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On the state constraint boundary value problem

for Isaacs equations
ESEAEERE b KM (Shigeaki Koike)

§1. Introduction
We consider the following Isaacs equations of first-order:
min max{\u(z) - (g(z,0,), Du(e)) - f(z,0,0)} =0. (1)
for z € 2, where @ C R" is an open bounded set, A and B are compact
sets in RY for some N € N, f and g are given continuous real-valued and
R"-valued functions, respectively, on @ x A x Band A > 0is a
constant.

Somer (5] first characterized the value function associated with the
state constraint (SC in short) problem arising in deterministic optimal
control (i.e. #B = 1) as the unique viscosity solution of (1) (i.e. Bell-
man equation) among continuous viscosity solutions under a boundary
condition, which he proposed via dynamic programming principle.

Recently, for first-order Bellman equations, Ishii and myself in [3] have

proposed a new boundary condition, which is naturally derived from the
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SC requirement. In [3], it was shown that the value function is the unique
viscosity solution arhong possibly discontinuous viscosity solutions -
under the new boundary condition.

Our question here is what is the natural boundary condition for the
Isaacs equations (1) under the SC requirement.

Our aim here is to present the definition of value for the SC problem
of differential games in a reasonable way

§2. Value function

We shall define the value for the SC problem associated with (1).

In what follows, we suppose the continuity assumptions:

[ Jwy: a modulus of continuity s.t.

(4)]g(z, a,b) — g(w, &,B)| < wo(la — &| + b~ b)),

(1) { @)f(z,a,0) ~ f(2,8,0)] <wo(lz — 2| +|a—a| + b - b))
for Vz,% € 0,Va,a € A,Vb,b € B, and

(153) sup {|If(-,a,0)llom) + l9( @ B)llgongm} < oo
{ (ab)EAXB

Notations

[ Controls by the player I] A= {a:[0,00) = A | a: measurable }

[ Controls by the player II] B={3:[0,00) — B | 8 : measurable }

[States for (o, 3,z) € A x Bx Q) X(;z,a,p) is the unique solution of
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2 0) = 9(X(0), a0), (1)) for t >0

X(0) = z.
Roughly speaking, our SC problem is as follows: For each z € §, the

players I and‘I I, respecﬁvely, “minimize and maximize” a functional
J(z,a,p) over a € A and B € B for which X(¢; z, @, 8) stays in () for any
time ¢ > 0. Then, we will derive a function depending on the z, which
we will call the value function.

We shall characterize the boundary value problem which the value
function satisfies in the sense of viscosity solutions.
Notations

[ Admissible pairs of controls for (a:, s) € Q x (0,00]1
AD,(z) = {(a,8) e AX B| X(t;z,0,08) € Q for t € [0, s]}.

We will suppose that AD(z) # @ for all z € Q0.

[ Admissible controls by I for (z,s) € 2 x (0,00]]

As(z) ={a e A| 3B € Bst. (a,f) € AD,(z)}
[ Admissible controls by IT for (z,s) € & x (0, c0]]

By(z) ={f € B|3a e Ast. (a,f) € AD,(z)}

[Strategies)

For Vt € (0, s], if 8 = f a.e. in (0,¢) for
Ay=<C 6:B— A
B,8 € B, then §[] = 6] a.e. in (0, ¢).



23

[ Admissible strategies]
A,(z) = {8 € A, | (6[6], ) € AD,(z) for VB € B, (<)}

Note that, for Vz € Q, by (A1), 3s > 0s.t. A,(z) =A and B,(z) =
B.

Now we define the value V on Q by

V(z)= inf / ME(X (42, a,8),alt), B(t))dt.

SEA () ﬁEBoo(a:)

Note that V coincides with that for the control problem in [3] if #B = 1.
§3. SC problem for (1)

For each (z,b) € I x B, we define the following subsets of A:

Ir > 0s.t. X(t;y,a,0) €0
A(z,b) =4 a€ A
for t € [0,7] if y € QN B,(x).

We shall use the following assumptions:

( 3r,s >0 s.t.,if b€ B and B € B satisfy |5(t) —b| <7

(A2) { for a.a. t € [0,s], and z € 3Q, then A(z,b) # 0,

| and X(t;z,0,8) € Qfort € [0,s] and a € A(z,b).
Notations |

H(z,r,p;a,b) = Ar — (g(z,a,b),p) — f(z,a,b)
for (z,7,p,a,b) € A X RxR" x Ax B.

H(z,r,p) = Igélgll];leag{ H(z,r,p;a,b)

Hi.(z,r,p) = inf sup H(z,r,p;a,b)
b€B 4 A(z,b)



for (z,7,p) € @ x R x R™.

We shall adapt the following definition of viscosity solutions for the
SC problems of (1).
Definition. We call u.a subsolution (resp., supersolution and solution)
for the SC problem of (1) if it is a viscosity subsolution (resp., supersolu-

tion and solution) of

H(z,u(z), Du(z)) = 0 forz € Q. (SC)

Rémarks. Hi(z,7,p) = H(z,r,p) for (z,7,p) € 2 x R x R".

H:n((ll,’r,p) = H(wyr’p) for (1',7‘,17) € N xR x R™.
H,(z,7,p) = Hin(z,r,p) for z € 00 x R x R™.

Theorem 1. ([4] cf. [2]) Assume (A1) and (A2). Then, the value
function V is a viscosity solution of (SC).

§4. Comparison and uniqueness results

Now, we present our comparison result,for (SC), which implies that
the vélue function constructed in section 2 is the unique viscosity solution
of (SC) and that it is continuous.

We first introduce the following subsets: For b € B and z € §, we let

G(z,b) = the convex hull of {g(z,q,b) | a € A(z,b)}.
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We use the following hypotheses concerning on the vector fields.

( For z € 09,30 € (0,1),7 >0 and ¢ € S™ ! s.t.

(A3) {  (3) UocicrBig(z +t€) C Q for z € QN B,(z).

L (Z'l) G(Z, b) n Ut>0Bt9(t£) # @ for b € B.

We remark that assumption (A3) allows us to treat the case when the
vector fields are tangential to 99 if a convex combination of those dire-
cts inside rather perpendicularly.

We shall also suppose the nondegeneracy of the convex combinations

“of the vector fields appearing in our boundary condition;

(A4) Lcant_ Al [ € G(z,b)} > 0.

We first preseﬁt a key lemma:
Lemma. ([4] cf. [2],(3]) Letz€ 8Q,7>0,£ € S* ! and 6 € (0,1)

satisfy that
Uo<t<rBuo(z + t€) C Q for z € O N B,(2).

Then, there are constants Cy,C1 > 1, 0 € (0,1 — 6) and a function ¢ €
CY(Q x Q) such that, for z,y € QN B,(z),
Cy'lle — yl* < (e, y) < Cole -y, (3)
(€, Duth(2,3)) < 0 provided z € 00 and € € Boyo(€),  (4)
lDz"p(x;y)‘ < Cllm - yl and Dz¢($7y) + D‘y¢($)y) = Of

Remark. Note that (4) is stronger than the associated requirement in [3].
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Theorem 2. ([5]) Assume (A1) — (A4). Let u and v be a viscosity

-sub- and supersolution of (SC), respectively. Then, we have
u* <w, in Q.
Outline of proof. For simplicity, we suppose that u and v are upper
and lower semicontinuous, respectively.
It is enough to get a contradiction when there exist © > 0 and z € 99
such that © = u(z) — v(z) > u(z) — v(z) for any = € 8Q\{z}.
Choose the C*-function 9 from Lemma for this z. For a, p > 0, we

set :
Vo(z,y) = u(z) — v(y) — op(z,y) + p(, = — y),
where p > 0 will be fixed later and o > 0 will be sent to co. Let (za,Ya)

_satisfy

\I’a(wa>ya) = ma)i‘l’a(-"«',y) > o.
z,yeN

A standard observation using ¥o(Za, %) > ¥a(z, z) together with (3)
implies
lim 2o = Jim o = 2, Jim a(z) = u(2), Jim o(se) = o(2).  (5)

We shall write z and y in place of z, and y,, respectively.

A difficulty arises only when z € 9Q;
Hin(::c)u(x)a aD2¢(x)y) - /*Lg) < 0.
Thus, there is b € B, for some [ € N, such that

H(iv,u(x),ale/)(-’an) - )U'S;a) 8) < 0



for all a € A(z,b). In view of (A3) — (i1), we can choose {t; > 0}}_; and
{ax € A(z,b)},_, such that
! !
z tz = 1 and Ztkg(z,ak,b) € Ut>()Bt9(t£).
k=1 =

Set 7(z) = Tk, trg(, ar, b). Taking a convex combination over a €

A(z,b)(C A(z,b)) in the above inequality, we see that

—<7’(m)»O‘Dz¢(way) - /"5) <C ) (6)

for a constant C > 0 independent of «, . In view of (A1) — (444) and
(A4), there is a contant k > 0 independent of a, u such that kn(z) €

By(¢). By (5), for large o > 1, we see that kn(z) € Bp4o(£). Hence,
by v o

(6), we have ' _
pkin(z)ly1 - (0 +0)? < C

for some C > 0. Therefore, we get a contradiction for a large > 1. m
Now, according to Theorem 2, it is easy to show the uniqueness and
continuity of the lower and upper value functions.
Corollary. Assume (A1) — (A4). Then, V is the unique viscosity
o
solution of (SC). Moreover, V € C(9).
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