A FORMULA SEPARATING TWO THEORIES

Takeshi Yamaguchi (山口 武志) (e-mail: y-takesi@is.titech.ac.jp)(東工大・情報理工)

Abstract

If theory $T+\neg\psi$ is incomplete, then there is a formula φ such that $T\subsetneq T+\varphi\subsetneq T+\psi$. In special case $\psi=\operatorname{Con}(T)$, Rosser sentence of T is a separating formula.

0. Preliminaries

We consider only formulas in Arithmetic. A theory is a set of sentences that contains all of its logical consequences. $T+\varphi$ denotes the least theory which contains $T\cup\{\varphi\}$ (T is a theory, φ is a sentence).

 $T \vdash \varphi$ means " φ is provable in T".

1. A formula separating two theories

Definition Let T, S be theories.

Lemma 1 Let T be a theory, ψ be a sentence, and T \subseteq T+ ψ . The following conditions on φ are equivalent.

- 1. φ separates T from T+ ψ .
- 2. (i) $T \not\vdash \varphi$, and
 - (ii) $T \vdash \psi \rightarrow \varphi$, $T \not\vdash \varphi \rightarrow \psi$.

Proof) $T \subsetneq T + \varphi$ is equivalent to (i). $T + \varphi \subsetneq T + \psi$ is equivalent to (ii).

Remark T \subsetneq T + $\varphi \subsetneq$ T + $\psi \Leftrightarrow$ T + $\neg \psi \subsetneq$ T + $\neg \varphi \subsetneq$ Incon. (Incon is the inconsistent theory.)

Theorem If $T+\neg\psi$ is incomplete, then there is a formula φ separating T from $T+\psi$. Proof) There is a sentence φ' such that $T+\neg\psi \nvdash \varphi'$ and $T+\neg\psi \nvdash \neg\varphi'$ because $T+\neg\psi$ is incomplete. Let $\varphi \equiv \varphi' \lor \psi$. It is easily verified that φ satisfy the conditions of the above remark. So this φ is a separating sentence T from $T+\psi$.

Remark If T is a consistent primitive recursive theory, then $T \nvDash Con(T)$ by second incompleteness theorem [2]. So $T+\neg Con(T)$ is a consistent primitive recursive theory, too. We have that $T+\neg Con(T)$ is incomplete by Rosser's theorem [2]. So there is a theory between T and T+Con(T) by above theorem.

2. On a formula separating T from T+Con(T)

In the previous section, we showed that there is a theory between T and T+Con(T) (T is consistent and primitive recursive). Actually, let φ be a Rosser sentence of T+¬Con(T), then ¬ φ ∨Con(T) and φ ∨Con(T) are separating sentences. In this section, we show that Rosser sentence of T itself is a sentence separating T from T+Con(T). We will use certain results on the provability predicate. See [1], [2].

Definition

Rosser sentence φ of T is a sentence such that

$$T \vdash \varphi \leftrightarrow \neg Pr^*(\ulcorner \varphi \urcorner) \tag{1}$$

where $\Pr^*(x) \equiv \exists y (\Pr_{\mathbf{T}}(x, y) \land \forall z \leq y (\neg \Pr_{\mathbf{T}}(\operatorname{not}(x), z))).$

Theorem Rosser sentence φ is a sentence separating T from T+Con(T).

Proof) We show (i) $T \not\vdash \varphi$, (ii) $T \vdash Con(T) \to \varphi$, (iii) $T \not\vdash \varphi \to Con(T)$, and then lemma 1 implies that φ is the separating sentence.

- (i) $T \not\vdash \varphi$ is well-known as Rosser's theorem.
- (ii) By (1), we have

$$T+\neg \varphi \vdash \exists y (\operatorname{Prov}_{\mathsf{T}}(\ulcorner \varphi \urcorner, y)).$$

That is

$$T + \neg \varphi \vdash \Pr(\lceil \varphi \rceil). \tag{2}$$

On the other hand, we have

$$T \vdash Con(T) \rightarrow \neg Pr(\ulcorner \varphi \urcorner).$$
 (3)

$$T \vdash Con(T) \to \neg Pr(\ulcorner \neg \varphi \urcorner). \tag{4}$$

by formalized Rosser's theorem. From (2) and (3), we have

$$T + \neg \varphi \vdash \neg Con(T),$$

$$T \vdash \neg \varphi \rightarrow \neg Con(T),$$

$$T \vdash Con(T) \rightarrow \varphi.$$

(iii) Assume that $T \vdash \varphi \to Con(T)$. By the derivability conditions of the provability predicate Pr(), we have

$$T \vdash \Pr(\ulcorner \neg Con(T) \to \neg \varphi \urcorner),$$

$$T \vdash \Pr(\ulcorner \neg Con(T) \urcorner) \to \Pr(\ulcorner \neg \varphi \urcorner).$$
(5)

By (4) and (5),

$$T \vdash Pr(\ulcorner \neg Con(T) \urcorner) \rightarrow \neg Con(T).$$

Then we have

$$T \vdash \neg Con(T)$$

by Löb's theorem, and by assumption

$$T \vdash \neg \varphi$$
.

This contradicts that φ is Rosser sentence.

References

- [1] G. E. Boolos and R. C. Jeffery. *Computability and Logic 3rd ed.* . Cambridge university press 1989
- [2] C. Smoryński. *The Incompleteness Theorems*, Handbook of Math. Logic (J. Barwise ed.) . North-Holland 1977. pp.821-865