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On the Existence of Solutions of the Cauchy
Problem for a Nonlinear Diffusion Equation
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Department of Mathematics, Faculty of Science Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo, 152, Japan

1. Introduction

We investigate the Cauchy problem for the following nonlinear diffusion equation,

(1.1) %ﬂulﬂ“lu) = div(|Vu[P~2Vu) in Sp, f>0,p>1,
(1.2) [ul~1u(-,0) = u(-) in RV, |

Here St = RN x (0,T), 0 < T < oo, and g is an L _(RN)-function or a o-finite Borel
measure.

The equation (1.1) is called the doubly nonlinear parabolic equation, which contains
the heat equation (i.e. § =1, p = 2), the porous medium equation (i.e. 8 > 0,p = 2), and
the p-Laplacian equation (i.e. § = 1,p > 1), and the equation (1.1) has been studied by
several authors, for example, see [7], [8], [10], [11], and [13]. We distinguish the Cauchy
problem (1.1) with (1.2) into three cases:

O e-1/8>1 1) (p-1)/8=1, () 0<(p-1)/8<1,

and study the existence of the solution, respectively. For each case of (I), (II) and (III),
the behavior of solutions of (1.1) is completely different from one another, and so we need
this separation. The case of (I) contains the so-called degenerate case of porous medium
equation and p-Laplacian equation, and the case of (III) contains the singular case of them.

In what follows, we call (I) the degenerate case and (III) the singular case, respectively.

A classical result of A.N.Tychonov [12] states that the Cauchy problem for the heat
equation, u: = Au, has a unique classical solution in the strip St for continuous initial

data p(z) satisfying

(1.3) ()] < Cexp(|e*/4T)  as |z| — co.
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Moreover D.G.Aronson [1] generalized them for parabolic operator with variable coeffi-
cients:

_ 0 0 0
(1.4) Lu = Fri e %{A,]v(x,t)%u + A](m,t)u}

with suitable conditions imposed on coefficients A;;(z,t) and Aj(z,t). For the Cauchy
problem for the equation Lu = 0 with the initial data u(z) satisfying

(1.5) /I;N u(w)exp(—A|m]2)dw < 00, A>0,

he proves that it has a unique classical solution in some strip S7v, where T' is a constant
dependent on A. Furthermore he proved the solution u is written by the form in the strip
S |

u(z,t) = /I;N [(z,t; €, 0)ue(€)dE,
where T is the fundamental solution of Lu = 0. See also [9] and [14].

For the degenerate case of porous medium equation
(1.6) | ’ ur = A(u™), m>1,

Ph.Benilan, M.G.Crandall and M.Pierre [2] proved that the Cauchy problem is uniquely
solvable in the sense of weak solutions for the initial data satisfying

(1.7) ‘1imsupp"N_2/(m_1)‘/‘ d|p| < oo,
. p—oo : B,

where B, is a ball of radius p > 0 with center 0. On the other hand, for the degenerate

case of the p-Laplacian equation,
(1.8) | uy = div(|Vu|P~2Vu), p>2,

E.DiBenedetto and M.A .Herrero [4] proved the similar result for the initial data satisfying

(1.9) | lim sup p'N"p/(”_z)/ d|p| < oo.
‘  Js,

p—oo

Furthermore E.DiBenedetto and M.A.Herrero [5] and E.DiBenedetto and T.C.Kwong [6]
studied the Cauchy problem for singular cases of the porous medium equation ((N —
2)*/2 < m < 1) and the p-Laplacian equation (2N/(N + 1) < p < 2), and obtained the
L. (RN)-estimate of the solution for the Lj (R") initial data.

loc
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Our purpose of this paper is to extend the earlier results on the existence of solutions
to the doubly nonlinear parabolic equation (1.1). The main point of this paper is to treat
the case (II).

For the case of (II), if the initial data p satisfies

(1.10) /RN exp(—Alz|P/P=V)d|u| < oo

for some constant A > 0, then we prove that there exists a weak solution of (1.1) with (1.2)
in the strip Sr(s), where T(A) = (p — 1)2P~VA1~P/pP. Here we remark that there exists
a solution of (1.1) with the initial data satisfying (1.10), which can’t be extended to larger
strip than Sp(s). The case (II) contains the heat equation, but our proof is completely
different form that of [1] and [12]. In fact, the proof doesn’t use the fundamental solution
of the heat equation, and it depends only on the structure conditions of the equation. So
our proof is applicable to more general equation than that of [1].

For the proof of the case (II), we essentially use the techniques given in [3]-[6].
But it seems difficult to apply them to case (II) directly. To overcome this difficulty, we
introduce a new weight function ¢, (see (2.8)), and obtain an L!(R")-estimate of ¢,
(see (2.10)). From the estimate of [[¢a(:,t)||z1(rr), We can estimate |lu(-,t)|[z=(B,) and
IVu(:,t)|[Ls-1(B,), and prove that the critical growth order of the initial data for this case
is of exponential growth.

For the case of (I), there exists a weak solution of (1.1) under the initial data satisfying

(1.11) limsupp_N"’/d/ d|u| < oo,
p—>00 B,

where d = (p — 1)/8 — 1. Furthermore for the case of (III), such that Nd + p > 0, we will
give the L2 (RN )-estimate of the solution for the Ll (RY) initial data. For the cases of (I)
and (III), our proof heavily depend an approach of [3]-[6]. Recently, for the case of (III)
of the equation (1.1), V.Vespri [13] proved several inequalities, by which the existence of
solutions is proved.

Finally, we remark that, to my acknowledgment, there is no results for the uniqueness

of weak solutions of (1.1), though the uniqueness of strong solutions of (1.1) is given in
[11].
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2. The Main Results
In this section, we give the definition of weak solution of (1.1) with (1.2), and state our

results.

Definition 1. A measurable function u(z,t) defined in RY x (0,T) is a weak solu-
tion of (1.1) and (1.2), if for any ¢ € (0,T) and every bounded open set Q C RY,
u € Lp_l(o’Te; Wl’p_l(g))a lulﬂ—lu € C(0,T; L'(Q)) and

ey [ uptedet [ [ (-l u
Q 0 JQ
+ |VuP~2Vu - Vo ldzdr = /Q o(z,0)dy,
for all 0 < t < T. and all testing functions
(2.2) ~ @ € Who0(0, T.; L=(2)) N L=(0, Te; Wy ().
Here T, =T —e.
Throughout this paper, we set
m=1/, d=(p-1)/f-1=m(p-1)-1, k- =Nd+rp.
In particular, we set
k=K = Nd+p, K,*=I€mp=Nd‘+mp2

for simplicity. Furthermore by C = C(Ai, A2,--+) we denote positive constant which
depends only §,p, A1, Az, .

Case I: The Degenerate Case (d > 0)
In order to represent the growth order of the initial data p(z), we define ||| |||, by

(23) Nl = sup p=/4 /B |fldz,

24

for f € LL _(RN). This norm is a modification of the norm introduced in [6].



Theorem 1. Let d > 0 and u be a o-finite Borel measure in RN satisfying
Hell]r < o0 for some r > 0.

Then there exists a weak solution u of (1.1) and (1.2) in the strip St(,), where

C] [limr——»oo IHIJHIT]—d if hm?‘—*oo |”#|”r >0

2.4 T(p)=
(2.4) () {+oo i limroo |||l = 0

and C] = Cl(N,,B,p).
Let T,(p) = C1|||u|l|;¢. Then for any t € (0,T.()) and p > 0,

25) Il ) 1l < Calllall,
26) (s )l (m,) < Cat=N/E% po1 8] 1,
and
t
(27) / /B VulP~tdadr < Cyt"/ ot/ || ]| |-+4/x,

where Ci = Ci(N7 ﬂ,P); 1= 2,3,4.

Case II: The Critical Case (d = 0)
For any A > 0 and 6 > 0, let ¢(¢) be a function defined by

(28) 420 = sw [ a(lehF(enurtyds,
where
F(S)={|3|1+6/(1+5), if |s] <1, n()z{l, if s<1,
|s| — 6/(146), if |s|>1, sN+R/(=1) | if 5> 1,
and
_ |z|P 1/(p-1) .
(2.9) Cga(z,t) ==X - 1+1), 0<i<1/2

Then our result for the case of (II) is as follows.

88
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Theorem 2. Let d = 0 and pu be a o-finite Borel measure satisfying

(210) [ expl(=AleP*=D)dlu(z)] < oo

RN )
for some A > 0. Then there exists a weak solution u of (1.1) and (1.2) in the strip S(),
where T(A) is a constant such that

(p— 12D
pP

(2.11) T(A) = AP,

Furthermore let § > 0 be a sufficiently small constant. Then for any A > A there exists a

constant Ty < 1 such that u satisfies the following inequalities,

(2.12) ox(t) < C1a(0) < C / exp(—Alz[?/*D)d|(a)|
RN
(2.13) €92 CDUP || Loo mvy < Ca(1 +t7N/P)g(2) |
for all t € (0,Ty), where C = C(p, N, A, \,8) and C; = Ci(p, N, 6), 1 =1,2.

The estimate of T(A) in (2.11) is optimal in the sense that there exists a solution
blowing up at T(A). In fact, let u(z,t) be a function such that

k ' P 1/(p—-1) —-1/c 1/(p—-1)
( — (1 — ot)~N/p(p-1) |] _ _P-(e .
u(z,t) = (1 - at) x|\ T 5 =)

where o is any positive constant. Then u(z,t) is a solution of (1.1) in the strip S;/,, and
W~ (z,0) = exp((p — Vylz[P/*7V).

Then T((p — 1)A) = 1/0 and u(z,t) blows up at t = 1/o.

Case III: The Singular Case (d < 0)
We only treat the result for the case of « > 0.

Theorem 3. Let d < 0 be a positive constant such that k£ > 0.and let p be a o-finite Borel
measure in RN. Then there exists a weak solution u of (1.1) and (1.2) in RN x (0, 00).
Furthermore the solution u(z,t) satisfies the following inequalities, '

, p/& ¢ p/x
el iy < = (s [ upamiae) +0a( )
. Bs,

0<r<t pP
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o ' 1/—d
sup / [l (e, 7)dz < Cy / dnu(x>|+c4(é) ,
o<r<tJB, B, p

for any t > 0 and p > 0, where C; = Ci(N,m, p), i = 1,2,3,4.

14

The essential part of Theorem 3 was proved by V.Vespri. See Theorem 2-1 and
Theorem 2-2 in [13].

We remark that the estimates of solutions given in Theorem 1-Theorem 3 may be

extended to nonnegative strong subsolutions of
0
(2.14) é?(lulﬂ_lu) — divA(z,t,u, Vu) < B(z,t,u, Vu).

Here the structure conditions given below are satisfied:

Cilgl? — g1(,1) < A(=,t,u,9) - g < Calgl” + g2(2, 1),

[A(z,t,u,0) — A(z,t,,9)] - (- §) >0,

|B(z,t,u,q)| < CslqlP~ + gs(, t)
for any (z,t,u) € R¥N x Ry xR and ¢,§ € RN, where C;, i = 1,2,3, are given constants
and g;, ¢ = 1,2 are given bounded functions in RN*!,

Furthermore, from Lemma 1-2 in (3], uy = max{u,0} and u_ = —min{u,0} are
nonnegative weak subsolutions of (1.1), and the estimates of Theorem 1-Theorem 3 holds
for nonnegative weak subsolutions of (2.14). Therefore throughout this paper, we treat
only nbnnegative solutions of (1.1).

In the following section, we give the proof of Theorem 2 for the heat equation. The
proof for the heat equation contains an essential part of Theorem 2 for the equation (1.1).
For the cases (I) and (III), we may complete the proofs of Theorem 1 and Theorem 3 by
modifying the proof of the results of [3]-[6].

|

3. Proof of Theorem 2 for the Heat Equation
In this section, we consider the Cauchy problem of the heat equation,
= Au i RY x (0,T),
(3.1) | Uy .ln . ( ,T)
u(z,0) = pu(z) >0 in RV, v
where p € Ll _(RYN) satisfying the condition (2.10). In order to prove Theorem 2 for the

heat equation, we need the following two propositions.
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Proposition 3—1. (See [1]) Let u be a nonnegative LE (RN )-function such that

loc
S (32) u(z)exp(—Alz|*) € L*(RY).

Then there exists a weak solution u(z,t) of (3.1) in St(s), where T(A) is a constant given
in (1.11). Furthermore for any € € (0, T(A)) there exist constants C{ and C§ such that the

solution u(x,t) satisfies

(3.3) sup / exp(—C|z|*)u?(z,7)dz + // exp(—Csflz|?)|Vul*dzdr
0<r<T. JRN Sre
< Cs llpexp(—Al - )|l L2ryy,
where T, = T(A) —e.
The following proposition is proved by the arguments similar to those of [3]-[6].

Proposition 3—-2. Let n and gy be functions appearing in (2.8) and r be a constant with
r > 1. For any A > 0, there exist constants C = C(r,\) and Ty < 1 such that

(3-4) lIn(lz)e®*ullLee (BR, x(81,00)

t l/r -
s0M<N+2>/2f( / / [n(lwl)e”*U]"dxdr> ,
ity BR2

for any Ry, R, with 0 < Ry < R, and any t,t;,t; with 0 <ty <t; <t < Ty, where
(3.5) M =|Vgy|*(Ra,t) + (Ra — R1) 72 + (t1 — t2) ™",
Now we begin with proving Theorem 2 for the heat equation. From Proposition 3-2,
we have the following proposition.
Proposition 3-3. Let u be a solution of (3.1). Then for 0 < Ty < Ty, there exists a
constant C = C(N, 6,T,) such that
(3.6) le? ull L= (B,)(2) < C + Ct/295(2)
for 0 <t < T. ;

" Proof of Proposition 3-3: For any p > 0 and t > 0, let @, be a cylinder defined
by B,, x (ts,t), where p, = Yi_ (27" "1)p and t, = (1 — > i(27*"1))t. Then applying
Proposition 3-2 to the pair of cylinders @, C Qs41, we have

M (N+2)/2(1+6) 1rs 1/(1+6)
3.7 Ine?*u||Lo(q,) < C P EOR (//;2 [ned*utt dxdr) ,
. 241
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where M = |Vg,|?(2p,t) + p~2 + ¢t~ and b = 2-N-2,
For any measurable set E in RY, we denote by yg the characteristic function of E,
and set
(3.8) X1(2) = Xgenru<1}(2),  Xx2(2) = X(esrun1)(2).
Then from (2.8) we have

Pyt dzdr 6 zN)ed* 61:1::1:7-

//Q (lebenu dadr <n*(2p) | e 4o e)ded
e ul|} e z))ed* udzdr

+ |In llz (Q,+1)ms+l n(|z])

t
< Clo’(20) + e ulliwq,,] [ $r(r)ar
So combining (3.7), we have
MN+2)/2(1+8)
bs/(1+6)

7€ ]loo,q, < C

t 1/(1+496)
< ([n‘s(2p) + e ulle g, ) | m(ﬂdr) .

Then from the Young inequality, for any v > 0 there exists a constant C' = C(v,6) such
that

e ullLee(q,) < vline® ullze(q, 41)
+ C(v, §)2N+D2[(2p) + MN+2)/2 / t éa(7)dr).
Therefore iteration of these inequalities yields ’
lIne* ull L (o) < v°|Ine ull Lo (q,)

+ (0, O)ln(20) + MO 24, (0] 3 (2N’

=1

Therefore we set v = 2=(N+3)_take the limit as s — 0o, and obtain
(3.9) Ine®ulLee(m,) < C(6)n(2p) + C(O)[IVarl* + 7N +D/21g5(1).
Therefore from (3.9), we have the inequality (3.6) for the case of p < 1.
For any 0 < Ty < 1 there exists a constant C' = C(T;) such that |Vgy|?(z,t) < Clz|%.
For the case of p 2 1, from (3.9) and the definition of 7 we obtain
lle*uP=| oo (B,\B, ) < C + Ct™N2g5(8),

where C = C(N, 6, Ty). Therefore we obtain the inequality (3.6) for the case of p > 1. I
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Proposition 3—4. Let ((z) is a piecewise smooth cutoff function such that { =1 on B,,

|V¢| < 1/p and supp( C Bs,. Then there exists a constant Ty < 1 dependent only on p

such that

t 2
1)  tmsw [ 2 (a)ess YU (005 (u 4 15¢2 (2)dadr
0o JB,, U+ €

e—0
t t ,
< C[/ T’l/2¢;\(7)d7'+/ TU_1¢}\+6(T)dT],
0 0
for 0 <t < Ty and p > 1, where C = C(N,6) and o = (1 - 6N)/2.

Proof of Proposition 3—4: Let
pe(a,t) = t17n(|2])e [ (u + )] (2).

Then we have

t 1 t
fon l > _ -1/2 gr,,11+6
hrfrﬂglf/o /};u ugpedrdr > S0 +5)/ /B %[ u) T  drdr

o
/27090148 L
1+6/ /;h n[ed* u] atg,\dcz:d'r,

and

/ / Vu . chedmdr> / / F1/2¢ yx [eg"(u+e)]6d:1:d7'
ng B2p

- 0(5)/ / /2e9* (u + é)]1+6|Vg)‘l2dwdr
0 sz ,

_ , , , e
- ¢4 / / '1'1/277[69A (u+ e)]l"'&dmdr.
0 B, .

Taking a sufficiently small Tp, we obtain

(3.11) limsup/ /1; l/zn(lwl)eg"l uf* [eg"(u+e)] ¢?dzdr

e—0
< C/ / 712 (|2])(e9 uw)? dedr.
0 JBy, .
Here we used the relation that ¢!/2 /p* < t™Y% for 0 <t < Ty. So we have

t ¢
(3.12) / / T'l/zn(|a:|)(eg"u)6+ld:cd7' < / T,—1/2¢,\(T)d7'
0 sz 0

t
+/0/B 7'—1/277.(!3;‘)69"u“eg)‘u“%w(sz)(T)deasz.
2p
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Furthermore from Proposition 3-3 we have
t
(3.13) // T_l/zn(h:l)e-‘“uxg||eg"u||i°°(32p)(7')da:d7'
0 /B,
t
S/ / 72|z e uxo[1 + 77N 2 ¢S (1) dedr
o JB.,

t t
<C / TH25\(T)dr + C / T/2-ON/2 g6 (1) dr
0 0

for any 0 < ¢ < Tp. By combining (3.11)—(3.12), we obtain the inequality (3.10). I

Proposition 3-5. There exists a constant Ty = Ty(8,1, $»(0)) such that

(3.14) $a(t) < Coa(0)

for 0 < t < Ty, where C = C(6). Furthermore
(315 e COull o5,y < C(1+7N/2)6(0)

for any p >0 and 0 <t < Tp.

Proof of Proposition 3-5: We set

pe(z, 1) = n(je])e F' (e (u + €))¢*(2),

where ( is a function given in Proposition 3-4, and we have

=t

t
lim// utcpeda:d7'=/ n(|z]))F (e u)(dz
0 Bz,, B2p

€0 =0

t
—/ / n(Jz))[(e?*u) +ox; + ey*UX2]4229AdwdT
0 sz at

and

t t 2 '
/ Vu.Vpdzdr > 6/ / ned* &L[egx(u + €)]°¢%x1dzdr
0o JB,, 0 JB,, ute
t
0@ [ [ nen IVul(90al¢* + CIVENe (u + ) xadodr
0 JB,,

t
~ [ e 19ul09anic? + (VeDadzar,
0 2p



where i, ¢ = 1,2 is given in (3.8). The Young inequality yields
t
/ / ned* | Vu||Vga|¢?[e? (u + €))° x1dzdr
o JB,,

/ /B l [6”‘(U+e)] ¢2xydedr

// nled (u + ) Hor=12| Vg, |2 (% x 1 dzdr.
Ba,

and

’ Vul? o
/ / ned* |Vu||Vgal¢® xadedr </ / Zned> (2xodzdT
0 sz B2p u+

+/ / ned* (u + €)7~2|Vga|2* xodzdr.
0 Bs,

95

Therefore from (2.9) and the Young inequality, there exists a constant C = C(N,6,1) such

" that

(3.16) / a(la)F(e u)ds|

< / n(lal) F(e% u)d

7=0

+msup / / 1/277(1181)6"“' e u 4 P o

+ S [ [ aatemuyadsdr
P° Jo JB,,
c [ -1/2
+ = 774 n(|z])e?* uxedzdr.
P Jo JB,,
Therefore taking the limit p — oo, from Proposition 3—4, we have
t
$2(8) < 6x(0) +.C [ [ 4+ 77 E)gu(r) 77143 ()l
0 .

t
< ¢a(0) + C(#? + /1) ga(t) + C / o193t (1)dr,
0

where o is a constant given in Proposition 3-4. Here we take a sufficiently small § > 0

such that o > 0, and fix 6. Taking a sufficiently small ¢ such that Ct'/2 < 1/4, we have

(3.17) da(t) < 20x(0) +C / o-143*8(r)dr.
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It follows from (3.17) that ¢x(t) is majorized by the solution of
H'(t) = Ct" 'H'™ (1), H(0) = 2¢1(0),

and so we obtain

5 ~1/6
s(O) <HB =2{1- L2 m41680)|  4a(0),

-0
provided the bracket is positive for any 0 < ¢ < Ty. Therefore taking sufficiently small
To > 0 such that [---] > 0, we complete the proof of Proposition 3-5. i

Proposition 3—6. Under the assumption of Proposition 3-5, there holds

(3.18) | fo /B n(lz])e? [Vuldadr < Ct7(p" + 6(0))

for any 0 <t < Tj.

Proof of Proposition 3-6: By the Young inequality, we have
‘ ' [Vul? 6
/ / n(|z|)e* |Vuldzdr S/ / 71/2e9% L [e9 (u + €)]°dzdr
0 JB, o /B, u+e
' ¢
+/ / 7'1/2.[69"(11 + o)} "*dedr
o JB,
= I](E) + Iz(é).
From Propositions 3-4 and 3-5, we have limsup,_,o I1(¢) < Ct°¢x(0). For the second
term I(e), we have
\ - . .
lif% Iy (e) S/ / T2 (e u) "0y, + x2]dzdT
e 0o JB,
- <CH N + (1),
and so we obtain (3.18). I

Now we complete the proof of Theorem 2 for the heat equation.

Proof of Theorem 2: Let A be any constant such that A > A. From the definition of

¢, we have

#x(0) < /RN n(|z|) exp(=A|z|?)u(z)dz.
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Therefore from Proposition 4-3 and A > A, we obtain the inequalities (2.12) and (2.13).
for the initial data u € C°(RY).
For any pu € LL (RY) satisfying (2.10), let p, be a function in C$°(RN) such that

loc

lim Un exp(—/\lmlz)d:c-——-/ exp(—A|z|?)du(z).
RN RN

n—oo

From Proposition 3-1, there exists a solution un of (3.1) for u(z,0) = pa(z) in Seo =

RY x (0, 00). Furthermore Proposition 3-1 and (3.15) yield

To
/ / |Vu,|2dzdt < C(p, )
T B,

for any 0 < 7 < Ty and p > 1, where C(p,7) is a constant independent of n. If necessary,
taking a subsequence of {u,}, we see that
To To
lim Vuy, - Vedzdt = / Vu - Vedzdt

n—oo .
T B, T B,

loc

for any ¢ € L>=(0, To; Wio'°(RY)). Therefore the function u is a solution of (1.1) and (1.2)
in ST,. ' | '
On the other hand, from (3.15) we have

Il exp(=A(t)le|*)u(z, )| oo (rry < 00

for 0 < t < Ty, where A(t) = gx(0,t) = A(1 + t!/2). Therefore from Proposition 3-1,
there exists a solution of (1.1) and (1.2) in Sp(s), and the proof of Theorem 2 for the heat

equation is completed. I
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