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ABSTRACT. It is well known that Kolmogorov complexity has a close relation with
G\"odel’s first incompleteness theorem. In this paper, we give a new formulation of the
first incompleteness theorem in terms of Kolmogorov complexity, that is a generaliza-
tion of Kolmogorov’s theorem, and derive a semantic proof of the second incomplete-
ness theroem from it.

Introduction

Kolmogorov complexity is a measure of the quantity of information in finite ob-
jects. Roughly speaking, the Kolmogorov complexity of a number $n$ , denoted by
$K(n)$ , is the size of a program which generates $n$ , and $n$ is called random if $n\leq K(n)$ .
Kolmogorov showed in $1960’ \mathrm{s}$ that the set of nonrandom numbers is simple in the
sense of recursion theory, and this is a version of G\"odel’s first incompleteness theorem
(cf. Odifreddi [Od]). Chaitin also gave another information-theoretic formulation of
the first incompleteness theorem in terms of Kolmogorov complexity. Relations
between Kolmogorov complexity and the first incompleteness theorem have been
discussed in many places (cf. Li and Vit\’anyi [LV]).

Our purpose is to show that Kolmogorov complexity brings the second incom-
pleteness theorem. The common proofs of the first incompleteness theorem by means
of Kolmogorov complexity do not yield the second incompleteness theorem in the
similar way as the G\"odel’s argument. Hence, we give a new formulation of the
first incompleteness theorem in terms of Kolmogorov complexity by generalizing
Kolmogorov’s theorem, and derive a semantic proof of the second incompleteness
theorem from it.

In spite of their syntactic nature, G\"odel’s theorems have some semantic proofs. By
using models of arithmetic, Kreisel derived new proofs of G\"odel’s theorems from the
arithmetized completeness theorem (cf. Kreisel [Kr] and Smorytski [Sm]), and Paris
and Harrington succeeded to give a mathematical (that is, not metamathematical)
independent statement, now known as Paris-Harrington principle (see H\’ajek and
Pudl\’ak [HP] and Kaye [Ka] $)$ . Recently, Jech [Je] gave a short proof of the second
incompleteness theorem by using models of set theory, and Kikuchi [Ki] showed that
a formalization of Berry’s paradox leads to a model-theoretic proof of the second
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incompleteness theorem. Our proof depends on tllese discussions about models of
arithmetic.

In \S 1, we review basic definitions and theorems in arithmetic and recursion theory,
and in \S 2, define Kolmogorov complexity following Odifreddi [Od]. Then, in \S 3, we
give a proof of the first incompleteness theorem based on Kollnogorov complexity.
\S 4 is devoted to exhibit the arithmetized completeness theorem, which is one of the
main tools used in our proof. Finally, in \S 5, we give a model-theoretic proof of the
second incompleteness theorem.

1. Preliminaries

Let $\mathcal{L}_{A}=\{+, \cdot, 0,1, <\}$ be the first-order language of arithmetic. Peano arith-
metic, denoted by $\mathrm{P}\mathrm{A}$, is the theory in $\mathcal{L}_{A}$ that consists of the basic axioms of
arithmetic (i.e., the axioms of discretely ordered semirings with the least positive
element 1) and the axiom schema of induction.

We say a quantifier is bounded if it appears in the form $(\forall x<t)\phi$ or $(\exists x<$

$t)\phi$ with a term $t$ that does not contain $x$ . (Here, $(\forall x<t)\phi$ and $(\exists x<t)\phi$ are
abbreviations of $\forall x(x<tarrow\phi)$ and $\exists x$ ($x<t$ A $\phi$), respectively.) Then, $\mathrm{a}^{-}$ formula $\phi$

in $\mathcal{L}_{A}$ is called $\Delta_{0}$ if every quantifier in $\phi$ is bounded, and called $\Sigma_{1}$ if $\phi$ is a formula
of the form $\exists\overline{x}\psi$ for some $\Delta_{0}$ formula $\psi$ . It is well known that a relation $R\subseteq \mathrm{N}^{k}$ is
recursively enumerable if and only if there is a $\Sigma_{1}$ formula $\phi(\overline{x})$ such that $\overline{m}\in R$ if
and only if $\mathrm{N}\models\phi(\overline{m})$ for all $\overline{m}\in \mathrm{N}^{k}$ .

PA is said to be $\omega$-consistent when the following condition holds: for any formula
$\phi(x)$ in $\mathcal{L}_{A}$ , PA $\nu\exists x\neg\phi(X)$ if $\mathrm{P}\mathrm{A}\vdash\phi(n)$ for all $n\in$ N. Let $\mathrm{P}\mathrm{r}(X)$ be a $\Sigma_{1}$ formula
that denotes the relation that $x$ is the G\"odel number of a formula that is derivable
from $PA$ . Then, define Con(PA) and $\omega$-Con(PA) to be sentellces in $\mathcal{L}_{A}$ that mean
PA is consistent and $\omega$-consistent respectively.

Theorem 1.1. For any $\Sigma_{1}$ sentence $\phi$ in $\mathcal{L}_{A}$ ,
(i) $\mathrm{N}|=\phiarrow Pr(\ulcorner\phi\urcorner)$,
(ii) $\mathrm{N}\models Con(PA)arrow(\mathrm{p}_{r}(^{\ulcorner_{\neg\phi)}}\urcornerarrow\neg\phi)$ ,
(iii) $\mathrm{N}\models\omega-C_{o\mathrm{n}}(\mathrm{p}A)arrow(Pr(^{\ulcorner}\phi^{\urcorner})arrow\phi)$ .

This theorem is provable in $\mathrm{P}\mathrm{A}$ . That is,

Theorem 1.2. For any $\Sigma_{1}$ sentence $\phi$ in $\mathcal{L}_{A}$ ,
(i) $PA\vdash\phiarrow Pr(\ulcorner\phi\urcorner)$ ,
(ii) $PA\vdash Con(PA)arrow(Pr(^{\ulcorner_{\neg\phi)}}\urcornerarrow\neg\phi)$ ,
(iii) $PA\vdash\omega-C_{on}(\mathrm{p}A)arrow(Pr(^{\ulcorner}\phi^{\urcorner})arrow\phi)$.

See Smorytski [Sm] for the proofs of these theorems.
Let $\{\varphi_{e}^{n}(\overline{x})\}_{e\in \mathrm{N}}$ be a canonical enumeration of $n$-ary recursive functions. (We

ommit the superscript $n$ if there is no confusion.) We write $\varphi(\overline{x})\downarrow \mathrm{i}\mathrm{f}\varphi(\overline{x}\rangle$ is defined
at $\overline{x}$ and write $\varphi(\overline{x})\uparrow \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{S}\mathrm{e}$. Also, we write $\varphi(\overline{x})\simeq\varphi’(\overline{x})$ if both $\varphi(\overline{x})$ and

34



$\varphi’(\overline{x})$ are undefined or they are defined and $\varphi(\overline{x})=\varphi’(\overline{x})$ . Note that $\varphi(\overline{x})\downarrow \mathrm{c}\mathrm{a}\mathrm{n}$ be
expressed by a $\Sigma_{1}$ formula since

$\varphi(\overline{X})1\Leftrightarrow\exists y(y=\varphi(\overline{x}))$

and the graph of $\varphi(\overline{x})$ can be represented by a $\Sigma_{1}$ formula. We also denote $\varphi_{e}(\overline{x})$

by $\{e\}(\overline{x})$ .
In our later discussion, we use the following theorems of recursion theory (cf.

Odifreddi [Od] $)$ .
Theorem 1.3. (The $\mathrm{S}-\mathrm{m}-\mathrm{n}$ theorem). Let $m,$ $n\in \mathrm{N}$ and $\overline{x}=x_{1},$

$\ldots,$ $x_{m}$ ,
$\overline{y}=y_{1},$

$\ldots,$ $y_{n}$ . Then, there is a primitive $rec$ursive $f\mathrm{u}$nction $S_{n}^{m}(z,\overline{X})$ such that

$\{S_{n}^{m}(e,\overline{x})\}(\overline{y})\simeq\{e\}(\overline{x},\overline{y})$

for all $e\in \mathrm{N}$ .
Theorem 1.4. (The recursion theorem). For any recursive function $f(\overline{x}, y)$ ,
there exists $e\in \mathrm{N}$ such that

$\{e\}(\overline{X})\simeq f(\overline{X}, e)$ .

Theorem 1.5. (The selection theorem). For any $rec$ursively enumerable rela-
tion $R\subseteq \mathrm{N}^{k}$ , there exis $ts$ a recursive function $f(\overline{x})s\mathrm{u}ch$ that
(i) $f(\overline{m})\downarrow if(\overline{m}, n)\in R$ for some $n\in \mathrm{N}$ ,
(ii) $(\overline{m}, f(\overline{m}))\in R$ if $f(\overline{m})\downarrow$ .

2. Kolmogorov complexity

We define Kolmogorov complexity $K(x)$ , a function from $\mathrm{N}$ to $\mathrm{N}$ , by

$K(x)=\mu e(\varphi e(\mathrm{o})\simeq X)$ .

Remark that this function is arithmetically definable, and the relation $K(x)\leq y$ is
definable by a $\Sigma_{1}$ formula $\exists z\leq y(\varphi z(0)\simeq X)$ .

Now, we say a number $x$ is random if $x\leq K(x)$ .
Lemma 2.1. For an$y$ a, there exists $b\leq a+1$ sucll that $a+1\leq K(b)$

Proof. Let $a\in N$ . Consider the set

{ $x\in \mathrm{N}:\varphi_{e}(0)\simeq x$ for some $e\leq a$ }.

Let $b$ be the least number which does not belong to this set. Then, $b\leq a+1$ and
$a+1\leq K(b)$ . $\square$
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Corollary 2.2. There exist infinitely many random numbers.

Proof. Let $a\in \mathrm{N}$ . By Lemma 2.1, there is $b\in \mathrm{N}$ such that $b\leq a+1$ and $a+1\leq K(b)$ .
Then, clearly $b$ is random. Since $a$ is arbitrary, it turns out that there exist infinitely
many random numbers. $\square$

The set of nonrandom numbers is recursively enumerable since it is definable by
a $\Sigma_{1}$ formula. Kolmogorov showed that this set is not recursive. In fact, he proved
the following theorem (cf. Li and Vit\’anyi [LV] and Odifreddi [Od]).

Theorem 2.3. (Kolmogorov). The set of nonrandom numbers is simple, that is,
it is recursively enumerable, and $\mathrm{i}ts$ complement is infinite and does not contain any
infinite recursively enumerable subset.

Clearly, any simple set is not recursive. Since G\"odel’s first incompleteness theorem
is derivable from the existence of a set which is recursively enumerable but not
recursive, this theorem is a version of the first incompleteness theorem. We shall
prove this theorem in the following section. (See Corollary 3.2.)

Remark that the proof of Lemma 2.1 is formalizable in $\mathrm{P}\mathrm{A}$ . That is,

Lemma 2.4. $PA\vdash\forall x\exists y\leq x+1(x+1\leq K(y))$ .

Proof. It is enough to show

$\mathrm{P}\mathrm{A}\vdash\forall x\exists y\leq x+1\forall z\leq x(\neg\varphi_{z}(0)\simeq y)$ .

Use induction on $x$ . $\square$

We use this lemma in the proof of the second incompleteness theorem in \S 5.

3. The first incompleteness theorem

For any $\Sigma_{1}$ formula $R(x, y)$ , let $\Gamma_{1}(R)$ and $\Gamma_{2}(R)$ be formulas in $\mathcal{L}_{A}$ defined by

$\Gamma_{1}(R)\Leftrightarrow\forall x\forall y(R(x, y)arrow y<K(x))$,

F2 $(R)\Leftrightarrow\forall x\forall y\forall z(R(x, y)$ A $z\leq yarrow R(x, z))$ .

Lemma 3.1. Let $R(x, y)$ be a $\Sigma_{1}$ formula wllich satisfy

$\mathrm{N}\models\Gamma_{1}(R)$ A $\Gamma_{2}(R)$ .

Then there exits $e\in \mathrm{N}$ such that

$\mathrm{N}\models\forall x\forall y(R(X, y)arrow y<e)$ .

Proof. By the selection theorem, there is a recursive function $f(x)$ such that

$\mathrm{N}\models\exists xR(X, b)\Rightarrow f(b)\downarrow$ ,
$f(b)\downarrow\Rightarrow \mathrm{N}\vdash-R(f(b), b)$
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for all $b\in \mathrm{N}$ . Then, by the recursion theorem, there exists $e\in \mathrm{N}$ such that
$\{e\}(0)\simeq f(e)$ .

Claim that $f(e)\uparrow$ .
In order to prove this claim, suppose that $f(e)\downarrow \mathrm{a}\mathrm{n}\mathrm{d}a=f(e)$ . Then, $\mathrm{N}\models R(a, e)$

by the condition of $f$ , so $\mathrm{N}\models e<K(a)$ since $\mathrm{N}\models\Gamma_{1}(R)$ . On the other hand,
$\{e\}(0)=a$ by the choice of $e$ , so $\mathrm{N}\models K(a)\leq e$ , contradiction. Therefore $f(e)\uparrow$ .

Now, let $a,$
$b$ be numbers which satisfy $\mathrm{N}\vdash-R(a, b)$ . Assume that $e\leq b$. Then,

$\mathrm{N}\models R(a, e)$ since $\mathrm{N}\models\Gamma_{2}(R)$ . So $f(e)\downarrow \mathrm{b}\mathrm{y}$ the condition of $f$ , and this contradicts
the above claim. Hence we have $\mathrm{N}\models\forall x\forall y(R(x, y)arrow y<e)$ . $\square$

As a corollary to this theorem, we can easily deduce Kolmogorov’s theorem (The-
orem 2.3).

Corollary 3.2. The set of nonrandom numbers is simple.

Proof. We have already seen that the set of nonrandom numbers is recursively enu-
merable and its complement is infinite (Corollary 2.2). Let $P\subseteq \mathrm{N}$ be a recursively
enumerable set of random numbers. We show that $P$ is finite. Since every recursively
enumerable set can be represented by a $\Sigma_{1}$ formula, there is a $\Sigma_{1}$ formula $R(x, y)$

which satisfy
$R(x, y)\Leftrightarrow x\in P\wedge y<x$ .

It is clear that $\mathrm{N}\models\Gamma_{2}(R)$ . Since $P$ consists of random numbers, $a\leq K(a)$ for any
$a\in P$ . Thus $\mathrm{N}|=\Gamma_{1}(R)$ . So, by Lemma 3.1, there exists $e\in \mathrm{N}$ such that

$\mathrm{N}\models\forall x\forall y(R(x, y)arrow y<e)$ .
Furthermore,

$\square \mathrm{N}\models R(a, a-1)$
if $a\in P$ , hence $a\leq e$ for all $a\in P$ . This means that

$P$ is finite.
Now, we show our version of the first incompleteness theorem by using Lemma

3.1. First, we remark that a $\Sigma_{1}$ formula $\mathrm{P}\mathrm{r}(^{\ulcorner}y<K(X)^{\urcorner})$ satisfies the condition of
Lemma 3.1.
Lemma 3.3. (i) $\mathrm{N}|=c_{on}(\mathrm{p}A)arrow\Gamma_{1}(Pr(\ulcorner y<K(x)^{\urcorner}))$ ,
(ii) $\mathrm{N}\models\Gamma_{2}(Pr(\ulcorner y<K(x)^{\urcorner}))$ .
Proof. Since $y<K(x)$ is a negation of a $\Sigma_{1}$ formula, (i) is a direct consequence of
Theorem 1.1 (ii). It is also easy to show (ii), since

$\mathrm{N}\models\forall y\forall z(Z\leq\coprod yarrow \mathrm{P}\mathrm{r}(\ulcorner z\leq y^{\urcorner}))$

by Theorem 1.1 (i) and $\mathrm{P}\mathrm{r}(^{\ulcorner}x\urcorner)$ satisfies the modus ponens.

Theorem 3.4. (The first incompleteness theorem). $Tl1ere$ exists $e\in \mathrm{N}$ such
that
(i) $\mathrm{N}\vdash-c_{o\mathrm{n}}(\mathrm{p}A)arrow\forall x(\neg Pr(\ulcorner e<K(x)^{\urcorner}))$ ,
(ii) $\mathrm{N}\models\omega-c_{on}(\mathrm{p}A)arrow\forall x(e<K(x)arrow\neg Pr(\ulcorner K(X)\leq e^{\urcorner}))$ .
Proof. (i). By Lemma 3.1 and Lemma 3.3,

$\mathrm{N}\models \mathrm{c}_{\mathrm{o}\mathrm{n}}(\mathrm{p}\mathrm{A})arrow\forall x(\mathrm{P}\mathrm{r}(\ulcorner e<K(X)^{\urcorner})arrow e<e)$ .
(ii) is immediate from Theorem 1.1 (iii). $\square$
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4. The arithmetized completeness theorem

Let $T$ be a recursively axiomatizable theory in a language $\mathcal{L},$ $C$ be a set of new
constants and $\overline{\mathcal{L}}=\mathcal{L}\cup C$ . We say a formula $\phi(x)$ in $\mathcal{L}_{A}$ defines a model of $T$ in a
theory $S$ in $\mathcal{L}_{A}$ if we can prove within $S$ that the set

{ $\sigma$ : $\sigma$ is a sentence in $\overline{\mathcal{L}}$ that satisfy $\phi(^{\ulcorner}\sigma^{\urcorner})$ }
forms an elementary diagram of a model of $T$ with a universe from $C$ .
Theorem 4.1. (The arithmetized completeness theorem). There exists a
formula $Tr_{T}(^{\ulcorner}x^{\urcorner})$ in $\mathcal{L}_{A}$ that defines a model of $T$ in $PA+Col(\tau)$ , where $Con(T)$
$is$ a sentence in $\mathcal{L}_{A}$ that means $T$ is consistent.

This theorem is proved by writing down $\mathrm{T}\mathrm{r}_{T}(^{\ulcorner\urcorner}x)$ actually. The point is the
fact that any recursively axiomatizable theory has an arithnletically (but may not
recursively) definable complete extension.

Let $\mathfrak{M}$ and $\mathfrak{M}’$ be structures for $\mathcal{L}_{A}$ . We say $\mathfrak{M}’$ is an end-extension of $\mathfrak{M}$ and
write $\mathfrak{M}\subseteq_{e}\mathfrak{M}’$ if $\mathfrak{M}\subseteq \mathfrak{M}’$ and

$a\in \mathfrak{M}$ A $b\in \mathfrak{M}’\backslash \mathfrak{M}\Rightarrow \mathfrak{M}’\models a<b$ .
Note that

$\mathfrak{M}\models\phi\Rightarrow \mathfrak{M}’\models\phi$

if $\mathfrak{M}\subseteq_{e}\mathfrak{M}’$ and $\phi$ is a $\Sigma_{1}$ formula.
Let $T$ be a recursively axiomatizable extension of PA and $\mathrm{P}\mathrm{r}_{T}(^{\ulcorner}x^{\urcorner})$ be a $\Sigma_{1}$

formula which represents the provability of $T$ . We say a model $\mathfrak{M}^{\prime_{\mathrm{O}}}\mathrm{f}T$ is a definable
end-extension of a model $\mathfrak{M}$ of PA and write $\mathfrak{M}\subseteq_{d}\mathfrak{M}’$ if $\mathfrak{M}\subseteq_{e}\mathfrak{M}^{\prime_{\mathrm{a}}}\mathrm{n}\mathrm{d}$ they satisfy

$\mathfrak{M}\models \mathrm{P}\mathrm{r}_{T}(^{\ulcorner}\phi\urcorner)\Rightarrow \mathfrak{M}’\models\phi$

and
$\mathfrak{M}\models \mathrm{T}\mathrm{r}\tau(^{\ulcorner}\phi\urcorner)\Leftrightarrow \mathfrak{M}’\models\phi$

for some formula $\mathrm{T}\mathrm{r}_{T}(^{\ulcorner\urcorner}x)$ in $\mathcal{L}_{A}$ . From Theorem 4.1, we have the following corollary.
Corollary 4.2. Let $\mathfrak{M}$ be a model of $PA$ . Then, $\mathfrak{M}$ satisfies $Con(T)$ if and only if
$\mathfrak{M}$ has a definable end-extension which is a model of $T$ .
Proof (sketch). It is clear that $\mathfrak{M}$ has no definable end-extension which is a model
of $T$ if $\mathfrak{M}\models\neg \mathrm{C}\mathrm{o}\mathrm{n}(\tau)$ . Conversely, if $\mathfrak{M}\models \mathrm{C}\mathrm{o}\mathrm{n}(\tau)$ , take $\mathrm{T}_{1_{T}}\cdot(^{\ulcorner\urcorner}x)$ as a formula
given by Theorem 4.1 and define an $\mathcal{L}_{A}$ structure $\mathfrak{M}’$ according to $\mathrm{T}\mathrm{r}_{T}(^{\ulcorner\urcorner}x)$ and $\mathfrak{M}$ .
Then $\mathfrak{M}’$ forms a model of $T$ such that $\mathfrak{M}\subseteq_{d}\mathfrak{M}’$ .

See H\’ajek and Pudl\’ak [HP] and Kaye [Ka] for more infornlation about models
of arithmetic, and Smorytski [Sm] and Kikuchi and Tanaka [KT] for the proofs of
Theorem 4.1 and Corollary 4.2.

Corollary 4.2 has applications to semantic proofs of the incompleteness theorems
(cf. Kreisel [Kr], Smorytski [Sm], and Kikuchi [Ki]). The following is an example of
such applications, a proof of the second incompleteness theoreln due to Jech [Je].
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Theorem 4.3. (The second incompleteness theorem).
If $PA$ is consistent, $c_{o\mathrm{n}}(\mathrm{p}A)$ is not derivable from $PA$ .

Proof (by Jech $[JeJ$). Assume that PA is consistent and Con(PA) holds in any model
of $\mathrm{P}\mathrm{A}$ , and let a be the G\"odel sentence which satisfies

$\mathrm{P}\mathrm{A}\vdash\sigmarightarrow\neg \mathrm{P}\mathrm{r}(^{\ulcorner}\sigma^{\urcorner})$ .

Note that $\neg\sigma$ is a $\Sigma_{1}$ formula. We say a model $\mathfrak{M}$ of PA is positive if $\mathfrak{M}\models\sigma$ and
negative otherwise. Since PA is consistent, there is a model $\mathfrak{M}_{1}$ of $\mathrm{P}\mathrm{A}$ . If $\mathfrak{M}_{1}$ is
positive, then $\mathfrak{M}_{1}\models \mathrm{c}_{\mathrm{o}\mathrm{n}}(PA+\neg\sigma)$ , so there is a negative model $\mathfrak{M}_{2}$ of PA such
that $\mathfrak{M}_{1}\subseteq_{d}\mathfrak{M}_{2}$ . Otherwise, let $\mathfrak{M}_{2}=\mathfrak{M}_{1}$ . By the assumption that Con(PA) holds
for any model of $\mathrm{P}\mathrm{A}$, we have a model $\mathfrak{M}_{3}$ of PA such that $\mathfrak{M}_{2}\subseteq_{d}\mathfrak{M}_{3}$ . Since $\mathfrak{M}_{2}$ is
negative, $\mathfrak{M}_{2}\models \mathrm{P}\mathrm{r}(\ulcorner\sigma^{\urcorner})$ , hence $\mathfrak{M}_{3}$ is positive. But $\mathfrak{M}_{3}$ must satisfy $\neg\sigma$ since $\neg\sigma$ is
a $\Sigma_{1}$ formula and $\mathfrak{M}_{2}\subseteq_{e}\mathfrak{M}_{3}$ , contradiction. $\square$

Remark. (i). In Jech [Je], Jech proved the second incompleteness theorem for set
theory. The above proof is a restatement of Jech’s proof for arithmetic by means of
the arithmetized completeness theorem.
(ii). We can show that $\subseteq_{d}$ satisfies the transitive law, i.e. $\mathfrak{M}_{1}\subseteq_{d}\mathfrak{M}_{2}$ and $\mathfrak{M}_{2}\subseteq_{d}$

$\mathfrak{M}_{3}$ imply $\mathfrak{M}_{1}\subseteq_{d}\mathfrak{M}_{3}$ . Jech’s original proof uses this fact with one more step of
construction of definable end-extensions instead of using the fact that $\mathfrak{M}_{2}$ Ce $\mathfrak{M}_{3}$ .

5. The second incompleteness theorem

First, we give the formalized versions of Lemma 3.1 and Lemma 3.3.

Lemma 5.1. Let $R(x, y)$ be a $\Sigma_{1}$ formula. Then there exits $e\in \mathrm{N}$ such that

$PA+\Gamma_{1}(R)$ A $\Gamma_{2}(R)\vdash\forall x\forall y(R(x, y)arrow y<e)$ .

Proof. Let $f$ and $e$ be a recursive function and a number which are given in the
proof of Lemma 3.1.

In order to prove the selection theorem in the proof of Lemma 3.1, we define $f$

by
$f(y)\simeq(\mu w(R’((w)0, y, (w)1, \ldots, (w)n)))0$

where $R’$ is the $\Delta_{0}$ formula such that

$R(x, y)\Leftrightarrow\exists z_{1}\cdots\exists Z_{n}R’(_{X}, y, Z_{1,\ldots n}, z)$

and $(w)_{i}$ is the i-th component of $w$ . So we can prove

$\mathrm{P}\mathrm{A}\vdash\exists xR(X, b)arrow f(b)\downarrow$

$\mathrm{P}\mathrm{A}\vdash\forall x(x=f(b)arrow R(x, b))$
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for all $b\in \mathrm{N}$ .
Also, in order to prove the recursion theorem in the proof of Lemma 3.1, we

must apply the $\mathrm{s}_{- \mathrm{m}-}\mathrm{n}$ theorem only for a concrete recursive function $f$ , so we can
compute the number $e$ in Lemma 3.1 actually from it. In addition, we can prove
$\{e\}(0)\simeq f(e)$ in $\mathrm{P}\mathrm{A}$. That is,

$\mathrm{P}\mathrm{A}\vdash\forall x(x=\{e\}(0)rightarrow x=f(e))$.

Hence, in the same way as in the proof of Lemma 3.1, we can prove

$\mathrm{P}\mathrm{A}+\Gamma_{1}(R)\vdash\forall x(x=f(e)arrow e<K(x))$

$\mathrm{P}\mathrm{A}\vdash\forall x(x=f(e)arrow K(x)\leq e)$ .

So we have
$\mathrm{P}\mathrm{A}+\Gamma_{1()\vdash}Rf(e)\uparrow$ .

Also, since $\forall x\forall y(R(x, y)$ A $e\leq yarrow R(x, e))$ is derivable fronl $\mathrm{P}\mathrm{A}+\Gamma_{2}(R)$ , we can
prove

$\mathrm{P}\mathrm{A}+\Gamma_{2}(R)\vdash\forall x\forall y(R(x, y)\wedge e\leq yarrow f(e)\downarrow)$.
Hence

$\mathrm{P}\mathrm{A}+\Gamma_{1}(R)$ A $\Gamma_{2}(R)\vdash\forall x\forall y(R(x, y)arrow y<e)$ . $\square$

Lemma 5.2. (i) $PA\vdash c_{o\mathrm{n}}(\mathrm{p}A)arrow\Gamma_{1}(P_{\mathit{1}}\cdot(^{\ulcorner}y<K(x)^{\urcorner}))$ ,
(ii) $PA\vdash\Gamma_{2}(Pr(^{\ulcorner}y<K(x)^{\urcorner}))$ .
Proof. Use Theorem 1.2 instead of Theorem 1.1. $\square$

From these two lemmas, we have the formalized version of the first incompleteness
theorem. Its proof also depends on Theorem 1.2.

Theorem 5.3. (The formalized first incompleteness theorem). Tllere exists
$e\in \mathrm{N}$ such that
(i) $PA\vdash \mathrm{c}_{o\mathrm{n}}(\mathrm{p}A)arrow\forall x(\neg Pr(\ulcorner e<K(x)^{\urcorner}))$ ,
(ii) $PA\vdash\omega- c_{o\mathrm{n}}(\mathrm{p}A)arrow\forall x(e<K(x)arrow\neg Pr(\ulcorner K(X)\leq e^{\urcorner}))$ .

Now, we prove the second incompleteness theorem. We use a mechanism which
is parallel to the method in Kikuchi [Ki].

Theorem 5.4. If $PA$ is consistent, there exists a model of $PAwl_{1}$ich does not satisfy
$Con(\mathrm{p}A)$ .

Proof. Suppose that PA is consistent and any model of PA satisfies Con(PA). Since
PA is consistent, there is a model $\mathfrak{M}_{0}$ of $\mathrm{P}\mathrm{A}$ . By Lemma 2.4 and the least number
principle in $\mathrm{P}\mathrm{A}$ , there is $a_{0}\leq e+1$ such that

$\mathfrak{M}_{0}\models e<K(a_{0})$ A $\forall x<a_{0}(K(x)\leq e)$ .
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Then, by Theorem 5.3 (i),

$\mathfrak{M}_{0}\models\neg \mathrm{P}\mathrm{r}(^{\ulcorner}e<K(a_{0})\urcorner)$ .

Hence $\mathfrak{M}_{0}\models \mathrm{c}_{\mathrm{o}\mathrm{n}}(PA+K(a_{0})\leq e)$ . So, by Corollary 4.2, there is a definable
end-extension $\mathfrak{M}_{1}$ of $\mathfrak{M}_{0}$ . Again, take the least element $a_{1}\leq e+1$ such that
$\mathfrak{M}_{1}\models e<K(a_{1})$ . Since $K(x)\leq y$ is a $\Sigma_{1}$ formula, $\mathfrak{M}_{1}\models K(a)\leq e$ for any $a<a_{0}$ ,
and $\mathfrak{M}_{1}\models k(a_{0})\leq e$ because $\mathfrak{M}_{1}$ is a model of $PA+K(a_{0})\leq e$ . Therefore,

$\mathfrak{M}_{1}\models\forall x\leq a0(K(X)\leq e)$ ,

so $a_{1}$ is strictly greater than $a_{0}$ . Repeating this construction $e+2$ times, we have a
sequence of models $\mathfrak{M}_{0}\subseteq_{d}\mathfrak{M}_{1}\subseteq_{d}\cdots\subseteq_{d}\mathfrak{M}_{e+2}$ of PA and a corresponding strictly
increasing sequence of numbers $a_{0}<a_{1}<\cdots<a_{e+2}$ . This contradicts the choice
$\mathrm{o}\mathrm{f}a_{i}’ \mathrm{s}$ . $\square$

By the completeness theorem, we have the second incompleteness theorem.

Corollary 5.5. ( $\mathrm{G}\ddot{\mathrm{O}}\mathrm{d}\mathrm{e}1_{\mathrm{S}}$’ second incompleteness theorem).
If $PA$ is consistent, $Co\mathrm{n}(PA)$ is not derivable from $PA$ .

Remark. Since our proof of the second incompleteness theoreln is not formalizable
in the system of primitive recursive arithmetic PRA (cf. Smorytski [Sm], Comments
6.3), it does not directly bring the formalized version of the second incompleteness
theorem,

$\mathrm{P}\mathrm{R}\mathrm{A}\vdash \mathrm{c}_{\mathrm{o}\mathrm{n}}(\mathrm{p}\mathrm{A})arrow\neg \mathrm{P}\mathrm{r}(^{\ulcorner}\mathrm{c}_{0}\mathrm{n}(\mathrm{p}\mathrm{A})^{\urcorner})$.

However, our proof can be carried out within a subsystem of second-order arithmetic
$\mathrm{W}\mathrm{K}\mathrm{L}_{0}$ , since the completeness theorem is provable in $\mathrm{W}\mathrm{K}\mathrm{L}_{0}$ (cf. Simpson [Si]) and
Corollary 4.2 is provable in weaker subsystem $\mathrm{R}\mathrm{C}\mathrm{A}_{0}$ (cf. Kikuchi and Tanaka [KT]).
Thus we can also obtain a new proof of the formalized second incompleteness theo-
rem, by using a theorem of H. Friedman that any $\mathrm{I}\mathrm{I}_{2}$ theorem of $\mathrm{W}\mathrm{K}\mathrm{L}_{0}$ is provable
in PRA (cf. Simpson [Si]).
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