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1. Introduction

We are concerned with a nonlinear and nonlocal hyperbolic equation and its related
transport-diffusion equation, both of which are related to mathematical models of muscle

contraction:

(u + 2 (Duy = o(2,,2(2), %), (z,t) € R x [0,T],

z(t) = L(/m w(m)u(z,t)dw), t€[0,T],

\ u(z,0) = uo(z), =z €R,
( U — EUgg + zl(t)ur = (P(w)t’z(t)a u)) (m7t) €R x [O)T];

(P) < z(t)zL(/Rw(:c)u(:c,t)dm), t € 0,T],

L u(z,0) = uo(z), =z €R,

(H)

o\

Where u:R x[0,7] - R and z: [0,7] — R are unknown, 2’ = dz/dt, and ¢, ug, w and L
are given functions specified later.

Our aim is to obtain unique solutions to both problems and investigate the convergence
of the solution of (P) to that of (H) as e \, 0. These problems arise from reological models
describing the cross-bridge dynamics in the muscle contraction in physiology. See [1, 4, 5,
7, 8] and reference therein. The repeating unit of muscle structure (the sarcomere) consists

of particles of myosin (thick filament) and actin (thin filament). According to the sliding
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filament theory of Huxley [8], the so-called cross-bridges are chemical links between myosin
and actin filaments; and muscle contraction is a consequence of relative sliding between
these two filaments, which occurs when the cross-bridges act like springs. The quantity
u(z,t) essentially represents a density of cross-bridges attached at distance z and time ?.
The function z is the contractile movement of filaments and it is related to the contractile
force [, w(z)u(z,t)dz. The model problem (P) having a viscosity term —eug, takes into
account some “slipping effect”, while (H) does not. See [2, 3].

The dynamics of the cross-bridges results from the balance of formation and breakage;
and in the original model by Huxley, ¢ is taken as ¢(z,t,2z,u) = y(¢) f(2)(1 — u) — g(z)u,
where () is the activation function, f(z), g(z) are the attachment rate functions. Here, |

we take ¢ more generally as
oo, 2,u) = 4(O)f (2, 2)(1 = |uf’ " ) — (=, 2)]u|" " u

having polynomial nonlinearity with p, ¢ > 1.

In case of bounded domain in R, Colli and Grasselli [2] have shown a local existence of
a strong solution of (P) with the Dirichlet boundary condition. In case of the whole space
R, Colli and Grasselli [3] have shown a global existence of a weak solution of (P) and a
strong solution of (H) for the case ¢(z,t, z,u) = F(z,t,z) — G(z,1, z)u being linear in the
variable u; they have also established the convergence results and so on.

At first, we establish a global existence and uniqueness of a stréng solution to (P) by
using the idea in [3] combined with the theory of abstract semilinear evolutioﬁ equations.
Next, we show that the solution of (P) approaches to the solution of (H) when ¢ tends to

zero. A result about the support of the solution of (H) is also investigated.
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2. Existence and Convergence Results

In this section we state our assumptions and the results. In what follows, BUC stands for
the space of bounded and uniformly continuous functions, BU C™3 the space of Holder
continuous functions of two variables which belong to BUC. The space of Holder contin-
uous functions will be denoted by C%" with 0 < < 1; and by C%! we mean the space of
Lipschitz continuous functions.

Let T > 0 be fixed and we assume the following hypotheses.

(C1) L: (a,b) — Ris alocally Lipschitz continuous, strictly decreasing function (—oco <
a < 0 < b < oo) satisfying L(z) / oo (resp. \, —o0) as z \, a (resp._ /' b), and
L(0) =0.

(C2) w € C'(R) is an increasing function satisfying w(0) = 0 and dw/dz € Wheo(R).

(C3) the functions v, f and g are nonnegative and satisfy the following conditions:
v € CO3[0,T] (0 < 7 < 1), f, g € C(R), f(=,"), 9(z,-) € Cpy(R) uniformly
for z € R, and f(-,2), g(-,2) € BUC"(R) N C*'(R) uniformly for z on bounded
subsets of R. Further, f € L®(R?), z?||f(z, -)||lzom) € L(R) and for any R > 0,

there is a C(R) > 0 such that
/(1 +yDIf(y + 21, 21) = f(y + 22, 22)ldy < C(R)|21 — z2], Vlz1l, |22 < R.
R

Our results are stated as follows:

Theorem 1. Let the initial data ug belong to BUC(R) and satisfy 0 < ugp < 1 on R,
22up € LY(R) and a < [ w(z)uo(z)de < b. Then there exists a unique solution (ue,ze)
to (P) such that u, € BUC(R x [0, T]) N BUC?**"5(R x [, T]) for all § > 0,0 < w, < 1,
w, is differentiable in a.e. t uniformly for z, wu, € L®(0,T; L (R)), z. € C°[0,T] and

(ue, z.) satisfies the first equation in (P) for a.e. t, V.
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Theorem 2. In addition to the above hypotheses, suppose that ug € W1°(R). Then
there exists a unique solution (u,z) of (H) such that u € C([0,T]; BUC(R)) N C**(R x
[0,7]), 0 < w < 1, wu € L*(0,T; L} (R)), z € C*0,T], and (u,z) satisfies the first
equation in (H) for a.e. (z,t). Moreover, u. — u in C([0, T]; BUC(R)), ze — z in C[0,T]

as e\, 0.

Theorem 3. Assume the same hypotheses as above. In addition, suppose that
AN >0: wug(z) = f(z,2)=0 for|z|> N, z€R

Then the solution u of (H) obtained by Theorem 2 has a compact support.

A key lemma, to prove the above theorems is the following a priori estimate, whose proof

is very delicate in our situation compared to the one in [3]:

Lemma 4. (a priori estimate) There exists a K > 0, independent of ¢, such that any

solution (u., z.) of (P) as described in Theorem 1 satisfies

lzellcpr < K, a<L7Y(K) < / w(@)u(z,t)dz < L7H—K) <b, Vt€[0,T].

R

Remark. In Theorem 3, the support of u is contained in a strip of moving domain as
specified by

supp u(-,t) C [-N — K + z(t), N + K + ()]

for every t € [0, T].
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3. Outline of Proofs
For the precise proofs, see [9, 10].
Proof of Theorem 1. By changing variable z — x + 2(t), (P) is reduced to the following
problem:

Vi — EVgpyp = 902(5”: t ’U))
(P) ) = L [ w2, tu(e,0dz),

R
v(=,0) = uo(z + 2(0)),

where ¢¥(z,t,v) := ¢(z + 2(t),t,2(t), v) and wi(z,t) := w(z + 2(¢)).
L. Solve (P’) and then put u(z,t) = v(z — 2(t),t) to solve (P).

IL. In order to solve (P’), given z € C[0, T, consider the semilinear problem

{ 0:v; — €(Vz )2z = @5 (2,1, v)

(P:) |
: v, (z,0) = uo(z + 2(0)).

After solving (P,), we seek z € C[0,T] satisfying

(%) z(t) = L(/R w:(w,t)vz(m,t)dm).

II1. Finally, we find that z € C%![0,T).
To solve (P,), use the theory of abstract semilinear evolution equations. Let Xg =

BUC(R) and X; = {u € X : uzs € Xo} and define
Acu=ceuy, forué€ D(A:) = X;.

Then A, is the infinitesimal generator of an analytic semigroup {7.(¢)} on Xo, where T, (¢)

1s given by

(T:(Du)(z) = / K.(z —y,u(y)dy, z€R, t>0 forue€ Xg

JR
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with the heat kernel K, (z,t) = (1/V4net) exp(—z?/4et). Let
Fo(t,u)(z) = i (z,t,u(z)) forte (0,7, ue€ Xo.

Then F, : [0,7] x Xo — X is well-defined and satisfies the following properties:
(i) For z € C[0,T], there exists an increasing function ¢, : [0, 00) — [0, c0) such that for

any p > 0,
IFZ(t’ ’Ll,) - Fz(t)v)lxo < I’Z(p)lu - U|X0) Vt € [OJT]J lu‘Xoa lUIXo < p-

(ii) If further z € C%[r, T| for r > 0, then there is an increasing function ¢, , : [0,00) —

[0, 00) such that for any p > 0,

IFz(t’ u) - Fz(s) v)lxo < l’T,Z(p)(lt - slg + Iu - leo)a Vt: s € [T! T]) lulxm IUIXO < p-

Then (P,) is reduced to the abstract semilinear problem in Xo; more generally, we

consider the following:

dv. = A.v, + F,(t,v;)
(APZ;T‘, w) di
vy(r) =w

where r > 0 and w € Xj are given. The following Proposition plays a crucial role.

Proposition 5. Let r >0 and 0 <w < 1.
(1) If z € C[0,T), then (AP,;r,w) has a unique mild solution v, € C([r, T); Xo) satisfy-

ing0<v, <1onRx|[r,T] and
va(a,1) = / K.z —y,t — r)oly)dy
R
t
+ / / K.(z — yt — )0 (v, 7, vs (3, 7))dydr, (2,8) ER x (r,T].
T R . :

(2) If z € C[0,T] n C%[r,T), then (AP,;r,w) has a unique classical solution v, €

C([r, T]; Xo) N C*((r, T); Xo) satisfying (AP,;r,w) for each t € (r,T].
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(3) Moreover, suppose that z, € C[0,T|NC%[r,T], 2, — 2 in C[r, T], and that w, — w
in Xo and 0 < w,(z) < 1. Let v, be a classical solution of (AP, ;r,wy,), which exists by

(2). Then v, — v, in C([r,T]; Xo) as n — oo, where v, is the mild solution of (AP,; r,w).

Remark. It is known ([6, Theorem 25.2, Remark 25.3(a)]) that each classical solution of
(AP,;0,w) is a regular solution of (P,), i.e., v, € BUC(Rx[0, T))NBUC?**"1+3 (R x[§, T))
for all § > 0, satisfying (P,). Notice that even if v, is regular and z € C%!, the solution
u(z,t) = v,(z — 2(¢),t) is not enough regular in ¢ and we have u € BUC(R x [0,7]) N
BUC*3(R x [6,T]) for all § > 0.

Now let us find z € C[0,T] satisfying (*). We note that it can be shown that such 2z
is unique if it exists (after a little long computation using Gronwall’s inequality twice.)
Hence the solution of (P) is uniquely determined. Let r € [0,T") be fixed arbitrarily. The
equation () is rewritten as

Lew)= |

R

w(z + z(t)) [RKE(:L' —y,t —r)v,(y, r)dydz + /t L,(¢, 7)dr,

where v, is a mild solution of (AP,;0, uo(- + z(0))) defined by Proposition 5 and

fm wi(z,1) fm K.(z—y,t—71)pi(y, T, v:(y,7))dydz f0<7<t<T;

0 otherwise.

T,(t,7) = {

Since L~ is only locally Lipschitz, we need to truncate it. Define

L Y(~2K)— ¢ —2K if €< 2K ;
AE(€) =4 L7H(E) if ¢ < 2K ;
LY2K) - ¢ +2K  if £ > 2K,

MK (€,1) = MK (€) - /

R

w(:c + 5) /R I{e(m - yyt - r)vz(y,r)dgdm

for (¢,t) € R x [r, T], where K is the a priori bound appeared in Lemma 4. Then we have

MK (5(1), ) = /t T, r)dr, t€rT).
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It is shown that AX (£, ¢) is continuous and strictly decreasing in £ for fixed ¢; and denoting
by L;’ft the inverse function of £ — AX(¢,1), Lft becomes globally Lipschitz continuous.
Now, assuming a continuous function z satisfying (*) to be known in [0, 7], we introduce a

complete metric space
X, :={CeC[0,r+d]:¢(=zin [0,7], ||<llcjo,r+q < 2K}

Then we define an operator SX on X, by

. () fort € [0, r];
157 (1) = { LE, (f: Te(t, T)dT) for t € (r,r + d,

for ¢ € X, and seek a fixed point of SX. It can be shown that for sufficiently small d > 0
not depending on r, SX¥ : X, — X, is well-defined and a contraction mappiﬁg in X,.
Hence SX has a unique fixed point 7 in X,, which evidently satisfies () on [0, + d].
Further, we can show that 7 is Lipschitz continuous on [r,r + d]. Since r is arbitrary, we
can construct step by step a Lipschitz continuous function z. on [0, T] satisfying (*). This

proves Theorem 1.

Proof of Theorem 2. Noting that the Lipschitz constant of z. is independent of €, we
have the estimate ||z ||y (o) < C. Then by the Ascoli-Arzela theorem, there exists a
z € WH(0,T) C C[0,7T] and a subsequence {ex} of {€} such that z,, — zin C[0,T] as
€x \\ 0. For this z, consider the ordinary differential equation

vz = ¢3(2,1,v;)

v, (2, 0) = ug(z + 2(0)).
The solution exists as the following integral equation

t

0 (1) = uo(- + 2(0)) + / F.(s, v,(s))ds.

0

By the Trotter approximation theorem, it is shown that 7. (f{)u — u in Xo uniformly for

t € [0,T] for any u € Xy. Hence recalling that

0o (1) = To () uo(- + 2(0)) + /0 To(t — 8)F, (s, v, (s))ds,
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it is shown that v,, — v, in C([0,7]; Xo). Further, from (*) with z = z., we have

z(‘t) = L(/IR w:(w,t)vz(m,t)dx).

Put u(z,t) = v,(z — z(¢),t). Then it is easily seen that u is a weak solution of (H) in the
sense of distribution. If we assume ug € W1, then the u becomes a strong solution, i.e.,
u € C([0,7T]; Xo) N CO(R x [0,7]) and satisfies (H) for a.e. (z,t). Uniqueness is shown
similarly to the case (P); and consequently, we have u. — u in C([0,7T]; Xo) and z. — 2

in C[0,T).

Proof of Theorem 3. It is easy to see that supp v(,t) C [-N — K, N + K|; and hence
supp u(-,t) C[-N — K + z(t), N+ K + z(t)] C [-N — 2K, N + 2K]
for every t € [0, T].
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