THE FREEBOUNDARY IN A MINIMIZATION PROBLEM

KWON CHO AND HI JUN CHOE

1. Introduction

In this paper we study a minimization problem

$$\min I^{\lambda}(u) = \min \int_{\Omega} \frac{|\nabla u|^p}{p} + \frac{\lambda}{\gamma + 1} u^{\gamma + 1} dx, \quad p \ge 2, \quad \gamma \in [0, p - 1)$$

with respect to $K = W_0^{1,p}(\Omega) + u_0$, where λ is a positive constant. Here we consider the case boundary data u_0 is constant, say, $u_0 = 1$. The motivation of this problem comes from reaction diffusion models. We refer various references in [6] and [8] for practical motivations.

From variational principle we note that the minimizer satisfies the Euler-Lagrange equation

$$\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) = \lambda u^{\gamma} \quad \text{ in } \Omega.$$

In fact the existence and uniqueness follows from convexity of the functional I^{λ} on $W_0^{1,p} + u_0$. An interesting fact is that if $\gamma , then there appears deadcore <math>N_{\lambda}(u) = \{x \in \Omega : u(x) = 0\}$. Here we call $F(u) = \partial \{u > 0\}$ the free boundary.

We shall study the nature of free boundary and deadcore. Our main result is that if $\partial\Omega$ has positive mean curvature, then the smooth portion of free boundary has also positive mean curvature. Hence in two dimensional case if Ω is convex, then the deadcore is also convex. Friedman and Phillips[8] considered the case when p=2. Moreover the convexity of the graph of the solutions to various minimization problems were considered by many authors([4], [10]).

We also study the asymptotic behaviour of free boundary with respect to λ . Indeed for two dimensional case van Duijn and Peletier[7] studied the behaviour of free boundary for discontinuous boundary data.

We assume $\partial\Omega$ is smooth and use the following symbol, $B_R(x_0) = \{x : |x - x_0| < R\}$.

Acknowledgement The second author is partially supported by GARC at Seoul National University and BSRI program N94121, 1994.

2. Asymptotic behavior of deadcore as $\lambda o \infty$

In this section we study the asymptotic behavior of u_{λ} as λ goes to ∞ . First we prove that u_{λ} decreases at each point as $\lambda \to \infty$. This follows from standard comparison method.

Lemma 2.1. Let $0 < \lambda_2 < \lambda_1$, then $u_{\lambda_2} < u_{\lambda_1}$ on $\{x \in \Omega : u_{\lambda_2}(x) > 0\}$.

Proof. We regularize I^{λ} by

$$\int_{\Omega} \frac{1}{p} \left(\varepsilon + |\nabla u|^2 \right)^{\frac{p}{2}} + \frac{\lambda}{\gamma + 1} u^{\gamma + 1} dx, \quad u = 1 \text{ on } \partial\Omega$$

and let $u_{\lambda}^{\varepsilon}$ be the minimizer. Then $u_{\lambda}^{\varepsilon} \in C^{2,\alpha}(\Omega)$ for all $0 < \alpha < 1$. If $w(x) = u_{\lambda_1}^{\varepsilon}(x) - u_{\lambda_2}^{\varepsilon}(x)$ attains a positive maximum at $x_0 \in \Omega$, then

$$0 \ge \operatorname{div}\left(\left(\varepsilon + |\nabla u_{\lambda_{1}}^{\varepsilon}|^{2}\right)^{\frac{p-2}{2}} \nabla u_{\lambda_{1}}^{\varepsilon} - \left(\varepsilon + |\nabla u_{\lambda_{2}}^{\varepsilon}|^{2}\right)^{\frac{p-2}{2}} \nabla u_{\lambda_{2}}^{\varepsilon}\right)$$

$$= \lambda_{1} \left(u_{\lambda_{1}}^{\varepsilon}(x_{0})\right)^{\gamma} - \lambda_{2} \left(u_{\lambda_{2}}^{\varepsilon}(x_{0})\right)^{\gamma}$$

$$\ge (\lambda_{1} - \lambda_{2}) u_{\lambda_{2}}^{\varepsilon,\gamma}(x_{0}) > 0.$$

Note that $\nabla u_{\lambda_1}^{\varepsilon}(x_0) = \nabla u_{\lambda_2}^{\varepsilon}(x_0)$. Hence we get $a_{ij}w_{ij}^{\varepsilon} > 0$ for

$$a_{ij} = \left(\varepsilon + |\nabla u_{\lambda_2}^{\varepsilon}|^2\right)^{\frac{p-2}{2}} \left(\delta_{ij} + \frac{u_{\lambda_2, x_i}^{\varepsilon} u_{\lambda_2, x_j}^{\varepsilon}}{\varepsilon + |\nabla u_{\lambda_2}^{\varepsilon}|^2}\right)$$

and this contradicts to the assumption w attains maximum at x_0 .

Consequently we have

$$N_{\lambda_1} \subset \operatorname{int} N_{\lambda_2}$$
 if $0 < \lambda_1 < \lambda_2$.

The following theorem is our main result in this section and the case when p=2 was considered by Friedman and Phillips[8].

We define $\Omega_{\delta} = \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > \delta\}.$

Theorem 2.2. There exist positive constants a, c and λ_0 depending only on n, p and γ such that

$$\Omega_{a/\sqrt[p]{\lambda}+c/(\sqrt[p]{\lambda})^2} \subset N_{\lambda} \subset \Omega_{a/\sqrt[p]{\lambda}-c/(\sqrt[p]{\lambda})^2}$$

for all $\lambda > \lambda_0$.

Proof. We let
$$w_{\lambda}(x)=u_{\lambda}\left(\frac{x}{\sqrt[p]{\lambda}}\right)$$
, then
$$\operatorname{div}(|\nabla w_{\lambda}|^{p-2}\nabla w_{\lambda})=w^{\gamma}.$$

Hence from elliptic estimate

$$|\nabla w| \le C$$

since $|w| = |u| \le 1$. Hence we get $|\nabla u| \le c\sqrt[p]{\lambda}$ and

$$N_{\lambda} \subset \Omega_{c/\sqrt[p]{\lambda}}$$
.

On the other hand if we set $v(x) = A|x - x_0|^{\frac{p}{p-1-\gamma}}$, then

$$\operatorname{div}(|\nabla v|^{p-2}\nabla v) = C_0^p A^{p-1-\gamma} v^{\gamma},$$

where $C_0 = \frac{(p^{p-1}(\gamma+1)(p-1))^{\frac{1}{p}}}{p-1-\gamma}$. We take A satisfying $Ad^{\frac{p}{p-1-\gamma}} = 1$, where $d = \operatorname{dist}(x_0, \partial\Omega)$, then $v \geq 1$ on $\partial\Omega$. If $C_0^p A^{p-1-\gamma} = \lambda$, that is, $d = \frac{C_0}{\sqrt[p]{\lambda}}$, then $v \geq u$ and $v(x_0) = u(x_0) = 0$. This implies

$$\Omega_{C_0/\sqrt[p]{\lambda}} \subset N_{\lambda} \subset \Omega_{C/\sqrt[p]{\lambda}}.$$

Now we refine the previous estimates. Let $y \in \partial \Omega$ and $B_R \subset \Omega$ such that $y \in \partial B_R$. Let U be the radial minimizer if I^{λ} , then $u^{\lambda} \leq U$ and $U'(r) \geq 0$. U satisfies

$$(p-1)|U'|^{p-2}U'' + \frac{n-1}{r}|U'|^{p-2}U' = \lambda U^{\gamma}$$

and

$$Z(s) = U\left(R - \frac{\gamma_0}{\sqrt[p]{\lambda}} + \frac{s}{\sqrt[p]{\lambda}}\right)$$
 (γ_0 is to be determined)

satisfies

(2)
$$(p-1)|Z'|^{p-2}Z'' + \frac{n-1}{\rho\sqrt[p]{\lambda} + s}|Z'|^{p-2}Z' = Z^{\gamma},$$

where $\rho = R - \frac{\gamma_0}{\sqrt[p]{\lambda}}$.

From (1) $\gamma_0 \leq C$ independent λ . Multiplying both side of (2) by Z'(s), we get

$$\frac{p-1}{p}(|Z'|^p)' + \frac{n-1}{\rho\sqrt[p]{\lambda} + s}|Z'|^p = Z^{\gamma}Z'.$$

Hence we obtain

$$(|Z'|^p)' + \frac{(n-1)p}{p-1} \frac{1}{\rho\sqrt[p]{\lambda} + s} |Z'|^p = \frac{p}{(p-1)(\gamma+1)} (Z^{\gamma+1})'$$

and

$$(|Z'|^p)' + \frac{C}{\sqrt[p]{\lambda}} |Z'|^p \ge \frac{p}{(p-1)(\gamma+1)} (Z^{\gamma+1})'$$

for some C. From this we obtain

$$\left(e^{Cs/\sqrt[p]{\lambda}}|Z'|^p\right)' \ge \frac{p}{(p-1)(\gamma+1)}e^{Cs/\sqrt[p]{\lambda}}(Z^{\gamma+1})'$$

and

$$\begin{split} |Z'|^p(s) \geq & e^{-Cs/\sqrt[p]{\lambda}} \frac{p}{(p-1)(\gamma+1)} \int_0^s e^{Ct/\sqrt[p]{\lambda}} (Z^{\gamma+1})' \, dt \\ = & \frac{p}{(p-1)(\gamma+1)} Z^{\gamma+1}(s) - \frac{p}{(p-1)(\gamma+1)} \frac{C}{\sqrt[p]{\lambda}} \int_0^s e^{-C(s-t)/\sqrt[p]{\lambda}} Z^{\gamma+1} \, dt. \end{split}$$

Recalling that $Z'(t) \geq 0$ we get

$$|Z'|^p(s) \ge \frac{p}{(p-1)(\gamma+1)} \left(1 - \frac{C}{\sqrt[p]{\lambda}}\right) Z^{\gamma+1}(s).$$

On the other hand

$$\begin{cases} \eta'(s) &= \left(\frac{p}{(p-1)(\gamma+1)}\eta^{\gamma+1}(s)\right)^{\frac{1}{p}} \\ \eta(0) &= 1 \end{cases}$$

has a unique solution as long as $\eta > 0$. It determines a unique number a > 0 such that

$$\eta(-a)=0.$$

Letting $\zeta(s) = \eta(-a+s)$ we have

$$\begin{cases} \zeta'(s) &= \left(\frac{p}{(p-1)(\gamma+1)}\zeta^{\gamma+1}(s)\right)^{\frac{1}{p}} & \text{for } 0 < s < a \\ \zeta(s) &> 0 & \text{for } 0 < s < a \\ \zeta(0) &= 0 \\ \zeta(a) &= 1. \end{cases}$$

The function

$$\tilde{\zeta}(s) = \zeta \left(s \left(1 - \frac{C}{\sqrt[p]{\lambda}} \right)^{\frac{1}{p}} \right)$$

satisfies

$$\left(\tilde{\zeta}(s)\right)' = \left(1 - \frac{C}{\sqrt[p]{\lambda}}\right)^{\frac{1}{p}} \left(\frac{p}{(p-1)(\gamma+1)}\tilde{\zeta}^{\gamma+1}\right)^{\frac{1}{p}}.$$

By comparison we also have

$$Z(s) \ge \tilde{\zeta}(s) = \zeta \left(s \left(1 - \frac{C}{\sqrt[p]{\lambda}} \right)^{\frac{1}{p}} \right).$$

Since U(R) = 1 implies $Z(\gamma_0) = 1$, we conclude that

$$\gamma_0 \left(1 - \frac{C}{\sqrt[p]{\lambda}}\right)^{\frac{1}{p}} \le a.$$

Recalling that

$$u_{\lambda} \leq U$$

we deduce that

$$|u_{\lambda}(|x-x_0|) \leq Z(|x-x_0|) \leq U\left(R - \frac{\gamma_0}{\sqrt[p]{\lambda}} + \frac{|x-x_0|}{\sqrt[p]{\lambda}}\right)$$

and $U(x_0) = 0$ implies

$$N_{\lambda} \supset \Omega_{R-\gamma_0/\sqrt[p]{\lambda}} \supset B_{R-a/\sqrt[p]{\lambda}-C/\lambda^{\frac{2}{p}}}.$$

This completes the first part of the theorem.

To prove the second part we let v be the radial solution of

$$\begin{cases} \operatorname{div}(|\nabla v|^{p-2}\nabla v) = \lambda v^{\gamma} & \text{in} \quad B_{R_1} \setminus B_{R_0} \\ v = 1 & \text{on} \quad \partial B_{R_0} \\ v = 0 & \text{on} \quad \partial B_{R_1}, \end{cases}$$

where $B_{R_1} \supset \Omega$ and $\bar{B}_{R_0} \cap \Omega = \{y\}$ for some y. Then from comparison $v \leq u_{\lambda}$ and $v'(r) \leq 0$. Then considering $\bar{Z}(s) = V\left(R + \frac{\bar{\gamma}}{\sqrt[p]{\lambda}} - \frac{s}{\sqrt[p]{\lambda}}\right)$ as in the proof of the first part, we prove the second part. \square

3. CONVEXITY OF DEADCORE

The following maximum principle for polynomial growth case is relatively well known(see Chapter 7 in [13]).

Lemma 3.1. Let Ω be a bounded regular ($\partial \Omega \in C^2$) open set. Then if $\partial \Omega$ has nonnegative mean curvature, then for every $x \in \bar{\Omega}$

$$|\nabla u(x)|^p \leq \frac{p}{p-1} \frac{\lambda}{\gamma+1} \left(u^{\gamma+1}(x) - m^{\gamma+1} \right),$$

where $m = \min_{x \in \Omega} u(x)$.

Corollary 3.2. Let Ω be convex domain in \mathbb{R}^n and let x_m be the point at which the minimum $u(x_m) = m \geq 0$ occurs. Then

$$\operatorname{dist}(x_m,\partial\Omega) \geq \left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_m^1 \left(\frac{\lambda}{\gamma+1} \left(s^{\gamma+1} - m^{\gamma+1}\right)\right)^{-\frac{1}{p}} \, ds$$

In particular the null set N is empty if

$$\rho < \left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_0^1 \left(\frac{\lambda}{\gamma+1}\right)^{-\frac{1}{p}} s^{-\frac{\gamma+1}{p}}.$$

Proof. Let $x_1 \in \partial \Omega$ and let r be the arc length on straight segment joining x_m to x_1 . Let x_2 be a point in this segment such that $u(x_2) = m$ and u(x) > m for all x between x_2 and x_1 .

Then

$$\frac{du}{dr} \le |\nabla u| \le \left(\frac{p}{p-1}\right)^{\frac{1}{p}} \left(\int_m^u f(t) \, dt\right)^{\frac{1}{p}}.$$

So

$$\frac{dr}{du} \ge \left(\frac{p-1}{p}\right)^{\frac{1}{p}} \frac{1}{\left(\int_m^u f(t) \, dt\right)^{\frac{1}{p}}}$$

and integrating from x_2 to x_1 ,

$$\operatorname{dist}(x_m, x_1) \ge \operatorname{dist}(x_2, x_1)$$

$$\ge \left(\frac{p-1}{p} \frac{\gamma+1}{\lambda}\right)^{\frac{1}{p}} \int_m^1 \frac{ds}{\left(s^{\gamma+1} - m^{\gamma+1}\right)^{\frac{1}{p}}}.$$

We let

$$\psi(u) = \left(\frac{p-1}{p} \frac{\gamma+1}{\lambda}\right) \frac{p}{p-\gamma+1} u^{\frac{p-\gamma-1}{p}},$$

then from the Hausdorff measure estimate of free boundary[5] we have

$$\operatorname{div}(|\nabla \psi|^{p-2}\nabla \psi) = d\Lambda + I_{\{u>0\}}C\psi^{-1}(1-|\nabla \psi|^p),$$

where $d\Lambda = d\mathcal{H}^{n-1}F_{\text{reg}}(u) + \theta(x)d\mathcal{H}^{n-1}F_{\text{sing}}(u)$ and C depends only on n, p, γ, θ bounded. Here I is the usual characteristic function. Moreover

$$\psi^{-1}(1-|\nabla\psi|^p)\in L^1_{\mathrm{loc}}.$$

From Green's formula we note that if D is a subdomain of Ω with piecewise smooth boundary ∂D and with $\mathcal{H}^{n-1}(F(u) \cap \partial D) = 0$, then

$$\int_{D} \operatorname{div}(|\nabla \psi|^{p-2} \nabla \psi) \, dx = \int_{\partial D \cap \{u > 0\}} |\nabla \psi|^{p-2} \nabla \psi \cdot \nu \, d\mathcal{H}^{n-1}.$$

Hence from the above observation if D has piecewise smooth boundary and $\mathcal{H}^{n-1}(F(u)\cap \partial D)=0$, then

$$\int_{D\cap F_{\text{red}}} d\mathcal{H}^{n-1} + \int_{D\cap F_{\text{sing}}} \theta d\mathcal{H}^{n-1} = -\int_{D\cap \{u>0\}} \operatorname{div}(|\nabla \psi|^{p-2} \nabla \psi) dx + \int_{\partial D\cap \{u>0\}} |\nabla \psi|^{p-2} \nabla \psi \cdot \nu d\mathcal{H}^{n-1}.$$

Therefore with the argument by Friedman and Phillips (see Theorem 4.3 in [8]) we prove the following Corollary.

Corollary 3.3. Every C^2 portion of F(u) has nonnegative mean curvature.

REFERENCES

- 1. H.W. Alt and L. Caffarelli, Existence an regularity for a minimum problem with freeboundary, J. reine angew. Math., 105 (1981), 105-144.
- 2. H.W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations, J. reine angew. Math., 368 (1985), 63-107.
- 3. R. Aris, The Mathematical Theory of Diffusion and Reaction, Clarenden Press, Oxford, 1975.
- 4. L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. P.D.E., 7 (1982), 1337-1379.
- 5. H.J. Choe, Hausdorff measure of free boundary in a minimization problem, preprint
- 6. J.I. Diaz, Nonlinear partial differential equations and freeboundaries I: Elliptic equations, Res. Notes Math. 106, Boston, 1985.
- 7. C.J. van Duijn and L.A. Peletier, How the interface approaches the boundary in the dead core problem, J. reine angew. Math., bf 432 (1992), 1-21.
- 8. A. Friedman and D. Phillips, The free boundary of a semilinear elliptic equation, Tran. Amer. Math. Soc., 282, 1 (1984), 153-182.
- 9. M. Giaquinta and E. Giusti, Differentiability of minima of non-differential functionals, Invent. Math., 72 (1983), 285-298.
- 10. N. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), 603-614.
- 11. D. Phillips, A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J., 32 (1983), 1-17.
- 12. D. Phillips, Hausdorff measure estimates of a free boundary for a minimum problem, Comm. P.D.E., 8 (1983), 1409-1454.
- 13. R. Sperb, Maximum principles and their applications, Acad. Press, New York (1981).

DEPARTMENT OF MATHEMATICS, POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, POHANG, KYUNGBUK, REPUBLIC OF KOREA, 790-600