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On unbounded viscosity solutions of nonlinear second order

partial differential equations

MEEIARY: BH =FE (Katsuyuki ISHII)
MERMAY BEH A  (Yoshihito TOMITA)

§1. Introduction

This is a brief report of [6]. We shall consider the following nonlinear second order

partial differential equations (PDEs):

S) M — aij(z)ug;z; + H(Du) — f(z) =0 in RV,

) { ut — aij(2)ug;z; + HDu)=0 in (0,T) x RV,

u(0,z) = ¥(z) in RV,
where A\, T' > 0 are constants, (a;j(z)) is a matrix of nonnegative definite, Du denotes
the gradient of u with respect to z € R and f and 1 are given functions.

When a;j, H, f and ¢ are smooth, (a;j(x)) is positive definite and H grows at most
quadratically as |p| — +o00, there are many papers discussing the classical solutions of
the problem (S) and (E). So our interest is the case (a;;(z)) is nonnegative and H has
more general (possibly super-quadratical) growth.

As regards earlier related works, S. Aizawa - the second author [1] treated the case
a;;(z) = &;; and proved that, if H € C(R") and f € UC(RY) (=the set of uniformly
continuous functions in RY), then there exists a viscosity solution in UC(IRY) and
the uniqueness of viscosity solutions holds in the class of continuous functions growing
at most linearly as |z] — +oco. In [1] they gave the following examples showing the
failure of the uniqueness of solutions growing superlinearly as |z] — 400 even in the

class of C? solutions.



Ezample 1. Let a > 1 and dehine H by

~ lg D | a1 lgi(a_wa_l) lp lgfz_—l)l)lpl —
_‘ -
H® = bza,
4 Nea- - 5T (s a)
Then the equation
(So) u—Au+HDu)=0 in RN

has two distinct solutions:

a—2\" 1
(|$|+a_1) (leém),

ui(z) = ala—1) a—2 1
e Dpps 222 (ks 1),
a—2
’UQ(.’II) = —NO[(O! - 1) + 2(—05——-—]-3

Ezample 2. Define H by

(1+ (N =1)|pl)exp(1 — |p]) = (Ip| = )exp(lp| =1)  (lp| 2 1),
H(p) =

lp|? 1
Nl (1l < 1).

The the equation (Sg) has two distinct solutions:

| Je|logle] (2] 2 1),
UI\T ) =

1 1
SleP -5 (el < 1),
1

For general nonlinear second order elliptic PDEs, H. Ishii [5] obtained the comparison
principle and existence of viscosity solutions in the class of functions having at most

linear growth as |z| — +o0.
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By the above examples, there arises the question whether the linear growth con-
dition is essential to the uniqueness and existence of solutions even if we restrict the
behavior of H(p) as |p| — +oo and that of f(z) as |z| — +oco. From this viewpoint,
M. G. Crandall - R. Newcomb - the second author [4] investigated the interaction be-
tween the growth and continuity properties of H and f and the uniqueness classes for
solutions of (S) and they proved the existence of solutions of (S) in such uniqueness

classes. We can consider three cases for the structure of H:

(1) H is Lipschitz continuous in RY.
(2) H is uniformly continuous in RY.

(3) |H| behaves like [p|™ with m > 1.

In the cases (1) and (2) they obtained the sharp growth conditions for the uniqueness
of viscosity solutions and showed the existence of viscosity solutions in such classes.
In the case (3), it is easily observed that any solution of (S) has at most m'-th order
as |z| — +oo (m' = m/m —1). However, Example 1 also states that the unique-
ness does not hold in the class of functions with m’-th growth. Then they proved the
comparison principle of viscosity solutions of (.S) in the class of locally Lipschitz con-
tinuous functions behaving like o(|z|™') as |¢| — +oo. As to the existence of solutions,
they obtained it only in the case where a;; are constants. Without any continuity
assumptions, S. Aizawa - the second author [2] obtained the comparison principle and
existence of viscosity solutions with the growth of (m' — ¢)-th order (0 < e < m')
for general nonlinear elliptic PDEs. In this result, they also ’considered only the case
where the coefficients of D%u are constants.

Our main aim here is to obtain the comparison principle and existence of viscosity
solutions of (S) and (E) behaving like o{|z|™) as |z| = +o0. To solvé the question
for (S) mentioned above completely, we consider the case where a;; are variable and

unbounded ones and do not assume any continuity for solutions.
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In Section 2 we state our assumptions and recall the notion of viscosity solutions.
In Section 3 we éstablish the comparison principle and existence of viscosity solutions
of (S). Section 4 is devoted to the problem (E).

In what follows we surpress the term “Viscosity”‘ since we are mainly concerned

with viscosity sub-, super- and solutions.

§2. Preliminaries

- In this section we shall state our assumptions and recall the notion of solutions of
(S) and (E).

We assume the following. Let m > 1 and let "4 be the transposed matrix of A.

(A.1) There exist Lipschitz continuous functions o; i(z) (4,7 =1,--- N) such that
(a(2) = (o (@))o5(@) (Yo € RY),
(A.2) There exists a modulus of continuity wg such that
[H(p) — H(@)| £ wa((1+|pI™ ™ + g™ Hlp — ql)

for all p, ¢ € RV,
A.3) There exist a modulus of continuity wy, and a function 6 satisfying 6¢(r) — 0
f f ymg 0r

as r — 400 such that

f(2) = f(y)] = wp((1 + 9f(|:v|)‘l:1¢|’""l +65(lyDly™ )le — y)

for all z, y € RY.
A.4) There exist a modulus of continuity w,, and a function 6, satisfying 6,(r) — 0
¥ ¥ g Uy

as r — +o0o such that

() — ()] S wy((1 + 6y (lz])]2]™ " + 6y (lyDlyI™ )le — 1)
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for all z, y € RV,

Remark 2.1. (1) We call a function w on [0, +00) a modulus of continuity when it

can be represented as w(r) = inf{M,r + v | v > 0} for a set of nonnegative numbers

{M7}7>0-
(2) (A.1) implies that a;j(z) have at most quadratic growth as |z| — +oo and that

there exists a constant Ky > 0 such that
aij(y)Yi; — aij(2)Xi; < Koalz — y[?

for all @ > 0,z,y € RY and X, Y € 8" satisfying

I O X O I -I
— < <
3"‘(0 I) = (0 —Y) =‘3°‘(—I I )
In the following we put K = Ky V sup{|a;;j(z))|/(1 + |z|?) | z € RN, 1 £ 4,5 £ N},

where a V b = max{a, b}.

Before recalling the notion of solutions of (S) and (E), we prepare some notations.
For u : RY — R, we define the upper semicontinuous (u.s.c.) envelope u* and the

lower semicontinuous (l.s.c.) envelope u, of u by

u*(z) - 113)1(1) sup{u(y) |y € RN, |y — z| < r}, uu(z) = —(—u(z))*.

Let (-,-) be the Euclidian inner product in RY and let $V be the set of all N x N real
symmetric matrices. We denote by J>%u(z), J>~u(z) the super and the sub 2-jet of

u at ¢ € RY, respectively:

P Fu(z) = {(p,x> e RY x8Y | u(z +h) < u(x) + (p, h)

+30Xh,)+ oA as 1] = 0},

J> u(z) = {(p,X) e RN x 8V | u(z + h) 2 u(z) + (p, k)

F3(Xh R+ o[B) as [b] — 0} .
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J?ty(z) and J>u(z) are the graph closures of J>% u(z) and J*~u(z), respectively.
For u : [0,T) x RN — R, we similarly define the u.s.c. envelope u* and the Ls.c.

envelope uy of u by
u*(tam) = hn(l) sup{u(s, y) l (s,y) € [0>T) X ]R'Ns IS - tl + |y - :L'| < 7‘},

and u,(t,z) = —(—u(t,z))*. We denote by P>t u(t,z), P> u(t,z) the parabolic super
and the parabolic sub 2-jet of u at (t,z) € (0,T) x RY, respectively:

Prru(t,z) = {(T,p,X) e RxRY x$" | u(t+r,z +h) Su(t,z)+ 7+ (p, h)

+=(Xh,h) +o(|r| + |k|*) ast+re€(0,T), andr,|h|—0;,

N | =

’PZ’—u(t,m)z (T,p,X)E]Rx]RNXSN u(t+r,z+h) 2 u(t,z) +7r+ (p,h)

+=(Xh, k) +o(|r| + |>) ast+r e (0,T), and r,|h|—+0}.

N

¢2’+u(t,x) and ’pz’_u(tl, z) are the graph closures of PV u(t,z) and P> u(t, ), re-

spectively.

~ Definition 2.2. Let u: RN - R.
(1) We say u is a subsolution of (S) provided u*(z) < +oo (Vz € RY) and for all
¢ € RN and (p, X) € J5 u*(z), u* satisfies

Au*(z) — aij(z)Xij + H(p) — f(z) £ 0.

(2) We say u is a supersolution of (S) provided u.(z) > —oo (Vz € RN) and for all
z € RN and (p, X) € J> u.(z), u. satisfies

Aux(z) — aij(2)Xij + H(p) — f(z) 2 0.
(3) We say u is a solution of (S) provided u is a sub- and a supersolution of (S).

Definition 2.3. Let u:[0,T) x RY - R.



60

(1) We éay u is a subsolution of (E) provided u*(t,z) < +oo (¥(t,z) € [0,T) x RN)
and for all (t,z) € (0,T) x RY and (1,p,X) € P> ux(t,z), u* satisfies

7 — aij(z)Xi; + H(p) £ 0.

(2) We say u is a supersolution of (E) provided u.(t,z) > —oo (V(t,z) € [0,T) x RY)
and for all (t,z) € (0,T) x RN and (r,p,X) € 'pz’-u*(x), uy satisfies

7 — a;j(z)Xi; + H(p) 2 0.
(3) We say u is a solution of (E) provided u is a sub- and a supersolution of (E).

For the equivalent definitions to Definition 2.2 and 2.3, see [4; Section 2].

§3. The problem (S5)

In this section we shall establish the comparison principle and existence of solutions
of the problem (S).

The comparison principle is stated as follows.

Theorem 3.1. Assume (A.1) - (A.3). Moreover assume A\ Z )¢ for some Ay =
Mo(N, K,m) > 0. Let u and v be a subsolution and a supersolution of (S), respectively.

If u and v satsify

(3.1) lim sup 88 < 0 < Timinf 222

le|mtoo 2™ T T fal—too 2™

then there exists a modulus of continuity @ such that
w*(z) — va(y) S O((1+ 05(Je))l=™ ™ + 85(lyDlyI™ ~H)l= — yl)
for all z, y € RN. Especially, u* < v, in RV.

Remark 3.2. It is seen by Example 1 and the fact mentioned in Section 1 that the

condition (3.1) is optimal.
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Outline of proof. We may assume u (resp., v) is u.s.c (resp., Ls.c.) in RY. By

(A.2) and (A.3), for any v > 0, there exist constants L., M, > 0 satisfying

(3.2) [H(p) = HP)| £ v+ Ly(1+[p|™ " + g™ Dlp — g
(3.3) |f(z) — f(y)]

< v+ My (1 +65(J2])|™ 7 + 8(lyDly™ "z — yl.

Remarking (A.3), for any § > 0, there exists a constant Ms > 0 such that
1£(2) = F) S 7+ Mo{1+ Ms + 8™ " +Jy™ ")}z — yl.

Moreover, we have, for any 8, , 0 € (0,1)

g (3)™ " : :

G4 U@ - IS e -+ E ) + )

3 m—1
+’Y+( °) (1+ Ms)™,

m

where (z)2 = |z|? 4 p? for p > 0.

Let ®(z,y) be the function defined by

My . (3o

8(e.y) = u(z) ~o(y) - { Lz~ y)n o+ S () <y>;"’)} -

and let (Z,7) € RY x RY be a maximum point of ®. Using the maximum principle

(cf. [3; Theorem 3.2]), for each p > 0, there exist X, Y € $N such that

(3e)™?

" (5)71"’) :

e 7 (v + EL )

1 I O X o 0
- = . < <
(MHIAII)(O I)z(o _Y>:A+uA,

(5. X) € 7 (ule) -
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where
M™ "
p=——-E-97 *(z-9),

4= {(m' —2)(z —g)p (_(f{_y;)%(f{_g;) —(f__g?@@(f:yg))
+Hz—g)y <_II _II>} '

Setting o = M;’"((m’ —1)V2)(Z — 7)™ ~2/e and u = 1/a, we obtain

(3.5) —Sa(é ?) < (‘g _OY) §3a(_II _II)

By the way, since u and v are, respectively, a subsolution and a supersolution of

(S), the following inequalities hold:

Au(Z) — ai;(Z) (x + %5“’02(@)?’),“ +H (p-l— (3)"7 15”*1)( z)" ) — f(z) €0,
i) - () (¥ = Lm0t 41 (p- EL—mpia) - s0) 20

Using (A.1), (3.2), (3.4), (3.5) and the above inequalities and calculating carefully, we

have
Au(z) - of)) < L Z DY D E M gy
+ (Km/!((m' =2+ N)V N) + 2)(3¢)™? (@)™ + (7))

(36)mf1 4 (3e)™?

+2y+ (14+ Ms)™.

Hence setting Ao = {Km/((m'—=1)V2)+1} V{Km/'((m' =24+ N)VN)+2},if A = A,

then we conclude that

m-—1 m—1
®(z,y) < ®(z,5) S 27+ (3¢) + (3)
m m

(1+Ms)™  (Yz,y € RY),

for all o, £ € (0,1) and § € (0,6, (0 < 64 << 1). Thus, letting o — 0, we obtain

Mml g)m—1
u(@) = o(5)  —fe — ™ + EL a4 i)
+———( )mm 1(1+Ma)m+2’y+ (362:—1 + (363:_1 ce™.
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By careful calculations, we have the result. |

Remark 3.3. If wg(r) = Lgr and wy(r) = Myr for some Lg, My > 0, then
&(r) = Kr for some K > 0. Thus a solution u of (S) is locally Lipshitz continuous in
RY and Du(z) = o|z|™ ~!) as |z| — +0o except for a set of N-dim Lebesgue measure

0.
We conclude this section by proving the existence result.

Theorem 3.4. Assume (A.1) - (A.3). Moreover, assume A = Ao, where ) is the
same constant as that in Theorem 3.1. Then there exists a unique solution u € C(R")

satisfying
lim M = 0.

lol—+oo [2|™

Outline of proof. By (A.2) we can find a constant L > 0 such that
(3.6) |Hp)| < LppI™ +1  (YpeRY).
It follows from (A.3) thaf., for any 6 > 0, there exists a constant Mg >‘0 such that
GO f(@) S 8@)7 +Ms (V2 € RY).

Let u®(z) = 6{z)]* + Cs for 6 > 0 and z € R". Then, using (3.6) and (3.7), we
observe that, for all § € (0,8,) (6 = 6o(L, m) is small.), u® is a classical supersolution
of (S). We put

a(z) = inf{u’(z) | 0 < 6 < &}

Then % is a u.s.c. supersolution of (S) and satisfies

) _ lim ﬂ*(x)zﬂ.

|z| =40 lem' o |z]—+o0 |$Im'

Similarly we can find a subsolution u of (S) satisfying

lim 1‘—_@1_ i E*(:C):

jsl=too [2|™ T |zl—too [2[™
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Hence we can apply Perron’s method and Theorem 3.1 to complete the proof. |

Remark 3.5. If a;;(z) (4, = 1,--- ,N) are constants, then we do not need the

largeness assumption for A > 0 in Theorems 3.1 and 3.4. See [2; Section 3].

§4. The problem (E)

This section is devoted to the comparison principle and existence of solutions of
the problem (E). For any A > 0, by setting v(t,z) = e~Mu(t,z), we can observe that
the problem (E) is equivalent to the following problem:

(B) { vy + Av — ai(2)vgz; + H(Dv)=0 in (0,T)x RV,

v(0,2) = ¢(2) in RV,

where H(p) = e **H(e p). We note that H satisfies (A.2) by replacing wy with
eMm=1Ty, . In what follows we consider the problem (E’) with A = A¢ For simplicity,
we set H = H and call the problem (E) the problem (E).

First we mention the comparison principle.

Theorem 4.1. Let T > 0. Assume (A.1), (A.2) and (A.4). Let v and v be a

subsolution and a supersolution of (E), respectively. If u and v satisfy

u*(0,2) S¥(z) Sva(0,2) (V€ RY)

lim sup w(t,e) <0 £ liminf v, )
llmtoo 2™ T T falotoo |f™

uniformly in t € (0,T),
then there exists a modulus of continuity @ such that

w(t,2) = va(t,y) S G((1+ (|2 ]le™ ™ + 84y ly|™ )z ~ y1)
for allt € [0,T), z, y € RN. Especially u* £ v, in [0,T) x RY.

Outline of proof. Since the strategy of the proof is quite similar to that of the

proof of Theorem 3.1, we point out the differences.
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We may assume u (resp., v) is w.s.c. (resp., Ls.c.) in [0,T) x RY. We can estimate
H and % similarly to (3.2) and (3.4), respectively.
For 6, €, o, n € (0,1), define the function ®(¢,z,y) on [0,T) x RY x RY by

MT cym-1
®(t,z,y) = u(t,z)—v(t,y)— {ms<$_y)'7 (3)

™ (@) + ) + -#_—;}

Let (£,%,7) € (0,T) x RN x R be a maximum point of ®. By applying the maximum
principle (cf. [3; Theorem 8.3]), there exist X, Y € $" such that
(3€)m—1

m

() €7 (ute) = ET—ma)

w1y eP (o) + sy,
_ GHIAII) (é ?) < (g _OY) Ayt

S
T -7’

where p and A are the same vector and matrix, respectively, as in the proof of Theorem

3.1.
Since u and v are, a subsolution and a supersolution of (E), respectively, we have
the following inequalities:

(3e)m1

m—1
ru(E2) - (@) (X + o)+ (p+ CL—smpy’) <0,
ij

6 i) -

The remainder is totally similar to that in the proof of Theorem 3.1 and hence the

(35)111 1 (36)m -1

o+ () —aus) (¥ - CLsmpigir) 2o,
proof is complete. §

Finally we mention the existence of solutions.

Theorem 4.2. Assume (A.1), (A.2) and (A.4). Then there exists a unique solution
u € C([0,T) x RN) satisfying

w(0,z) =P(z) (Ve e RY), lim u(t,e)

lej=teo [a|™

=0 uniformly int € (0,T).
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Outline of proof. By (A.4) we have the same estimate on ¢ as (3.7).
Let ub(t,z) = 6(z)™ + M;s+Ct for § > 0 and (¢,z) € [0,T) x RN). By the similar
argument to that in the proof of Theorem 3.5 we see that u® is a supersolution of (E)

for § € (0,80) and some constant C > 0. Hence setting
u(t,z) = inf{ub(t,2) | 0 < & < &},
we conclude ¥ is also a supersoluiton of (E). Moreover, we have

%, (0,2) 2 ¥(z) (Vz € RY), | Ilim y—r(lt—’?) =0 uniformly in t € [0,T).
: z|—+o00 |Z|™

In the similar way we can find a subsolution u satisfying

u*(0,2) S¢(z) (Vo € RY), | Ilim w'(z) =0 uniformly int € [0,T).

z|—+o0 I.’Blm,
Therefore, by the barrier constriction argument, Perron’s method and Theorem

4.1, there exists a solution u of (E) satisfying

u*(0,2) S¥(z) (Y € RY),

hm u*(t,a;) _ . u(t,x) _ hm u (ta :L') — 0

|z]——+o0 |$|m' —|z|—>+oo i.’l)lm' —|1:|—»+oo |(Elml

uniformly in ¢ € [0, T).

Since we can show that u.(0,z) = ¢(z) for all z € RN, we conclude by Theorem
4.1 that u is a unique solution of (E) satisfying (4.1) and therefore u(0,z) = () for
allz e RN, 11
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