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Initial and Initial-Boundary Value Problems

for the Vortex Filament Equations

BRI AR T %08 R## 7l 5. (Takahiro NISHIYAMA)
% B2z (Atusi TAND)

1. Introduction

The system of equations
Xt =Xe XXso+a{Xsss+(3/2)X: s X (Xe XXs5)} (1.1

approximately describes the deformation of a vortex filament with or
without axial velocity in its thin core, in a perfect fluid. Here
x=x(s, t) denotes the position of a point on the filament in R3 as a
vector-valued function of arclength s(ER) and time t(>0), and a real
constant a represents the magnitude of the effect of the axial flow.

In particular, (1.1) with a=0, from which the axial-flow effect is
absent, is called the localized induction equation (LIE).

Since in 1906 Da Rios [1] formulated LIE, many authors have studied
it from various points of view (see [9],[10] and the references therein).
In [8] we proved the weak solvability of some initial and initial-
boundary value problems for LIE, although the expected uniqueness and
smoothness of the solution were not found. On the other hand, (1.1)
with a#0 were originally derived by Fukumoto and Miyazaki [2] as a

generalization of LIE from the Moore-Saffman equation in [7].
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Differentiating (1.1) with respect to s and setting v=x,, we have
Ve=0X0..ta{v... +(3/2)0. . X (X0, )+(3/2)v. X (v Xv. )} (1.2)
Impose the initial condition
(s, 0)=vo(s), lvol=1 (1.3)

on (1.2) for s€R. One of our aims in this paper is to establish
the-unique solvability of the initial value problem (1.2) with

(1.3) in the space where the curvature of the vortex filament |v.| tends
to zero as s—=*oo, on the time interval [0, T] with any T >0. In order

- to achieve it we first investigate the parabolic regularization

Ve=UXUssta{vess +(3/2)vs s X (X)) +(3/2)v X (uXvss)}
—e{vssss H4(Wsovs vt 3lus | 2u) (1.4)

for € >0. After that, we let & —0. Recently, we proved the extension of
T to o in [12],[13].

The other aim is to obtain the unique and smooth solvability of an
initial-boundary value problem for (1.2) by the above method. At this
time, we treat the case a=0 only.

By the way, (1.1) or (1.2) can be transformed into the Hirota

equation (or the nonlinear Schrodinger equation if a=0),
v +7..+Q/D¥ 2T —ia(V,. . +(3/2D|T 2T )=0 (1.5

for ¥ =k (s, t)exp(i IS t(s,t)ds+in(t)), where k(s,t) and 7 (s, t)
0

are the curvature and the torsion of the filament respectively, and

n (t) is a real function of t ([2],[3],[5]). But, as in [8], we should
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remark that (1.5) is always equivalent to neither (1.1) nor (1.2). In
fact, if the filament has a segment where |x,s| vanishes and 7 is
indefinite, then Arg¥ is not well-defined even outside there.

We introduce the notation and a result for a linear parabolic
system in section 2. Then a solution of (1.4) with (1.3) is obtained
uniquely on [0, T] with & small enough in section 3. In section 4, we
establish the theorem for (1.2), (1.3) and obtain a corollary on the
vanishing axial flow. In section 5, an initial-boundary value problem
is discussed.

The long version of this paper [11] will soon be published.

2. Preliminaries

Let us introduce the notation which we use. The letter m denotes
an arbitrary nonnegative integer unless we particularly note it.
The norms of vector-valued functions in L2(€Q) and in the Sobolev space
W3(Q) are denoted by ll+ll, and [[-]\™, respectively. Then [+ls” =I-I,.
When Q =R, we write the norms simply as |||l and [|-]| “”. The set of
all continuous (resp. once continuously differentiable) functions in
a Hilbert space X on a finite time interval [O,Tf] is denoted by
C(0, T;X) (resp. C!(0, T;X)). The class of Holder continuous‘ X~
valued functions on [0, T] is written as C?(0, T:;X), 0<B<I.
The norm {+>r (resp. {*):" ) represents the supremum (resp. the Holder
norm) over [0, T]. Positive constants, denoted by c, c« and c,, change
from line to line but the second is independent of both e? and a, the
third is monotonically increasing in |a| and independent of &. The

operator D is equal to 4 /0ds.
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Next, consider a linear equation

utz_eussss+f(syt)y (2-1)
u(s, 0)=uo(s) (2.2)

for seR. Then we get

Lemma 2.1. If & >0, uo€W3 "(R) and f= C*#(0, T;W3(R)) for
T >0, 0< <1, then there exists a unique solution of (2.1), (2.2)

4+m

in C(0, T;Wz "(R))NC0, T;W3(R)). Moreover the following estimate

is valid:

Uull ™ e+l ™ e = cllluell 7™ + U™ D7), (2.3)

where c is independent of u, and f.

This lemma was proved by the theory of analytic semigroups in [6].

3. Solvability of (1.4) with (1.3)
Noting that v is a tangential vector and is not square integrable

over R, we obtain

3+m

Proposition 3.1. Let € >0, a€R and vo.€W, (R ). Then on some

time interval [0, Tol, To>0 there exists a unique solution v of (1.4)

with (1.3) such that (v—ve)E C 0, To; W3 "(R))NC 10, To;W5(R)).

In its proof, Lemma 2.1 and the standard iteration scheme are used.
Next, we prove the following lemma, which implies that the length

of the vortex filament is conserved.
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Lemma 3.1. Let v be a solution of (1.3) and (1.4) such that
(v—06)EC0, T; W3z "(R)NC0, T:W3(R)), T>0. Then

lul=1 3.1
holds for any (s,t)eR x[0, T1.
Proof. Define the function h(s, t) by
h(s, ©)=lv]2~1
for seR, 0=t<T. And from (1.3) and (1.4) we obtain

h.=alh,..— 3w, Dh. +6(v.*v,,)h}— e {h,ss +8(v,*v... )h+6|v..|2h},
h(s, 0)=0.

For this linear system we conclude that h=0 is an only solution because
of |h]|=0 yielded by the estimate (d/dt)lhli2=<clh||?, where c depends on

uv—wvoll 4 >r and Jve.ll . Hence (3.1) follows. [
Utilizing Lemma 3.1, we derive an a priori estimate for (1.4).

Lemma 3.2. Let v be as in Lemma 3.1. Then there exists a positive
constant &, depending only on T and [lvesll such that v for any

e €(0, € o] satisfies the estimate

o=wvoll “4*™ > r+ vl ™ dr=c., (3.2)

3+m)
b

where c, depends only on [lug.ll ¢ €o, T and lal.

Proof. From (3.1) we have

n—1
veus=0, veD"v=-— > .C« D*yeD*»y (n=2). (3.3)
k=1

DO =
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It aiso follows from (3.1) that on the point where |v.| is nonzero the

vectors v, v,/|vs|, vXv,/|v,| are the orthonormal ones in R3. Then
v. X D"o=v, X {(v*D"v)v+((wXv.)*D "v)vXv,/|v.|?}
holds for n=2 and it leads to
v, XD v=—(D"v)vXv.+((uXv,)*D "v)v. 3.4

Cleérly, (3.4) is also valid where v,=0.
Multiplying (1.4) by v.., integrating over R and using (3.3), we

obtain

d
it losCo, ON1F=—2¢e Ulvsss 12 +4 S lvs | Pvsvssds+3] s [ oes [17)
R _

é— £ "Usss"2+ EC()"USHIO,

where co is a positive constant yielded by use of the multiplicative
inequality and Young's. Let r(t) be a solution of the scalar
equation dr/dt= ecor® with r(0)=llve,?>. Then we solve it as
r(t)=(lvesl"8—4ecot)™'”* when 4ecot<l||vo:ll"8 Choosing €, so
small that

0< e o<(4co T llueslI®)1, (3.5)
we have

losCo, DI=T(t) 2 =cx (3.6)

on [0, T] for all € €(0, €,1.
Next, by (3.3), (8.4), (8.6), the multiplicative and Young s

inequalities, we obtain



d | |
it NosCo, 2=/ D v (o, ) 212)=— § (Qusssovs o +5|v. |2V 20 )ds
R
< J 3Hlvsl?vss-(uXv,)}s ds
R
Faf {0s 121000 2480200 )2 =50, | 20,2000, ) e ds
R

_28 "Ussss"2+ 8C*("Ussss||5/3+llvssss"4/3)
éC*.
It yields
loesCo, DIZ = Nvos s 12— B/ o 1212+ GB/DI v (o, 212 +cxt

gc*+<1/2)uuss(.v t)uz"‘C*"Us(', t)"6+c*t7
from which

<"Uss">T§C* : (3. 7)

follows.

In the same way, by boring calculation we can verify

d
d—t {"Usssllz_‘(7/2)|||us | “)ss I "2_14"US‘USs"2+(21/8)"|U313||2}§C*,

which yields

vsssDr=cx. (3.8)
Let j=4,5, -, 4+m. Then,'using (3.3), (3.4) and integration by parts,
we can derive (d/dt)ID wl2=c ID wl2+c, if ol 972 )r=<c, is given.
This fact, together with (8.6), (3.7), (3.8) aﬁd Gronwall’ s inequality,
yields (vl ®*™ Yr=c,. Hence we have {|(v—v¢).ll ®*™ dr=c,. The

estimates {Ju.ll ™ >r=c, and {Jlv—vel)r=c, are easily obtained. []

143
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From Proposition 3.1 and Lemmas 3.1, 3.2 by the standard continuation

argument we have

3+m

Theorem 3.1. Let T >0, vo. €W, (R) and aR. Then for each

e€(0, € 9] with &, satisfying (3.5) there exists a unique solution v

of (1.3), (1.4) such that (v—ve)EC(0, T; W3 "(R))N C1(0, T;W5(R)),
(3.1) and (3.2) hold.

4. Solvability of (1.2) with (1.3)
Considering the limit & —0, we establish the following theorem.

Its proof is based mainly on the method in [4, Section 3].

Theorem 4. 1. Let UOSEWEM(]R) and a=R. Then there exists

a.unique solution v of (1.2), (1.3) such that (3.1) is satisfied,
(v—v0)EC0, T; Wz "(R)NC(0, T;W;""(R)) if a#0, and

4+m

(v—vo)EC, T; W3 "(R)HNCO, T;W5"(R)) if a=0 with any T >0.

Since we have c,=<cx if |a|=1 is assumed, the limit a—0 can be

discussed in the same way as & —0:

Corollary. In Theorem 4.1 the difference between the solution v
for a#0 and that for a=0 converges to zero strongly in Wé(lR) and

weakly in W3 "(R), uniformly in t as a—0.

It should be noted that our method is also applicable when a€R

and the spatially periodic condition v(s, t)=v(s+1,t) is imposed.
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5. Initial-Boundary Value Problem
In this section the domain of s is restricted to J =(—1,1) and
a is assumed to be equal to zero. As a boundary condition imposed on
(1.2) we take
v (1, t)=0. (5.1

Let V™ be the completion with respect to ||<|;" of the space where
every element g belongs to C~([-1,1]) and satisfies D21 "!'g(*1)=0 for
j=1,2,--. Then, using the theory on the initial-boundary value problem

for (2.1), we prove the following theorem for (1.4) with (1.3), (5.1) and
vsss(£1,t)=0. - (5.2)

Theorem 5.1. Let T >0, vo€V*™ and a=0. Then for each

eE(0, €] with 0< € o< (4co T llvo.ll7)”" there exists a unique solution

of (1.3), (1.4), (5.1), (5.2) such that v&€C(0, T;V**™NCI0, T;V™

and (3.1) holds. Moreover, {(|v| S o™ Se<cy is valid, where

cx depends only on vy, T and €.

Proof. The proof is divided into two parts. One is to establish
the existence of a temporally local solution. It is done as in the
proof of Proposition 3.1 because the s-derivatives of any odd order
for uXv.s, (W)U, |U..|%v are equal to zero at s==*1 if
D2i-1y(£1,t)=0 for j=1,2,--. The other is to derive (3.1) and the
a priori estimate in the theorem, and we do by the method in the proofs

of lemmas 3.1 and 3.2. []
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In the same manner as in the proof of Theorem 4.1 we establish

Theorem 5.2. Let v,€V**™ and a=0. Then there exists a unique
solution of (1.2),(1.3),(5.1) such that v C(0, T; V4™ NC!0, T;V2z™)
with any T >0 and (3.1) is satisfied.

Here we noted that (5.2) is formally derived from (1.2) with a=0,
(1.3) and (5.1), irrespective of the class of v. In fact, (3.1) is
formally obtained because of vev.=0, and v... =W, —V, XVUs) XV

—3(vs-vs,)u follows.

Remark. Our method is also useful to another initial-boundary value
problem given by (1.2) with a=0 for s>0, (1.3) and the condition
v.(0, t)=0.
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