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THE FREEBOUNDARY IN A MINIMIZATION PROBLEM
KWON CHO AND HI JUN CHOE

1. INTRODUCTION

In this paper we study a minimization problem
VulP A
l pl +mu7+1d:z:, p>2, ’)’E[O,p—l)

with respect to K = Wy?() + ug, where ) is a positive constant. Here we consider

min I*(u) = min-/x;

the case boundary data wuo is constant, say, ug = 1. The motivation of this problem
comes from reaction diffusion models. We refer various references in [6] and [8] for
practical motivations.

From variational principle we note that the minimizer satisfies the Euler-Lagrange
equation |

div (|Vu|p‘2Vu) =Au” in Q.
In fact the existence and uniqueness follows from convexity of the functional I* on
W3?® + uo. An interesting fact is that if ¥ < p — 1, then there appears deadcore
Ny(u) = {z € Q : u(z) = 0}. Here we call F(u) = d{u > 0} the free boundary.

We shall study the nature of free boundary and deadcore. Our main result is
that if 9 has positive mean curvature, then the smooth portion of free boundary
has also positive mean curvature. Hence in two dimensional case if Q is convex,
then the deadcore is also convex. Friedman and Phillips[8] considered the case when
p = 2. Moreover the convexity of the graph of the solutions to various minimization
problems were considered by many authors([4], [10}).

We also study the asymptotic behaviour of free boundary with respect to A. Indeed
for two dimensional case van Duijn and Peletier[7] studied the behaviour of free

boundary for discontinuous boundary data.



We assume 9 is smooth and use the following symbol, Br(zo) = {z : |z — z¢| <
R}. ‘
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2. ASYMPTOTIC BEHAVIOR OF DEADCORE AS A — o0

In this section we study the asymptotic behavior of u) as A goes to oo. First
we prove that u) decreases at each point as A — oo. This follows from standard

comparison method.
Lemma 2.1. Let 0 < Ay < Ay, then uy, < uy, on {z € Q: uy,(z) >‘0}.

Proof. We regularize I by

1 2\% A v+1 =
/Qp(s+|Vul) +7+1u dz, u=1on 9N

and let u§ be the minimizer. Then u§ € C?*(Q) for all 0 < o < 1. If w(z) =
u§, (z) — u5,(z) attains a positive maximum at zo € {2, then
0 > div (e + |Vug, )T Vus, — (e + [Vug, ) Vus,)
=\ (uil (mo))’y — A2 (uf\z(:zso))1
>(h = M) (20) > 0.

Note that Vu§, (zo) = Vu§,(zo). Hence we get a;;w; > 0 for

p=2 us_..us
. e |12 2 . A2’xi A2117.1'
a;; = (e + |Vus3, | ) (6, + THIVEP
2

and this contradicts to the assumption w attains maximum at zo. O
Consequently we have
N), Cint Ny, if0 < A < s

The following theorem is our main result in this section and the case when p = 2 was
considered by Friedman and Phillips[8].
We define 5 = {z € Q : dist(z, 90) > 6}.
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Theorem 2.2. There exist positive constants a, ¢ and Ay depending only on n, p and

~ such that
Loy nser@mp © NVa C Ry 5oy ooy
for all X > Xo.
Proof. We let wy(z) = ua (%), then
div(IVw,\|”‘2Vw>\) =w’.
Hence from elliptic estimate
[Vw| < C
since |w| = |u| < 1. Hence we get |Vu| < e¥/X and
N)‘ C QC/W'
On the other hand if we set v(z) = Alz — 2o|?==7, then
div(|VolP~2Vv) = CEAP~1="7,

1
(P '+ D —1)7
p—1—v c
dist(zo, O9), then v > 1 on IN. If CBAP~1-7 = ), that is, d = T’V—OX’ then v > u and
v(zo) = u(xo) = 0. This implies

where Cy = . We take A satisfying Ad?==7 = 1, where d =

(1) QCO/VX C N,\ C QC/W’

Now we refine the previous estimates. Let y € 9Q and Bg C € such that y € 0Bkg.
Let U be the radial minimizer if I*, then v* < U and U’(r) > 0. U satisfies

(p _ l)IUllp—2U// + n : 1 |Ullp-—2Ul — \U"

and
Z(s)=U (R - % + %) ( Yo is to be determined)
“satisfies
_1
2 V|22 + ———| 2 P22 = 27,
@) (o= V22" + ]



where p = R—l)-,-.

)
From (1) 40 < C independent A. Multiplying both side of (2) by Z'(s), we get

p—l 1P\ n—1 ! 1
—(|1Z'PY + ———\Z'\P=2"72".
—(1ZPY + 7]
Hence we obtain
-p 1 P
lel+(n Z/p= Z7+1l
(127) p—1 p€/X+s| (p—l)('r+1)( )
and
(Z'P) + |2 > —L (21
N T -+
for some C. From this we obtain
Cs/¥UX 7P ! > p Ccs/YUX Z7+Ly
e —_—
( 2F) -+ (@)
and
1p > ~Cs/YX 4 /s ct/ X 771y
12(s) 2 IENCEDLE (&77) dt
p p C [ _Cl-t)) ¥R g1 1,
= 27 (s) — (s=t)/ VA Z7+1 gy
CEy e MO R ey cE S I A

Recalling that Z'(t) > 0 we get

"e(s 4 _>C TH1(g
27 2 oo T (1 e/x)z ).

On the other hand

((?;.i_)l’(v_ﬁl_).,,m (s)>%

has a unique solution as longra,s n > 0. It determines a unique number a > 0 such

that

n(—a) = 0.
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Letting ((s) = n(—a + s) we have

s

) = ((—+c~+l( ) toro<s<a

J(v+1)
¢(s) > for0<s<a
(o) = :
{a) = 1

The function

satisfies

-1 L
=

- (-8

S
(rP-1(r+1)
By comparison we also have

2(s) > Es) = ¢ (( j})) ;

Since U(R) = 1 implies Z(v0) = 1, we conclude that

Recalling that

uy < U,
we deduce that
Tr—
e 2l) < 201 - 2o) < U (R 25 4 L2220l
and U(zo) = 0 implies
NADQp .y ox DB o Uopb

This completes the first part of the theorem.
To prove the second part we let v be the radial solution of
{dlv(IVUP’ 2Vv)=M" in Bg, \ Bg,

v=1 on OBg,
v=20 on O0Bpg,,
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where Br, D Q and Br, N = {y} for some y. Then from comparison v < uy and

v'(r) < 0. Then considering Z(s) =V (R + % - \’/.ix

as in the proof of the first

part, we prove the second part. O

3. CONVEXITY OF DEADCORE

The following maximum principle for polynomial growth case is relatively well

known(see Chapter 7 in [13]).

Lemma 3.1. Let Q be a bounded regular (30 € C?) open set. Then if OQ has

nonnegative mean curvature, then for every r € Q

V)P < ;25 (6w )

where m = min,eq u(z).

Corollary 3.2. Let 2 be convez domain in R" and let z, be the point at which the

minimum u(z,) = m > 0 occurs. Then

1
—1\? 3
dist(z,, 02) > (E—p—l) / (7_/*\_ z (s”"'l - m'“'l)) "ds

In particular the null set N is empty if

p_.]_% 1 A - _.l;'_l
p<(p)/0(7+1) 8 .

Proof. Let ; € 89 and let r be the arc length on straight segment joining z,, to

s i=

z,. Let x5 be a point in this segment such that u(z;) = m and u(z) > m for all =

between z, and z;.

Then

So

ar > (p_ 1), 1
du =\ p ) (f2ft)dt)?
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and integrating from z, to x4,

dist(zm, z1) > dist(z,, z41)

1
p—1ly+1\*
S —
”( p A )

/1 ds
m (g7l — m—y+1)%'

We let

_(p—=1y+1 p p=y=1
O e P T

then from the Hausdorff measure estimate of free boundary([5] we have
div(|V[P72Vy) = dA + L) C9p (1 = [ VH[P),
where dA = dH" ' Freg(u) + 0(z)dH™ ' Fyng(u) and C depends only on n, p, v, ¢
bounded. Here I is the usual characteristic function. Moreover
P71 = |VYPP) € L.

From Green’s formula we note that if D is a subdomain of { with piecewise smooth

boundary D and with H*~!(F(u) N dD) = 0, then

/D &iv(| VP2 V) de = /a IV [P=2Vep - v dH 1.

Dn{u>0}

Hence from the above observation if D has piecewise smooth boundary and H™(F'(u)N
0D) = 0, then
/ dH™ 1 0dH™ = — div(| VP2 V) do
DnNFreq DNFing - ~ JDn{u>0}

+ / VP2V . v dH 1,
aDN{u>0}

Therefore with the argument by Friedman and Phillips( see Theorem 4.3 in [8]) we

prove the following Corollary.

Corollary 3.3. Every C? portion of F(u) has nonnegative mean curvature.
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