_A on a π -single subset A. Let 1_A be any projection and let α, β be any projections of $1_A \circ \mathcal{LI}_{X(\pi')} \circ 1_A$. There exist $B, C \in \mathbf{T}$ such that $\alpha = 1_A \circ 1_B \circ 1_A$ and $\beta = 1_A \circ 1_C \circ 1_A$. Then $\alpha = \theta_{A,B} \theta_{A,B}^{-1} = 1_{d(\theta_{A,B})}$ and $\beta = 1_{d(\theta_{A,C})}$. Since $d(\theta_{A,B}) \subseteq A$ and $d(\theta_{A,C}) \subseteq A$, $\theta_{1_{\theta_{A,B}},1_{\theta_{A,C}}} \subseteq \theta_{A,A} = 1_A$.

Similarly $\theta_{1_{\theta_{A,C}},1_{\theta_{A,B}}} \subseteq 1_A$. Then $\alpha \circ \beta = \beta \circ \alpha$. Therefore, $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ is a locally inverse *-semigroup. We call it the π -symmetric locally inverse *-semigroup on $X(\pi';\omega;\{\sigma_{e,f}\})$ with the structure sandwich set \mathcal{M} . Now, we have the following theorem.

Theorem 2.3 Let X be a π -set with a partition $\pi': X = \sum \{X_e : e \in \Lambda\}$, a relation ω on Λ and a set of mappings $\{\sigma_{e,f} : (e,f) \in \omega\}$, and let \mathcal{M} be the structure sandwich set determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$. Then $\mathcal{LI}_{X(\pi')}$ is an inverse subsemigroup of \mathcal{I}_X . Moreover, $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ is a locally inverse *-semigroup.

Let $X(\pi'; \omega; \{\sigma_{e,f}\})$ be a strong π -set, where $\pi' = \sum \{X_e : e \in \Lambda\}$. Since ω is an equivalence relation on Λ , there exists the partition $\Lambda = \sum \{\Lambda_i : i \in I\}$ induced by ω . For each $i \in I$, denote the subset $\bigcup \{X_e : e \in \Lambda_i\}$ by \mathbf{X}_i .

Lemma 2.4 A subset A of X is a π -single subset if and only if it satisfies the condition that for any $i \in I$, $A \cap \mathbf{X}_i \neq \square$ implies $A \cap \mathbf{X}_i \subseteq Xe$ for some $e \in \Lambda_i$.

Let \mathcal{M} be the structure sandwich set determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$. By Theorem 3.6 of [7], $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ is a generalized inverse *-semigroup. We call such a semigroup the π -symmetric generalized inverse *-semigroup and denote it by $\mathcal{GI}_{X(\pi')}(\mathcal{M})$ instead of $\mathcal{LI}_{X(\pi')}(\mathcal{M})$.

Corollary 2.5 (Theorem 3.6 [7]) Let X be a strong π -set with a partition $\pi': X = \sum \{X_e : e \in \Lambda\}$, an equivalence relation ω on Λ and a set of mappings $\{\sigma_{e,f} : (e,f) \in \omega\}$, and let \mathcal{M} be the structure sandwich set determined by $X(\pi';\omega)$. Then $\mathcal{GI}_{X(\pi')}(\mathcal{M})$ is a generalized inverse *-semigroup.

3 Representations

Let S be a locally inverse *-semigroup and \mathcal{I}_S the symmetric inverse semigroup on S. In this section, denote E(S) and P(S) simply by E and P, respectively. Since each \mathcal{L} -class has one and only one projection, $\pi': S = \sum \{L_e : e \in P\}$ is a partition of S, where L_e denotes the \mathcal{L} -class containing e. Let $\omega = \{(e, f) \in P \times P : e\mathcal{R}g\mathcal{L}f \text{ for some } g \in E\}$. It is clear that ω is a reflexive and symmetric relation on P. For $(e, f) \in \omega$, define $\sigma_{e,f}: L_e \to L_f$ by $x\sigma_{e,f} = xf$. It follows from Green's Lemma that $S(\pi'; \omega; \{\sigma_{e,f}\})$ is a π -set. Let \mathbf{T} be the set of all π -single subsets of $S(\pi'; \omega; \{\sigma_{e,f}\})$ and \mathcal{M} the structure sandwich set determined by $S(\pi'; \omega; \{\sigma_{e,f}\})$. By Theorem 2.5, $\mathcal{L}\mathcal{I}_{S(\pi')}(\mathcal{M})$ is a locally inverse *-semigroup.

For any $a \in S$, let $\rho_a : Sa^* \to Sa$ be a mapping defined by

It is trivial that ρ_a and ρ_{a^*} are mutually inverse mappings of Sa^* and Sa onto each other, and hence $\rho_a \in \mathcal{I}_S$. A subset of S is said to be \mathcal{L} -full if it is a union of some \mathcal{L} -classes of S.

Lemma 3.1 (1) For any $a \in S$, $\rho_a \in \mathcal{LI}_{S(\pi')}$.

(2) For any $a, b \in S$, $\theta_{\rho_a, \rho_b} = \rho_{a^*abb^*}$. Therefore, $\rho_a \circ \rho_b = \rho_a \rho_{a^*abb^*} \rho_b$.

By the lemma above and Theorem 2.2 of [5], we can easily see the following lemma.

Lemma 3.2 Define a mapping $\phi: S \to \mathcal{LI}_{S(\pi')}(\mathcal{M})$ by

$$a\phi = \rho_a$$
.

Then ϕ is a *-monomorphism.

Now, we have the main theorem.

Theorem 3.3 A locally inverse *-semigroup can be embedded up to *-isomorphism in the π -symmetric locally inverse *-semigroup $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ on a π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$ with the structure sandwich set \mathcal{M} determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$.

If S is a generalized inverse *-semigroup, then a π -set $S(\pi'; \omega; \{\sigma_{e,f}\})$, constructed above, is a strong π -set. For, let $(e, f), (f, g) \in \omega$. Then there exist $h, k \in E(S)$ such that $e\mathcal{R}h\mathcal{L}f$ and $f\mathcal{R}k\mathcal{L}g$. Since S is a generalized inverse *-semigroup, $efg = eg \in E(S)$ and $e\mathcal{R}eg\mathcal{L}g$. In this case, it follows from [7] that $\sigma_{e,f}\sigma_{f,g} = \sigma_{e,g}$, and hence $S(\pi'; \omega; \{\sigma_{e,f}\})$ is a strong π -set. Then we have the following corollary.

Corollary 3.4 (Theorem 4.8 [7]). A generalized inverse *-semigroup can be embedded up to *-isomorphism in $\mathcal{GI}_{X(\pi')}$ on a strong π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$.

4 Wreath products

Let S and T be locally inverse *-semigroups. By Theorem 3.3, T can be embedded in the π -symmetric locally inverse *-semigroup $\mathcal{LI}_{X(\pi')}(\mathcal{M})$ on a π -set $X(\pi'; \omega; \{\sigma_{e,f}\})$ with the structure sandwich set \mathcal{M} determined by $X(\pi'; \omega; \{\sigma_{e,f}\})$. In this case, we can consider T as a locally inverse *-subsemigroup of $\mathcal{LI}_{X(\pi')}(\mathcal{M})$, and so denote it by T(X).

By XS , denote the set of all mappings from the family **T** of π -single subsets of $X(\pi'; \omega; \{\sigma_{e,f}\})$ into S, and define a multiplication on XS by

$$d(\psi_1 \psi_2) = d(\psi_1) \cap d(\psi_2),$$

$$x(\psi_1 \psi_2) = (x\psi_1)(x\psi_2).$$

For any $\alpha \in \mathcal{LI}_{X(\pi')}$ and $\psi \in {}^XS$, let us define ${}^{\alpha}\psi (\in {}^XS)$ by

$$^{\alpha}\psi = \alpha\theta_{\alpha,\psi}\psi,$$

where $\theta_{\alpha,\psi} = \theta_{r(\alpha),d(\psi)} \in \mathcal{M}$.

Let $\psi \in {}^XS$ and $\alpha \in \mathcal{LI}_{X(\pi')}$ such that $d(\psi) = d(\alpha)$. Define a mapping ψ_{α}^* ($\in {}^XS$) by

$$d(\psi_{\alpha}^*) = d(\alpha^{-1}),$$

$$x\psi_{\alpha}^* = (x\alpha^{-1}\theta_{\alpha^{-1},\psi}\psi)^*.$$

Since $r(\alpha^{-1}) = d(\alpha) = d(\psi)$, $\theta_{\alpha^{-1},\psi} = 1_{d(\alpha)}$ and hence $x\psi_{\alpha}^* = (x\alpha^{-1}\psi)^*$ for all $x \in d(\psi_{\alpha}^*)$. Now, we define the (right) wreath product SwrT(X) of S and T(X) as follows:

$$SwrT(X) = \{ (\psi, \alpha) \in {}^{X}S \times T(X) : d(\psi) = d(\alpha) \},$$

$$(\psi, \alpha)(\varphi, \beta) = (\psi^{\alpha}\varphi, \alpha \circ \beta),$$

$$(\psi, \alpha) = (\psi^{*}_{\alpha}, \alpha^{-1}).$$

Let $(\psi, \alpha), (\varphi, \beta) \in SwrT(X)$. Then

$$x \in d(\psi^{\alpha}\varphi) \iff x \in d(\psi) \text{ and } x \in d({}^{\alpha}\varphi) = d(\alpha\theta_{\alpha,\varphi}\varphi)$$

$$\iff x \in d(\alpha), x\alpha \in d(\theta_{\alpha,\varphi}) \text{ and } x\alpha\theta_{\alpha,\varphi} \in d(\varphi)$$

$$\iff x \in d(\alpha), x\alpha \in d(\theta_{\alpha,\beta}) \text{ and } x\alpha\theta_{\alpha,\beta} \in d(\beta)$$

$$\iff x \in d(\alpha\theta_{\alpha,\beta}\beta) = d(\alpha \circ \beta).$$

Then $(\psi, \alpha)(\varphi, \beta) = (\psi^{\alpha}\varphi) \in SwrT(X)$, and hence SwrT(X) is closed under the multiplication. It immediately follows from the definition of ψ_{α}^* that SwrT(X) is closed under the unary operation *.

Theorem 4.1 Let S and T(X) be locally inverse *-semigroups. Then SwrT(X) is a locally inverse *-semigroup. Moreover, we have

$$P(SwrT(X)) = \{(\psi, 1_A) \in SwrT(X) : A \in \mathbf{T} \text{ and } r(\psi) \subseteq P(S)\},$$

$$E(SwrT(X)) = \{(\psi, \alpha) \in SwrT(X) : \alpha \in E(T(X)) \text{ and } r(\psi) \subseteq E(S)\}.$$

Next, we shall consider wreath products of generalized inverse *-semigroups. Let S and T(X) ($\subseteq \mathcal{GI}_{X(\pi';\omega;\{\sigma_{e,f}\})}(\mathcal{M})$) be generalized inverse *-semigroups.

Lemma 4.2 Let A, B, C be a π -single subsets of a strong π -set $X(\pi'; \omega; {\sigma_{e,f}})$, and let $\psi \in {}^XS$ such that $d(\psi) = C$. Then, for any $x \in d(1_A \circ 1_B \circ 1_C)$, $x^{1_A \circ 1_B} \psi = x^{1_A} \psi$.

By using the lemma above, we have the following theorem.

Theorem 4.3 Let S and T(X) ($\subseteq \mathcal{GI}_{X(\pi')}(\mathcal{M})$) be generalized inverse *-semigroups, then SwrT(X) is a generalized inverse *-semigroup.

References

- [1] D. F. Cowan, A class of varieties of inverse semigroups, J. Algebra 174 (1991), 115-142.
- [2] C. H. HOUGHTON, Embedding inverse semigroups in wreath products, Glasgow Math. J. 17 (1976), 77-82.
- [3] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [4] T. IMAOKA, On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14 (1980), 19-23.
- [5] T. IMAOKA, Prehomomorphisms on regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 15 (1981), 23-27.
- [6] T. IMAOKA, Identities for Idempotents of generalized inverse [*-]semigroups, Mem. Fac. Sci. Shimane Univ. 28 (1994), 9-11.
- [7] T. IMAOKA, Representations of generalized inverse *-semigroups, submitted.
- [8] G. B. Preston, Representations of inverse semi-groups, J. London Math. Soc. 29 (1954), 411-419.
- [9] V. V. VAGNER, Generalized groups, Doklady Akad. Nauk SSSR 84 (1952), 1119–1122 (Russian).

Department of Mathematics Shimane University Matsue, Shimane 690, Japan