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1 Introduction
We consider evolution equations for closed curves $C(t),$ $t>0$ in $\mathrm{R}^{2}$ moving with curvature
dependent speed.

Let $C(t)$ : $\sigma\vdasharrow(x(\sigma,t),$ $y(\sigma,t))$ : $S^{1}arrow \mathrm{R}^{2}$ be a smooth closed curve, which is governed
by

$\frac{\partial C}{\partial t}=g(\kappa)N$ (1)

where $\kappa$ is the curvature of $C,$ $N$ is its unit inward normal vector and $g$ is a given nonde-
creasing function on R. Let $s$ be the arclength parameter:

$ds=v(\sigma,t)d\sigma$ , $v(\sigma,t)=\sqrt{(x_{\sigma})^{2}+(y\sigma)^{2}}$ .

We can rewrite (1) as the system

$x_{t}=-g( \kappa)\frac{y_{\sigma}}{v}=\frac{g(\kappa)}{\kappa}xSs$

’
$y_{t}=g( \kappa)\frac{x_{\sigma}}{v}=\frac{g(\kappa)}{\kappa}y_{Ss}$

where
$\kappa=\frac{y_{\sigma\sigma}x_{\sigma}-x_{\sigma\sigma}y_{\sigma}}{v(\sigma,l)^{3}}=y_{SS}X_{s}-xysss$

and
$\frac{\partial}{\partial s}=\frac{1}{v}\frac{\partial}{\partial\sigma}$ .

When $g(\kappa)=\kappa,$ (1) is called the curve shortening equation. In this case, the behaviour of
the curves governed by (1) has been studied by many authors, see [7], [20], [23], [14].

Although the curve shortening equation originally arises in the pure mathematical field,
there are many applications. For example, it is related to physical phenomena such as crystal
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growth and flame propagation (see [29] and its reference). As to the engineering, it is used
for shape representation and recognition ([26], [27], [28]).

Our aim of this lecture is to present some extensions of previous results of the curve
shortening equation to eq.(l) and to investigate global behaviour of solutions of (1) for
smooth immersed convex closed curves in the plane.

It will be shown that the convex curves determined by eq. (1) do not necessarily shrink,
but may expand to infinity under some assumptions on $g$ . We also consider the case when the
initial curve contains line segments and investigate whether or not line segments disappear
instantaneously. We will show that they do not disappear instantaneously in some cases.

The organization of this talk is as follows:
in Section 2 we consider evolution equations for the curvature $\kappa$ and the arclength density

of the curves. We will establish the short time existence results of smooth (and weak)
solutions of eq. (1) by solving the equations of the curvature and the arclength density.

Section 3 is devoted to show that the curves governed by eq. (1) may shrink to a round
point in a finite time, or expand roundly to infinity in a finite (or infinite) time.

In Section 4, we rewrite evolution equations for the curvature in terms of the Gauss
map to get nonlinear degenerate parabolic equations of non divergent form. In the following
subsections we investigate regional blow up of solutions of the nonlinear degenerate parabolic
equation and the behaviour of them near blow-up time. We will prove that the solutions may
blow up regionally, but not on the whole interval. It means that the corresponding immersed
convex closed curve becomes singular before shrinking to a point In these subsection our proof
is inspired by Angenent $[7]$

.
as well as $\mathrm{F}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{d}\mathrm{m}\mathrm{a}\mathrm{n}-\mathrm{M}_{\mathrm{C}\mathrm{L}}\mathrm{e}\mathrm{o}\mathrm{d}[19]$ , but is much simpler and more

precise than them.

Precise statements and most of proofs will be appeared elsewhere.

2 The evolution equation of curvature
The evolution of the curve $C(t)$ can be expressed in terms of the curvature $\kappa(\sigma, t)$ and the
arclength density $v(\sigma,t)$ in the following manner (see Gage and Hamilton [20]):

$\frac{\partial\kappa}{\partial t}$ $=$ $\frac{\partial^{2}}{\partial s^{2}}g(\kappa)+g(\kappa)\kappa^{2}$ $\sigma\in S^{1}$ , $t>0$ , (2)

$\frac{\partial v}{\partial t}$ $=$ $-g(\kappa)\kappa v$ $.\sigma\in S^{1}$ , $t>0$ . (3)

with prescribed initial data

$\kappa(\sigma,0)$ $=$ $\kappa_{0}(\sigma)$ , $\sigma\in S^{1}$ , (4)
$v(\sigma,0)$ $=v_{0}(\sigma)$ , $\sigma\in S^{1}$ . (5)

If $\kappa(\sigma,t)$ and $v(\sigma, t)$ solve the initial value problem for (2)$-(5)$ , the curve the curve is com-
pletely determined up to a translation and a rotation. The inversion is given by

$C(t)( \sigma)=C(0)(\sigma)+\int_{0}^{\sigma_{\mathcal{T}}}(\alpha,t)v(\alpha,t)d\alpha$ , $\sigma\in S^{1}$ , $t>0$ (6)
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where $T(\sigma,t)$ can be obtained by solving

$\frac{\partial \mathcal{T}}{\partial t}-\frac{1}{v^{2}\kappa}\frac{\partial g(\kappa)}{\partial\sigma}\frac{\partial \mathcal{T}}{\partial\sigma}=^{\mathrm{o}}$, $\sigma\in S^{1}$ , $t>0$ (7)

with
$\mathcal{T}(\sigma, 0)=\tau_{0}(\sigma)$ , $\sigma\in S^{1}$ . (8)

Note that $T(\sigma,t)$ is given by
$\mathcal{T}(\sigma,t)=\tau \mathrm{o}(\gamma(t ; \sigma))$ , $t\geq 0$ (9)

where $\gamma(t;\sigma)$ is a solution of the characteristic equation

$\frac{d\gamma}{dl}$ $=$ $\frac{1}{v^{2}(\gamma,t)\kappa(\gamma,t)}\frac{\partial g(\kappa(\gamma,t)}{\partial\gamma}$ , $t>0$ (10)

$\gamma(0;\sigma)$ $=$ $\sigma\in S^{1}$ . (11)

From (3) and (5) we have
$v( \sigma,t)=v\mathrm{o}(\sigma)e-\int^{t}\mathrm{o}^{\mathit{9}}\mathrm{t}\kappa \mathrm{t}\sigma,\mathcal{T}))\kappa \mathrm{t}\sigma,\tau)d\tau$ (12)

Eliminating $v(\sigma,t)$ from (2)$-(3)$ , we have a nonlinear degenerate integro-differential equation
of the form:

$\kappa_{t}=A(\sigma, t, \kappa)\kappa_{\sigma\sigma}+B(\sigma,t, \kappa, \kappa_{\sigma})$, $\sigma\in S^{1}$ , $t>0$ (13)

with
$\kappa(\sigma, 0)=\kappa_{0}(\sigma)$ , $\sigma\in S^{1}$ . (14)

Here
$A( \sigma,t, \kappa)=v_{\mathrm{o}()}\sigma-2e2\int_{0}^{t}g(\kappa \mathrm{t}\sigma,\tau))\hslash \mathrm{t}^{\sigma},\mathcal{T})d\mathcal{T}g’(\mathcal{K}(\sigma, t))$

and

B $(\sigma,t, \kappa, \kappa)$

-

$\sigma$

$=$ $v_{0}( \sigma)-22\int e0^{\mathit{9}})t\mathrm{t}^{\kappa}(\sigma,\tau)\hslash(\sigma,\tau)d\tau\{g’’(\kappa)\kappa_{\sigma}^{2}-v^{-}v_{0}g\mathrm{o}(\kappa)\kappa\sigma 1/$
’

$+ \int_{0}^{t}(g’(_{\mathcal{K}}(\sigma, \mathcal{T}))\kappa(\sigma, \tau)+g(\kappa(\sigma, \tau)))\kappa\sigma(\sigma, \mathcal{T})d_{\mathcal{T}}g(’\kappa)\kappa_{\sigma}\}$

$+g(\kappa)_{\mathcal{K}^{2}}$ .
If $g’(\kappa)\geq\lambda>0$ $(\forall\kappa\in \mathrm{R})$ , eq. (13) is uniformly parabolic. We consider a successive
approximation and apply the classical result of Ladyzhenskaya-Solonnikov-Ural’ceva [25] to
obtain the short time existence of classical solutions to the initial value problem (13)$-(14)$

provided that $g(\kappa),$ $v_{0}$ and $\kappa_{0}$ are smooth. In order to treat degenerate and non smooth
cases, we approximate $g$ and $\kappa_{0}$ by $g_{\epsilon}\in C^{1}(\mathrm{R})$ with $g_{\epsilon}’(\kappa)\geq\lambda_{\epsilon}>0(\forall\kappa\in \mathrm{R})$ and $\kappa_{0\epsilon}\in$

$C^{\infty}(S^{1})$ , respectively, to get the approximate solutions $\kappa_{\epsilon}(\sigma,t)$ in a short time which can be
taken independent of $\epsilon$ . Under suitable assumptions on $g$ and $\kappa_{0}$ , we may obtain a priori
estimate $||\kappa_{\epsilon}||L^{\infty}$ , by using some modifications of usual energy estimates, and then, get a
priori estimates of higher order derivatives. Then, taking the limit of $\kappa_{\epsilon}(\sigma, t)$ as $\epsilonarrow 0$ , we
obtain the short time existence for (13)$-(14)$ .

We also note that the equation of $\kappa$ shows that if $\kappa(\sigma, 0)$ is positive (nonnegative), then
$\kappa(\sigma, t)$ is positive (nonnegative) for all $t\geq 0$ . This fact is useful in the subsequent sections.
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3Fundamental properties of solutions
Evolution of the geometric quantities such as the length of the curve, the area which the
curve encloses and the rotation number of the curve is fundamental to the study of evolution
of the curve. We denote the length, the area and the rotation number of $C(t)$ by $L(t),$ $A(t)$

and $R(t)$ , respectively. They are given by

$L(t)= \int_{C(i)}ds=\int_{0}^{1}v(\sigma, t)d\sigma$,

$A(t)=- \frac{1}{2}\int_{C(t)}(c(t),N\rangle dS$ ,

and
$R(t)= \int_{C(t)}\kappa ds=\int_{0}^{1}\kappa(\sigma, t)v(\sigma,t)d\sigma$.

Note that $A(t)$ means the area which $C(t)$ encloses only if $C(t)$ is embedded.
We have

Lemma 1
$\frac{d}{dt}L(t)=-\int_{C(t)}g(\mathcal{K})\kappa d_{S}$ ,

$\frac{d}{dt}A(t)=-\int_{C(t)}g(\kappa)ds$ ,

and
$\frac{d}{dl}R(t)=^{\mathrm{o}}$ .

When $g(\kappa)=\kappa$ , we have

$\frac{d}{dt}A(t)=-\int_{C\langle t)}\kappa d_{\mathit{8}}=-R(t)=-R(0)$ .

Hence,
$A(t)=A(\mathrm{O})-R(\mathrm{O})t$

and
$\lim$ $A(t)=0$ .

$t\nearrow A(0)/R(0)$

In this case, Gage-Hamilton [20] and Grayson [23] showed that the smooth embedded closed
curve $C(t)$ shrinks to a point, becoming round in the limit. We can extend the above
mentioned results to more general cases.

Theorem 2 Suppose that $R_{0}=R(0)=I_{0}^{1}\kappa(\sigma, \mathrm{O})v(\sigma, 0)d\sigma\neq 0$ and that $G(\kappa)=g(\kappa)\kappa$ is

nonnegative and convex. Suppose that $\int_{0}^{L}\frac{1}{g(R_{0}/\ell)}d\ell<+\infty$ for all $L>0$ . Then;

$\lim_{t\nearrow T}L(t)=0$
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where
$T= \int_{0}^{L}\langle 0)\frac{1}{g(R_{0}/\ell)R0}d\ell$

provided that the curve $C(t)$ is smooth on $[0,T)$ .

If we restrict ourselves to convex closed curves, we can find $g(\kappa)$ for which the curve $C(t)$

may expand to infinity.

Theorem 3 Suppose that $C(t)$ is smooth convex and closed. Suppose that $R_{0}= \int_{0}^{1}\kappa(\sigma, 0)$

$v(\sigma,0)d\sigma\neq 0$ and $G(\kappa)=g(\kappa)\kappa$ is a nonpositive convex function of $\kappa\geq 0$ such that $G(\kappa)\leq$

$C|\kappa|^{\alpha+1}$ where $C$ is a positive constant and-l $\leq\alpha<0$ . Suppose that $\int_{L}^{+\infty}\frac{1}{g(R_{0}/\ell)}d\ell=-\infty$

for all $L>0$ . Then,
$\lim_{t\nearrow\infty}L(t)=+\infty$

provided that the curve $C(t)$ is smooth on $[0, \infty)$ .

Theorem 4 Suppose that $C(t)$ is smooth convex and closed. Suppose that $R_{0}= \int_{0}^{1}\kappa(\sigma, \mathrm{o})$

$v(\sigma,\mathrm{o})d\sigma\neq 0$ and that $G(\kappa)=g(\kappa)\kappa$ is $nonpo\mathit{8}itive$ and concave. Suppose that $\int_{L}^{+\infty}\frac{1}{g(R_{0}/l)}dl$

$>-\infty$ for all $L>0$ . Taking $T=- \int_{L(0\rangle}^{\infty}\frac{1}{g((R_{0}/\ell)R0}d\ell$ , one has

$\lim_{t\nearrow T}L(t)=+\infty$

provided that the curve $C(t)$ is smooth on $[0,T)$ .

We can prove Theorems 2-4 by using the evolution of $L(t),$ $A(t)$ and $R(t)$ , and Jensen’s
inequality.

Remark 5 Let $g(\kappa)=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\alpha|\kappa|^{\alpha-1}\kappa,$ $\alpha\in$ R. Then, if $\alpha>0$ , then the curve $C(t)$ shrinks
to a point in a finite time if it does not develop singularity before shrinking to a point. If
$-1\leq\alpha<0$ , the convex curve may expand to infinity as $tarrow\infty$ if it exists for all $t\geq 0$ . If
$\alpha<-1$ , the convex curve may blow up in a finite time.

The following proposition concerns the evolution of the total curvature of the curves.

Proposition 6 Suppose that $g(\kappa)$ is a nondecreasing differentiable function on $\mathrm{R}\backslash \mathrm{O}$ and the
curve $C(t)$ evolved by (1) is smooth on $[0, T)$ . Then, we have

$\sup_{t\in 10,\tau)}\int_{c_{\mathrm{t}^{t})}}|\kappa|dS\leq c$,

where $C$ is a positive constant.

Corollary 7 If $C(\mathrm{O})$ is $oval_{f}$ then $C(t)$ is oval for all $t>0$ .

Corollary 8 For any $\eta>0$ , there exists a constant $B$ such that $\kappa(s,t)\leq B$ except on
subarcs of length less than or equal to $\eta$ .
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4Immersed closed curves and degenerate parabolic
equations

Let $C:S^{1}arrow \mathrm{R}^{2}$ be a convex immersed curve, and for each $\sigma\in S^{1}$ we denote the unit tangent
to $C$ by $\mathcal{T}(\sigma)\in S^{1}$ . Since the curve is convex, $\mathcal{T}$ : $S^{1}arrow S^{1}$ is locally $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ , and $\mathcal{T}$ is
a covering. The degree $\nu$ of the covering is the index of the curve. Let $\mathrm{T}_{\nu}=\mathrm{R}/2\nu\pi \mathbb{Z}$ . For
any $\sigma\in S^{1}$ we can write $T(\sigma)=(\cos\theta(\sigma), \sin\theta(\sigma))$ for some $\theta(\sigma)\in \mathrm{T}_{\nu}$ , where $\theta(\sigma)$ can
be chosen so that it depends continuously on $\sigma\in S^{1}$ . Then, $\theta$ : $S^{1}arrow T_{\nu}$ is bijective and
$C\mathrm{o}\theta^{-1}$ : $\mathrm{T}_{\nu}arrow \mathrm{R}^{2}$ is a parametrization of the curve for which the tangent is $(\cos\theta, \sin\theta)$ .

If the curvature $\kappa$ of the curve is known as a function of the angle $\theta$ , then the curve is
completely determined, up to a translation. In this case the inversion is given by

$C( \theta_{0})=C(0)+\int_{\theta 0}^{\theta_{0}}=\mathcal{T}d_{S}=C(0)+\int_{0}^{\theta_{0}}\frac{e^{i\theta}}{\kappa(\theta)}d\theta$, (15)

where $\mathrm{R}^{2}$ is identified with C. Hence, any positive function $\kappa\in C(\mathrm{T}_{\nu})$ satisfying the
closedness condition

$\int_{0}^{2\nu\pi}\frac{e^{i\theta}}{\kappa(\theta)}d\theta=0$ (16)

defines a $C^{2}$ convex immersed closed curve. When $\kappa$ has zeros on a finite number of points,
if $\kappa^{-1}\in L^{1}(\mathrm{T}_{\nu})$ and satisfies (16), the inversion formula (15) still defines an immersed closed
curve. But it is obvious that many closed curves containing line segments may have the
same curvature $\kappa$ in this case.

It can be shown that eq. (1) for convex immersed curves is equivalent to the following
partial differential equation for the curvature $\kappa$ , as a function of $(\theta, t)$ ,

$\frac{\partial\kappa}{\partial t}=\kappa^{2}[\frac{\partial^{2}g(\kappa)}{\partial\theta^{2}}+g(_{\mathcal{K})]} (\theta\in \mathrm{T}_{\nu}, 0\leq t<T)$ . (17)

If $\kappa(\theta,t)$ satisfies (16) at $t=0$ , then it satisfies (16) for all $t\geq 0$ so long as eq. (17) has
a sense. Indeed,

$\frac{d}{dt}\int_{\mathrm{o}0}^{2\nu\pi}\frac{e^{i\theta}}{\kappa(\theta,t)}d\theta=-\int^{2\pi}\nu\frac{\kappa_{t}(\theta,t)e^{i}\theta}{\kappa^{2}(\theta,l)}d\theta$

$=- \int_{0}2\nu\pi[\frac{\partial\theta^{2}g(\kappa)}{\partial\theta^{2}}+g(\kappa)]edi\theta\theta=0$.

In the sequel we always assume that $g(\kappa)=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\alpha|\kappa|^{\alpha-1}\kappa,$ $\alpha\in \mathrm{R}$ . Then, putting $u=$

$\beta g(\kappa),$ $\beta=|\alpha|^{\alpha}/\mathrm{t}\alpha+1),$ (17) becomes

$u_{t}=u^{\delta}(u_{\theta\theta}+u)$ , $(\theta\in \mathrm{T}_{\nu}, 0\leq t<T)$ . (18)

where $\delta=\frac{\alpha+1}{\alpha}\neq 1$ . If $\alpha=-1$ , eq. (18) turns to be the linear heat equation

$u_{t}=u_{\theta\theta}+u$ .
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If we assume that $g(\kappa)=e^{-1/\kappa}$ . Then, putting $u=g(\kappa)$ , we have

$u_{t}=u(u_{\theta\theta}+u)$ , $(\theta\in \mathrm{T}_{\nu}, 0\leq t<T)$ .

Hence we can consider $\mathrm{e}\mathrm{q}.(18)$ for all $\delta\in$ R. As is suggested in the case $\delta=2$ (see [7]),
selfsimilar solutions of the form

$u(\theta,t)=U(\theta)[\delta(T-t)]^{-1}/\delta$

may play an important role in studying the asymptotic behaviour of solutions of (18). Here
$U(\theta)$ satisfies

$U_{\theta\theta}+U=U1-\delta$ $\theta\in \mathrm{T}_{\nu}$

We see that $U(\theta)\equiv 1$ is a solution. It is interesting to find other solutions if exist. When
$\delta=2$ , Abresch and Langer [1] classified all positive solutions of this equation. Epstein and
Weinstein [14] investigated their stability. When $\delta=1$ , the equation turns to be $U_{\theta\theta}+U=1$ .
Hence we have a continuous family of selfsimilar solutions

$u(\theta,t)=(1+A\cos\theta+B\sin\theta)(T-t)^{-}1$

where $A$ and $B$ are positive constants satisfying $\sqrt{A^{2}+B^{2}}<1$ . Note that the correspond-
ing curvature $\kappa$ to the selfsimilar solution does not satisfy the closedness condition (16)
unfortunately unless $A=B=0$ .

4.1 blow-up of solutions.
We consider the initial value problem

$u_{t}$
$=u^{\delta}(u_{\theta\theta}+u)$ , $\theta\in \mathrm{T}_{\nu}$ , $0\leq t<T$, (19)

$u(\theta, 0)$ $=u_{0}(\theta)$ , $\theta\in \mathrm{T}_{\nu}$ (20)

where $u_{0}$ is a continuous nonnegative function on $\mathrm{T}_{\nu}$ .
In this and the following subsections we only investigate the case $\delta>0$ .
Viscosity solutions of (19), (20) can be obtained by the method of vanishing viscosity

(see [2]). That is, we approximate the solution $u$ of (19), (20) by $u_{\epsilon}$ satisfying

$u_{\epsilon t}$ $=$ $u_{\epsilon}^{\delta}(u_{8\theta\theta}+u_{\epsilon})$ , $\theta\in \mathrm{T}_{\nu}$ , $0\leq t<T$, (21)
$u_{\epsilon}(\theta,0)$ $=$ $(u_{0}(\theta)+\epsilon)$ , $\theta\in \mathrm{T}_{\nu}$ , (22)

for $\epsilon>0$ and take the limit as $\epsilonarrow 0$ .

Selfsimilar solutions suggest that when $\delta>0$ solutions of (19), (20) may blow up in a
finite time.

Theorem 9 Suppose that $u_{0}^{1-\delta}\in L^{1}(\mathrm{T}_{\nu})$ when $\delta\neq 1$ , and $\log u_{0}\in L^{1}(\mathrm{T}_{\nu})$ when $\delta=1$ .
Then, there exists a finite $T>0\mathit{8}uch$ that any viscosity solution $u$ blows up to infinity as

$t\uparrow T$ where

$T\leq\{$

$\frac{1}{\delta}(\frac{1}{2\nu\pi}\int_{0}^{2\nu}\pi\theta u_{0}()^{1-}s_{d}\theta)\frac{\delta}{\delta-1}$ if $\delta\neq 1$ ,

$\exp(-\frac{1}{\nu}\int_{0}^{2\nu\pi}\log u\mathrm{o}(\theta)d\theta)$ if $\delta=1$ .
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Proof. We only consider the case $\delta>1$ . We may prove the others in the same manner.
Since $u_{\epsilon}$ is strictly positive, we can rewrite (21) into

$- \frac{1}{\delta-1}(u_{\epsilon}^{1\delta}-)tu\theta=\theta\epsilon+u_{\xi}$. (23)

Integrating (23) from $0$ to $2\nu\pi$ , we have

$\frac{1}{\delta-1}\frac{d}{dl}\int_{0}^{2\nu\pi}u_{\epsilon}^{1}-\delta d\theta=-\int_{0}^{2\nu\pi}u\epsilon d\theta$ .

Since
$2 \nu\pi=\int_{0}^{2\nu\pi}d\theta\leq(\int_{0}^{2\nu}\pi u^{1-^{s}}\epsilon)^{1}d\theta/\delta(\int_{0}^{2\nu\pi}u_{\epsilon}d\theta)^{()/s}\mathit{5}-1$ , (24)

we have
$\frac{d}{dt}\int_{0}^{2}\nu\pi-\delta d\theta\leq-(\delta-1)(2\nu\pi)^{s/\mathrm{t}^{s-}}1)(u_{\epsilon}^{1}\int 0)^{-}2\nu\pi u-sd1\theta\epsilon\frac{1}{\delta-1}$ (25)

From (25), letting $\epsilon$ tend to $0$ , we have

$\int_{0}^{2\nu\pi}u^{1-\delta}d\theta\leq\{(\int_{0}^{2\pi}\nu u_{0^{-\delta})}^{1}d\theta-\delta(2\nu T)^{\frac{\delta}{\delta-1}}t\}^{\frac{\delta-1}{\delta}}\frac{\delta}{\delta-1}$ , (26)

which implies that

$0 \leq\theta\leq 2\sup_{\pi\nu}u(\theta,t)\geq\{(\frac{1}{2\nu\pi}\int_{0}^{2\nu}\pi)^{\frac{\delta}{\delta-1}}u_{0^{-}}d1\delta\theta-\delta t\}^{-\frac{1}{\delta}}$ (27)

This completes the proof of the case $\delta>1$ .

4.2 Regional blow-up

From now on we always assume that

(A1) $u_{0}$ is a nonnegative continuous function satisfying $u_{0}^{1-\delta}\in L^{1}(\mathrm{T}_{\nu})$

for $\delta\neq 1$ , and $\log u_{0}\in L^{1}(\mathrm{T}_{\nu})$ for $\delta=1$ .

We define the blow-up set to be the set $S$ of points $\theta$ in $\mathrm{T}_{\nu}$ for which there is a sequence of
the form $(\theta_{n}, t_{n})$ with $\theta_{n}$ converging to $\theta,$ $t_{n}$ converging to the blow-up time $T$ , and $u(\theta_{n},t_{n})$

tending to infinity. Let $S_{*}$ be the set of monotone blow up points $\theta\in \mathrm{T}_{\nu}$ for which there
is a sequence $\{t_{n}\}$ such that $t_{n}$ converges to $T$ and $u(\theta,t_{n})$ tends to infinity. Note that by
definition $S_{*}\subset S$ .

Let $M_{t}$ be the set of local maximum points of solutions $u(\theta,t)$ at each fixed $t\in[0,T)$ .
Define the set $M$ by

$M=\{\theta|\exists\{(\theta(t_{n}), t_{n})\}\in$ $\cup$ $M_{t}\mathrm{x}t$

$t\in[0,T)$

such that $t_{n}arrow T,$ $\theta(t_{n})arrow\theta$ and $u(\theta(t_{n}),t_{n})arrow\infty\}$

Theorem 9 imply that $S$ is nonempty, and so is $M$ . Moreover we have

97



Theorem 10 For any $\theta\in M,$ $( \theta-\frac{\pi}{2}, \theta+\frac{\pi}{2})\subset S_{*}$ .

In order to prove Theorem 10, we introduce the set $D$ defined by

$D= \{(\theta,t)|u(\theta, t)>0\leq\theta\leq\pi\max_{2\nu}[(u0(\theta)+\epsilon_{0})^{2}+(u_{0}’(\theta))2]1/2\}$

where $\epsilon_{0}>0$ .

Proposition 11 Let $0<\epsilon<\epsilon_{0}$ and $(\theta_{0}, t_{0})$ be any fixed point in D. Let $\varphi_{\epsilon}\in(-\frac{\pi}{2}, \frac{\pi}{2})$ be

determined by $\tan\varphi_{\epsilon}=u_{\epsilon\theta}(\theta_{0}, t_{0})/u\epsilon(\theta_{0},t_{0})$ . For any $\theta\in(\theta_{0}+\varphi_{\epsilon}-\frac{\pi}{2}, \theta 0+\varphi_{\epsilon}+\frac{\pi}{2})$ ,

$u_{\epsilon}(\theta, t_{0})\geq u_{\epsilon}(\theta_{0,0}t)\cos(\theta-\theta_{0})+u_{\epsilon\theta}(\theta_{0,0}t)\sin(\theta-\theta_{0})$ . (28)

Moreover we have
$\frac{\partial u}{\partial t}(\theta,t)\geq 0$ $\forall(\theta,t)\in D$ .

This proposition can be proved by using Strumian comparison theorem (see Angenent [4]
and is $\mathrm{e}ss$entially due to Angenent [7].
Proof of Theorem 10. Let $\theta\in M$. Then, there exists a sequence $\{\theta(t_{n}), t_{n}\}$ such that $t_{n}arrow T$ ,
$\theta(t_{n})arrow\theta$ and $u(\theta(t_{n}), t_{n})arrow\infty$ , Hence, there exists a $N_{*}\in \mathrm{N}$ such that $(\theta(t_{n}),t_{n})\subset D$ for
any $n\geq N_{*}$ . Then, by virtue of Proposition 11 we have for $n\geq N_{*}$

$u_{\epsilon}(\theta,t_{n})\geq u_{\zeta}(\theta(\iota n),t)n\cos(\theta-\theta(t_{n}))+u_{\epsilon\theta}(\theta(t_{n}),t_{n})\sin(\theta-\theta(t_{n}))$

for any $\theta\in(\theta(t_{n})+\varphi_{\epsilon}-\frac{\pi}{2}, \theta(\iota n)+\varphi_{6}+\frac{\pi}{2})$. Then, letting $\epsilon\downarrow 0$ and noting that $u_{\epsilon\theta}(\theta(tn),t_{n})arrow$

$u_{\theta}(\theta(t_{n}).t_{n})=0$ , we have

$u(\theta,t_{n})\geq u(\theta(t_{n}), t_{n})\cos(\theta-\theta(t_{n}))$ . (29)

Hence, from (29) we $s$ee that for any $\theta\in M$,

$( \theta-\frac{\pi}{2}, \theta+\frac{\pi}{2})\subset s_{*}$ .

This completes the proof.

Remark 12 Under the zero-Dirichlet condition, we have analogous assertions which are
proved by different methods to ours (see Friedman-Mcleod [19], $\mathrm{F}\mathrm{u}\mathrm{k}\mathrm{u}\mathrm{d}\mathrm{a}-\mathrm{A}\mathrm{n}\mathrm{a}\mathrm{d}\mathrm{a}- \mathrm{T}\mathrm{S}\mathrm{u}\mathrm{t}_{\mathrm{S}}\mathrm{u}\mathrm{m}\mathrm{i}$

[3] $)$ .

Our interest is whether the blow-up set is exactly $\bigcup_{\theta\in M}[\theta-\frac{\pi}{2},$
$\theta+\frac{\pi}{2}]$ or not (see Friedman-

Mcleod [19], Angenent [7] $)$ .
First we show that
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Proposition 13 Suppose that $0<\delta<2$ . We have

$u(\theta,t)\leq C(T-t)^{-1}/\delta$ $\theta\in \mathrm{T}_{\nu}$ $0\leq t<T$ . (30)

Here and in the sequel by $C.\mathrm{w}\mathrm{e}$ denote various positive constants changeable from line to
line.

Proof can be done by considering

$J(t)= \frac{1}{2-\delta}\int_{0}^{2\nu\pi}u^{2-s_{d\theta}}$ .

Indeed, differentiating under integration, integrating by parts and making use of (19), we
have a differential inequality

$(J’(t))^{2} \leq\frac{2-\delta}{2}J’’(t)J(t)$ (31)

from which we can deduce the assertion.

Remark 14 In case of $\delta\geq 2$ , we will show later in the next subsection that for $\theta\in M,$ $u(\theta, t)$

blows up faster than $(T-t)^{-1}/\delta$ .

Using Proposition 13, we have

Proposition 15 Suppose that $0<\delta<2$ . We have

$\bigcup_{\theta\in M}[\theta-\frac{\pi}{2},\theta+\frac{\pi}{2}]\subset S_{*}$

When $\delta\geq 2$ , we get a more exact assertion.

Theorem 16 Let $\delta\geq 2$ . Suppose that $S\neq[0,2\nu\pi].$ Then,

$S= \bigcup_{\theta\in M}[\theta-\frac{\pi}{2},$
$\theta+\frac{\pi}{2}]$ .

Outline of the proof. Proof is rather long and is divided into several lemmas. Among
the lemmas, we will give the proof of Lemma 21 which is the most essential part of the
argument$\mathrm{s}$ .

First we can assume that $S$ consists of exactly one interval or there exist $\theta_{1},$ $\theta_{2}\in M$ such
that $\theta_{1}+\frac{\pi}{2}<\theta_{2}-\frac{\pi}{2}$ . and $( \theta_{1}+\frac{\pi}{2}, \theta_{2}-\frac{\pi}{2})\cap S^{c}\neq\phi$. Since the former case can be treated

in the same manner, below we $\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\pi$ consider the latter case. In order to establish Theorem
16, it suffices to prove that $\theta_{1}+\overline{2}+\epsilon\in S^{c}$ and $\theta_{2}-\frac{\pi}{2}-\epsilon\in S^{c}$ for any sufficiently small
$\epsilon>$ .

Let $\alpha_{j}\geq\frac{\pi}{2}$ $(j=1,2)$ be such that $[\theta_{1},\theta_{1}+\alpha_{1}]\subset S,$ $[\theta_{2}-\alpha_{2,2}\theta]\subset S,$ $\theta_{1}+\alpha_{1}+\epsilon\not\in S^{\mathrm{c}}$ ,

and $\theta_{2}-\alpha_{1}-\epsilon\not\in S^{\mathrm{c}}$ for any sufficiently small $\epsilon>0$ .
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Lemma 17 For any $\mathit{8}ufficiently$ small $\epsilon>$ , there is a $t_{e}<T\mathit{8}uCh$ that for all $t\in(t_{\epsilon}, T)$ one
has

$u_{\theta}(\theta,t)<0$ $(>0)$

on the interval $( \theta_{1}+\alpha_{1}-\frac{\pi}{2}, \theta_{1}+\alpha_{1}-\epsilon)$ (or on the interval $(\theta_{2}-\alpha_{1}+\epsilon,$ $\theta_{2}-\alpha+\frac{\pi}{2})$ ).

Lemma 18 Let $z(\theta)\in C^{2}(\theta_{1,2}\theta)$ satisfy

$\{$

$z_{\theta\theta}+z= \frac{1}{\delta g^{\delta-1}}$ $(\theta_{1}<\theta<\theta_{2})$ ,

$z(\theta)>0$ , $(\theta_{1}<\theta<\theta_{2})$ ,
$\lim_{\theta\uparrow\theta_{2}}Z(\theta)=0$ .

Then, $\delta<2$ .

Lemma 19 For $\theta_{0}\in M$

$u(\theta_{0},t)>C(T-t)-1/s$ $0<t<T$. (32)

Lemma 20 Suppose that $\delta>1$ . For any $\theta_{0}\in M$ , we have

$\theta 0\leq\theta\leq\theta_{0}+\min_{\frac{\pi}{2}}u(\theta,t)\leq C(T-t)-1/s$ . (33)

Lemma 21 Suppose that $\alpha>\frac{\pi}{2}$ . Under the same assumptions as in Lemma 17, there exists
a sequence $t_{n}\uparrow T$ such that

$u(\theta, t_{n})=o(u(\theta_{1},t_{n}))$ $\forall\theta\in[\theta_{1}+\frac{\pi}{2}, \theta_{1}+\alpha]$ . (34)

Proof of Lemma 21. If the assertion is not true, then there is a point $\overline{\theta}\in[\theta_{1}+\frac{\pi}{2}, \theta_{1}+\alpha]$

and $\rho>0$ such that $u(\overline{\theta}, t)>\rho u(\theta_{1},t)$ for all $0<t<T$ . Then, by virtue of Lemma 17 we
get

$u(\theta, t)>\rho u(\theta_{1},t)$ if $\theta_{1}\leq\theta\leq\overline{\theta}$ . (35)

Then, Lemma 19 and Lemma 20 yield that there exist two positive constants $M_{1},$ $M_{2}$ such
that

$M_{1}(T-t)^{-1}/\delta\leq u(\theta, t)$ if $\theta_{1}\leq\theta\leq\overline{\theta}$ , $0<t<T$ (36)

and
$u(\theta, t)\leq M_{2}(T-t)^{-1}/\delta$ for any $\theta\in \mathrm{T}_{\nu}$ . (37)

Introducing the new time variable

$s=- \log(1-\frac{t}{T})$ : $[0, T)arrow(0, \infty)$ ,

we define
$Z(\theta, s)=(T-t)^{1/}\delta u(\theta, t)$ .

Then $Z(\theta, \mathit{8})$ solves the initial-periodic boundary value problem
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$(\mathrm{R}\mathrm{P})$ $\{$

$Z_{s}=Z^{\delta}(z_{\theta\theta}+Z)- \frac{Z}{\delta}$ $\theta\in \mathrm{T}_{\nu},$ $s>0$ ,
$Z(\theta,0)=T^{1/s}u_{0(}\theta)$ $\theta\in \mathrm{T}_{\nu}$ .

(38)
(39)

Take any sequence $t_{n}\uparrow\infty$ and define

$z_{n}( \theta)=\int_{t_{n}}^{t_{\hslash}+1}z(\theta, s)d\mathit{8}$ .

Then, by virtue of (37) and $Z_{s}(\theta, S)\geq 0$ for sufficiently large 8 and $\theta\in S$ , we see that $\{z_{n}\}$

forms a Cauchy sequence in $H^{1}(\mathrm{T}_{\nu})\subset C(\mathrm{T}_{\nu})$ and $z_{n}arrow z$ as well as $Z(\cdot, t_{n})arrow z$ when
$n\uparrow\infty$ . The limit function $z$ is not identically zero because of (36) and $s$atisfies

$(\mathrm{L}\mathrm{P})$ $\{$

$z_{\theta\theta}+z- \frac{1}{\delta z^{\delta-1}}=0$ , $\theta\in[\theta_{1},\theta^{*}+\kappa)$ , (40)

$z(\theta^{*}+\kappa)=0$ , (41)

where $[\theta_{1}, \theta^{*}]\supset[\theta_{1},\overline{\theta}]$ is the blow-up interval and $\theta^{*}+\kappa\in S^{\mathrm{c}}$ for an arbitrary $\kappa>0$ . This
contradicts the assertion of Lemma 18. $\square$

Proof of Theorem 16 completed. Suppose that $\alpha>\frac{\pi}{2}$ . Let $\theta(t)\in M_{t}$ be such that $\theta(t)arrow\theta_{1}$

as $t\uparrow T$ . Let $\kappa$ be an arbitrary positive small number and $\tilde{\theta}$ be such that $\theta_{1}+\frac{\pi}{2}+\kappa<\tilde{\theta}<$

$\min(\theta_{1}+\alpha,\pi)$ . We have

$\frac{d}{dt}\int_{\theta()}^{\tilde{\theta}}i)u^{1-}(\theta, t)\cos(\theta-\theta(t)d\delta\theta$

$=(1-\delta)(u\theta(\tilde{\theta},t)\mathrm{c}\mathrm{o}s(\tilde{\theta}-\theta(t))+u(\tilde{\theta},t)\sin(\tilde{\theta}-\theta(t))$ (42)

Let $t_{n}$ be a sequence such that $t_{n}\uparrow T$ . For sufficiently large $n$ and $\tilde{\theta}$ be sufficiently near
$\theta_{1}+\frac{\pi}{2}$ , taking $t\geq t_{n}$ , the left hand side of (42) is nonpositive since $u_{\theta}(\tilde{\theta}, t)\leq 0$ . Hence, by

Theorem 10 and Lemma 21 we see that for $t_{n}<t$

$\int_{\theta}^{\tilde{\theta}}\langle t)\int^{\tilde{\theta}}u-\delta(\theta, t)\cos(\theta-\theta(t))d\theta\leq u-\delta(1\theta,t_{n})\cos(\theta-\theta(1t\theta(t_{n})n))d\theta$

$\leq\int_{\theta}^{\theta()\frac{\pi}{2}}\langle tn)(u^{1-}(S\theta,t_{n})\cos(\theta-\theta tt_{n}+-\kappa n))d\theta$

$+ \int_{\theta(t_{n}}^{\overline{\theta}})+\frac{\pi}{2}+\kappa)u^{1}-\delta(\theta,t_{n})\cos(\theta-\theta(t_{n})d\theta$

$+2 \kappa u^{1-^{s}}(\theta(tn)+\frac{\pi}{2}-\kappa,t_{n})$

$\leq-C<0$

for sufficiently large $n$ . Then $u(\theta,t)$ remains bounded on a interval contained in
$\theta(t)+\frac{\pi}{2},\tilde{\theta}\square$

as $t\uparrow T$ . This is a contradiction.
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4.3 Behaviour near the blow-up time
Under the assumption (A1) we can investigate the behaviour of the solutions near the blow-
up time.

Theorem 22 Suppose that $\delta\geq 2$ and $u_{0}$ satisfies (A1). Suppose that $S\neq[0,2\nu\pi]$ Let $u$

blow up at $T$ and $\theta_{0}\in M$ . Then,

$\frac{u(\theta,t)}{u(\theta_{0},t)}arrow\cos(\theta-\theta_{0})$ for $\theta\in(\theta_{0^{-\frac{\pi}{2}}},\theta_{0}+\frac{\pi}{2})$ (43)

uniformly as $tarrow T.$ Moreover, if $\theta\not\in\bigcup_{\theta\in M}[\theta-\frac{\pi}{2}, \theta+\frac{\pi}{2}]$, then

$\frac{u(\theta,l)}{u(\theta_{0},t)}arrow 0$ . (44)

Theorem 23 Suppose that $\delta\geq 2$ and $u_{0}$ satisfies (A1). Suppose that $S=[0,2\nu\pi]$ . Let $u$

blow up at T. Then,

$u(\theta, t)\leq C(T-t)-1/\delta$ $\forall\theta\in \mathrm{T}_{\nu}$ (45)

and

$(T-\iota)1/\delta u(\theta,t)arrow z(\theta)$ $\forall\theta\in \mathrm{T}_{\nu}$ (46)

uniformly as $tarrow T$, where $z(\theta)$ is a positive solution of the boundary value problem

$z_{\theta\theta}+z- \frac{1}{\delta z^{\delta-1}}=0$ , $\theta\in \mathrm{T}_{\nu}$ . (47)

Remark 24 Let $\delta\geq 2$ . Then,

$S=[0,2\nu\pi]$ if and only if $u(\theta,t)\leq C(T-t)-/1\delta$ $\forall\theta\in \mathrm{T}_{\nu}$ .

Theorem 25 Suppose that $1<\delta<2$ , and $u_{\mathrm{O}}$ satisfies (A1). Let $u$ blow up at T. $Then_{f}$

$(T-t)1/\delta u(\theta,t)arrow\{$
$z(\theta)$ for $\theta\in S$ ,

(48)
$0$ for $[0,2\nu\pi]\backslash s$

unifomly as $tarrow T$, where $z(\theta)$ is the unique positive solution of the boundary value problem

$z_{\theta\theta}+z- \frac{1}{\delta z^{\delta-1}}$ $=$ $0$ , $\theta\in S$, (49)
$z(\theta)$ $=$ $0$ , $\theta\in\partial S$. (50)

If $S=[0,2\nu\pi],$ $z(\theta)ispe’\cdot iodic$ with period $2\nu\pi$ .

We only outline the proof of Theorem 22.
We prepare two lemmas.
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Lemma 26 Let $\theta_{0}\in M$ . Under the same assumptions as in Theorem 22, we have

$(T-t)^{1/s_{u(\theta_{0}}},t)arrow\infty$ as $tarrow T.$ (51)

Proof. Assume on the contrary that there exi $s\mathrm{t}\mathrm{s}$ a sequence $t_{n}\uparrow T$ such that

$(T-t_{n})1/\delta u(\theta_{0},t_{n})\leq c$ (52)

for some positive constant $C$ . Then, we see that $[ \theta_{0}-\frac{\pi}{2},\theta_{0}+\frac{\pi}{2}]\subset S_{*}$ . Putting

$F( \theta,t)=\frac{1}{(T-l)u(\theta 0,t)}\int^{T}tu(\theta,\mathit{8})d_{S}$ ,

we have
$F_{\theta\theta}+F= \frac{1}{(T-t)u(\theta 0,t)}\int^{\tau}t\frac{u_{s}(\theta,\mathit{8})}{u^{\delta}(\theta,s)}ds\equiv f(\theta,t)$ . (53)

Note that $[ \theta_{0^{-\frac{\pi}{2’}}}\theta_{0}+\frac{\pi}{2}]\cross[t_{0}, T)\subset D.$ for some $t_{0}\in[0, T)$ . In the $s$ame manner as in the

proof of Lemma 17, we can assume that for any $\kappa>0t\geq t_{0}$

$u_{\theta}( \theta_{0}+\frac{\pi}{2}+\kappa,t)\leq 0$ and $u_{\theta}(\theta_{0^{-\frac{\pi}{2}-}}\kappa,t)\geq 0$ .

For the sake of simplicity we write for a while $\theta_{0}-\frac{\pi}{2}-\kappa$ and $\theta_{0}+\frac{\pi}{2}+\kappa$ by $\theta_{1}$ and $\theta_{2}$ ,

respectively. Multiplying (53) by $F$ and integrating from $\theta_{1}$ to $\theta_{2}$ , we have

$- \int_{\theta_{1}}^{\theta_{2}}F_{\theta}^{2}(\theta,t)d\theta+\int_{\theta_{1}}^{\theta_{2}}F^{2}(\theta,t)d\theta\geq\int_{\theta_{1}}^{\theta_{2}}f(\theta,t)F(\theta,t)d\theta\geq 0$ $\forall t\geq t_{0}$ .

from which we deduce that

$\int_{\theta_{1}}^{\theta_{2}}F_{\theta}^{2}(\theta,t)d\theta\leq C$ $\forall l\geq t_{0}$

since $0\leq F\leq 1$ . Hence $\{F(\theta, t_{n})\}_{n\in}\mathrm{N}$ forms a bounded sequence in $H^{1}(I)$ where $I=(\theta_{1}, \theta_{2})$ .
We can now extract a subsequence $\{t_{n_{k}}\}$ converging to $T$ such that

$F(\theta,t_{n_{k}})arrow\zeta(\theta)$ weakly in $H^{1}(I)$ and strongly in $C(\overline{I})$

for some $\zeta(\theta)\pi\in H^{1}(I)\subset C(\overline{I})$ .
Since $[ \theta_{0}-\overline{2}-\kappa, \theta_{0}-\frac{\pi}{2})\cup(\theta_{0}+\frac{\pi}{2}, \theta_{0}+\frac{\pi}{2}+\kappa]\subset S^{c}$ and $\zeta$ is continuous, we see that

$\zeta(\theta_{0}\pm\frac{\pi}{2})=0$ .
Multiplying (53) by $\cos(\theta-\theta_{0})$ and integrating over $( \theta_{0},\theta 0+\frac{\pi}{2})$ , we get

$F( \theta_{0}+\frac{\pi}{2},t)=\int_{\theta_{0}}^{\theta+\frac{\pi}{2}}0\mathrm{o}f(\theta,t)\cos(\theta-\theta)d\theta$.
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For $\theta_{0}\leq\theta<\theta_{0}+\frac{\pi}{2}$ , we get

$\int_{t}^{T}\frac{u_{s}(\theta,\mathit{8})}{u^{\delta}(\theta,s)}d_{S}=\frac{1}{\delta-1}u^{1}-\delta(\theta,t)\geq\frac{1}{\delta-1}u-(1\delta\theta 0,t)$.

Hence, in view of (52), we see that

$f(\theta,t_{n})\geq C$ V $\theta\in[\theta_{0\theta_{0}},+\frac{\pi}{2})$ .

Therefore we have
$F( \theta_{0+}\frac{\pi}{2},t_{n})\geq c$

which leads to a contradiction. $\square$

Lemma 27 For any $\theta_{0}\in M$

$\frac{1}{u(\theta_{0},t)}\int_{\theta_{0}}^{\theta 0+}\frac{\pi}{2}\delta \mathrm{o}u-u_{t}\mathrm{c}s(\theta-\theta_{0})d\thetaarrow \mathrm{O}$ $a\mathit{8}tarrow T$ . (54)

Proof. We have

$\frac{1}{u(\theta_{0},t)}\int_{\theta_{0}}^{\theta 0}+\frac{\pi}{2}\delta\theta-\theta_{0),d}\theta=u^{-}u_{t}\cos(\frac{u(\theta_{0}+\frac{\pi}{2},t)}{u(\theta_{0},t)}=\frac{C}{u(\theta_{0},t)(\tau-t)^{1}/s}$.

Then, the assertion follow$s$ from Lemma 26.

Proof of Theorem 22. Suppose that $\theta_{0}\in M$ .

$\square$

For $\theta\in(\theta_{0}, \theta_{0}+\frac{\pi}{2})$ , we have

$\frac{1}{u(\theta_{0},t)}\int_{\theta_{0}}^{\theta}u^{-\delta}ut\cos(\theta-\theta_{0})d\theta$

$\geq\frac{\cos(\theta-\theta_{0})}{u(\theta_{0},t)}\int_{\theta_{0}}^{\theta}u-s_{u_{t}d}\theta$

$\geq\frac{\cos(\theta-\theta_{0})}{u(\theta_{0},t)}\int_{\theta_{0}}^{\theta}u^{-\delta}u_{t}\sin(\theta-\theta_{0})d\theta\geq 0$

provided that $t$ is sufficiently close to $T$ . Hence,

$\frac{1}{u(\theta_{0},t)}\int_{\theta_{0}}^{\theta}u^{-\delta}ut\sin(\theta_{0^{-}}\theta)d\thetaarrow \mathrm{O}$ as $tarrow T$. (55)

Making use of the equation (1.1), we obtain

$\frac{1}{u(\theta_{0},t)}\int_{\theta}^{\theta}0\frac{u(\theta,t)}{u(\theta_{0},t)}u^{-\delta}ut\sin(\theta_{0}-\theta)d\theta---\cos(\theta-\theta_{0})$ .

Then, from (55) we conclude the first assertion. $\square$
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