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1. INTRODUCTION AND RESULT

We announce here briefly the study developed in [3]. For details, we refer readers
to that paper. We study a bifurcation phenomenon for the periodic solutions of the
following Duffing equation which describes a nonlinear forced oscillation:

(1.1) $u^{\prime/}(i)+\mu u’(t)+\kappa u(t)+\alpha u^{3}(t)=f(t)$ , $t\in \mathbb{R}$

where $\mu$ and a are positive constants, $\kappa$ is a nonnegative constant, and $f(t)$ is a given pe-
riodic external force. It is known that for any periodic external force there exists at least
one periodic solution of (1.1) with the same period as the external force. Krthermore,
if the external force is suitably small, then the periodic solution is proved to be unique
and asymptotically stable. On the other hand, in the case of the relatively large exter-
nal force, numerical computations display a possibility of not only the non-uniqueness
of the periodic solution but also the existence of various bifurcation phenomena. In
particular, a strange attractor discovered by Ueda [7], so called Japanese attractor, is
well known. However, it is surprising that there have been no mathematical proofs of a
existence of bifurcation for the periodic solutions of (1.1). The aim of thi$s$ paper is to
give a mathematical proof of a existence of bifurcation for a special family of extemal
force. To do that, we define the one-parameter families of periodic functions $\{ux(t)\}_{\lambda}>0$

and $\{f_{\lambda}(t)\}_{\lambda}>0$ with the period one by

(1.2) $\{$

$u_{\lambda}(t):=\lambda\sin 2\pi t$ , $\lambda>0$ ,
$f\lambda(t):=u\lambda(//t)+\mu u_{\lambda}’(t)+\kappa u_{\lambda}(t)+\alpha u_{\lambda}^{3}(t)$,

so that the equation (1.1) has the trivial periodic solution $u(t)=u_{\lambda}(t)$ to the extemal
force $f(t)=f_{\lambda}(t)$ for any $\lambda>0$ . Then our main Theorem is

Theorem 1. Suppose $\mu$ and $\kappa$ satisfy

$0\leq\kappa<4\pi^{2}$ , $\mu\leq\min(\frac{15(4\pi^{2}-\kappa)}{64\pi},$ $\frac{(16\pi^{2}-\kappa)^{2}}{384\pi^{3}})$ ,
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and the external force $f(t)=f_{\lambda}(t)$ is given by (1.2). Then there exist at least three pos-
$\mathrm{i}$tive constants $\Lambda_{i}$ $(i=1,2,3; \Lambda_{1}<\Lambda_{2}<\Lambda_{3}),$ $1Vh\mathrm{i}_{\mathrm{C}}\dot{b}$ depend only on $\mu$ and $\kappa s\mathrm{u}cb$ that
a nontrivial periodic solution of (1.1) with the period one bfurcates from $\{u_{\lambda}(t)\}_{\lambda}>0$ at
$\lambda_{\dot{*}}=\sqrt{\Lambda_{i}/\alpha}(i=1,2,3)$ .

To prove Theorem 1, we first reformulate the problem on the periodic solution of
(1.1) to an integral equation in the section 2, and apply the Krasnosel’skii’s Theorem
[4] on bifurcation to the integral equation in the section 3. A crucial part in this process
is to show the eigenvalue problem of the linealized equation at $u(t)=u_{\lambda}(t)$ has at least
three simple eigenvalues. We investigate the eigenvalue problem in the section 4 by
making use of the arguments on the continued fraction along the same line as in the
paper Meshalkin and Sinai [5].

2.REFORMULATION OF THE $\mathrm{P}\mathrm{R}\mathrm{o}\mathrm{B}\mathrm{L}\mathrm{E}\mathrm{M}$

We shall seek the periodic solution of (1.1) with the period one in the form,

(2.1) $u(t)=u_{\lambda}(t)+\lambda v(t)$ .

Substituting (2.1) to (1.1), we obtain the following problem:

(2.2) $\{$

$v^{;/}(t)+\mu v’(t)+\kappa v(t)+\alpha\lambda^{2}(L(v)(t)+N(v)(t))=0$ ,
$v(t+1)=v(t)$ , $t\in \mathbb{R}$ .

where $L(v)$ and $N(v)$ are defined by

(2.3) $\{$

$L(v)(t):=3v(t)\sin^{2}2\pi t$ ,
$N(v)(t):=3v^{2}(t)\sin 2\pi t+v^{3}(t)$ .

We reformulate the problem (2.2) into an integral equation in the space $E$ defined by

(2.4) $E=\{u(t)\in C(\mathbb{R}) ; u(t+1)=u(t) , t\in \mathbb{R}\}$ .

It is noted that the space $E$ is Banach space, with the norm

$||u||:= \sup_{t\in[0,1]}|u(t)|$
.

We first consider the case $\kappa\neq 0$ . It is $\mathrm{e}\mathrm{a}s\mathrm{y}$ to see that for any $f\in E$ , the problem

(2.5) $\{$

$v^{\prime/}(t)+\mu v’(t)+\kappa v(t)=f(t)$ ,

$v(t+1)=v(t)$ , $t\in \mathbb{R}$ .

has a unique solution $v\in E\cap C^{2}(\mathbb{R})$ . Let us denote this solution by $G(f)$ . Then the
problem (2.2) is reformulated to the following problem in $E$ :

(2.6) $v=-\alpha\lambda^{2}G(L(v)+N(v))$ .
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Next in the case of $\kappa=0$ , we rewrite the problem (2.2) as

(2.7)

To solve (2.7), we consider the following two linear equations for any $f\in E$ and $\beta\in \mathbb{R}$ ,

(2.8) $\{$

$v^{\prime/}(t)+ \mu v’(t)=f(t)-\int_{0}^{1}f(t)dt$ ,

$\int_{0}^{1}v(t)\sin^{2}2\pi tdt=0$ , $v(t+1)=v(t)$ , $t\in \mathbb{R}$ ,

(2.9) $\{$

$w^{\prime/}(t)+\mu w’(t)=0$ ,

$\int_{0}^{1}w(t)\sin 22d\pi tt=\beta$ .

It is standard to see that the problem (2.8) has a unique solution $v\in E\cap C^{2}(\mathbb{R})$ ,
denoting it by $\tilde{G}(f)$ , and the solution of (2.9) is a just constant explicitly given by $2\beta$ .
Thus, the problem (2.2) with $\kappa=0$ is reduced to the integral equation in $E$ :

(2.10) $v=- \alpha\lambda^{2}\tilde{G}(L(v)+N(v))-\frac{2}{3}\int_{0}^{1}N(v)(t)dt$ .

3. PROOF OF THEOREM 1

To show Theorem 1, we apply the Krasnosel’skii’s Theorem [4] to the integral equa-
tion (2.6) (resp (2.10)) for $\kappa>0$ (resp $\kappa=0$).

Theorem A (Krasnosel’skii’s Theorem). Let $E$ be a Banach space and $f(x, \lambda)$ be
$a$ operator with domain $D\subset E\cross \mathbb{R}$ into $E$ of the form,

$f(x, \lambda)=x-\lambda Tx+g(X, \lambda)$ .
Suppose the followings:

(1) $\lambda_{0}\neq 0$ , $(0, \lambda 0)\in D$ .
(2) $T$ is $a$ $lin$ear compact operator in $E$ .
(3) $g(x, \lambda)$ is a nonlinear $co\mathrm{m}$pact operator of $D$ into $E$ , which satisfies

$g(\mathrm{O}, \lambda)\equiv 0$ , $g(x, \lambda)=o(||X||)$ uniformly in the neighborhood $\lambda=\lambda_{0}$ .
(4) $1/\lambda_{0}$ is an eigenvalue of $T$ with $\mathrm{o}dd\mathrm{m}$ultiplicity.

Then $(0, \lambda_{0})$ is a bifurcation point for $f(x, \lambda)=0$ .
Now, let $E$ be a Banach space defined by (2.4) and $T$ be a operator in $E$ defined by

(3.1) $Tv=\{$
$G(-L(v))$ if $\kappa\neq 0$ ,
$\tilde{G}(-L(v))$ if $\kappa=0$ ,
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for any $v\in E$ , and $g(v, \lambda)$ be a operator with domain $D=E\cross \mathbb{R}_{+}$ where $\mathbb{R}_{+}=$

$\{\lambda\in \mathbb{R}; \lambda>0\}$ , into $E$ defined by

(3.2) $g(v, \lambda)=(_{\tilde{c}(N(v}^{G(\lambda^{2}N}\alpha\lambda 2))\alpha(v))+\frac{2}{3}\int_{0}^{1}N(v)(t)dt$ $ifif$ $\kappa=^{\mathrm{o}’}\kappa\neq 0$

,

for any $v\in E$ and $\lambda\in \mathbb{R}_{+}$ . Then the both integral equations (2.6) and (2.10) are
equivalent to the equation:

(3.3) $f(v, \lambda):=v-\alpha\lambda^{2}Tv+g(v, \lambda)=0$ .

Therefore, we may show the corresponding assumptions (1) $\sim(4)$ in Theorem A to the
equation (3.3). These are verified by the following Propositions.

Proposition 3.1.
(i) $G(f)$ , $\tilde{G}(f)\in E\cap C^{2}(\mathbb{R})$ for any $f\in E$ .

(ii) There exist a positive constant $C$ such that for any $f\in E$

$||G(f)||$ , $||\tilde{G}(f)||\leq C||f||$ ,
$|| \frac{d}{dt}G(f)||$ , $|| \frac{d}{dt}\tilde{G}(f)||\leq C||f||$ .

(iii) $G$ and $\tilde{G}$ are compact operators in $E$ .
Proposition 3.2. Suppose $\mu$ and $\kappa$ are positive constants satisfying the assumption
of Theorem 1. Then there exist at least three positive constants $\Lambda_{i}(i=1,2,3,$ $\Lambda_{1}<$

$\Lambda_{2}<\Lambda_{3})$ which depend only on $\mu$ and $\kappa$ such that $\Lambda^{-}.\cdot$ 1are simple eigenvalues of $T$ .
The proof of Proposition 3.1 is given by quite standard argument on ordinary dif-

ferential equation, so omitted. We shall give the proof of Proposition 3.2 in the next
section. Thus applying Theorem A to the equation (3.3), we can prove a nontrivial
periodic solution of (3.3) bifurcates at $\lambda_{i}=\sqrt{\Lambda_{*}}/\alpha(i=1,2,3)$.

4. EIGENVALUE PROBLEM OF LINEARIZED EQUATION

In this section, we give the proof of Proposition 3.2. First we note that the eigenvalue
problem for $T$ is again equivalent to the problem:

(4.1) $\{$

$w^{\prime/}(t)+\mu w’(t)+\kappa w(t)+3\Lambda w(t)\sin^{2}2\pi t=0$,
$w(t+1)=w(t)$ , $t\in \mathbb{R}$ ,

where we set $\Lambda=\alpha\lambda^{2}$ . We expand the solution by Fourier series as

(4.2) $w(t)= \sum_{\infty n=-}^{\infty}a_{n}e^{2}n\pi it$, $\{a_{n}\}_{n\in}\mathrm{Z}\in\ell^{2}$ .

Substituting (4.2) to (4.1), we obtain

$\sum_{n=-\infty}^{\infty}(-4\pi n+2\pi\mu ni223\Lambda \mathrm{s}\mathrm{i}2+\kappa+\mathrm{n}^{2}\pi t)o_{n}e=02n\pi\dot{\iota}t$,
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which implies that $\{a_{n}\}_{n}\epsilon \mathrm{Z}$ satisfies the following recurrence formula:

(4.3) $A_{n}(\Lambda)a_{n}+a_{n-2}+a_{n+2}=0$ , $n\in \mathbb{Z}$ ,

where

$A_{n}( \Lambda)=-2+\frac{16\pi^{2}n^{2}-4\kappa}{3\Lambda}-\frac{8\pi\mu ni}{3\Lambda}$ .

We study this recurrence formula by sepalating the cases whether $n$ is odd or even. In
the case $n=2m+1(m\in \mathbb{Z})$ , setting $b_{m}=a_{2m+1}$ and $B_{m}(\Lambda)=A_{2m+1}(\Lambda)$ , we rewrite
(4.3) for $\{b_{m}\}_{m}\epsilon \mathbb{Z}$ as

(4.4) $B_{m}(\Lambda)b_{m}+b_{m-1}+b_{m+1}=0$ , $m\in$ Z.

In the case $n=2m(m\in \mathbb{Z})$ , setting $d_{m}=a_{2m}$ and $D_{m}(\Lambda)=A_{2m}(\Lambda)$ , we rewrite for
$\{d_{m}\}_{m\in \mathbb{Z}}$ as

(4.5) $D_{m}(\Lambda)d_{m}+d_{m-1}+d_{m+1}=0$ , $m\in$ Z.

For the solvability of these recurrence formulas (4.4) and (4.5), the following Lemma
holds.
Lemma 4.1.
(I) There exists $\Lambda_{0}\in \mathbb{R}_{+}$ such that the nontrivial se$q$ uence $\{b_{m}(\Lambda_{0})\}_{m\epsilon \mathrm{Z}}\in\ell^{2}$ satisfies
the $rec$urrence formula (4.4), if and only if there exists $\Lambda_{0}\in \mathbb{R}_{+}such$ that $\{B_{m}(\Lambda_{0})\}_{m\in}\mathrm{Z}$

satisfies the condition,

(4.6) $|B_{0}(\Lambda_{0})-\mathfrak{B}(\Lambda 0)|=1$ ,

where
1

$\mathfrak{B}(\Lambda)=$

1
$B_{1}(\Lambda)-$

$B_{2}( \Lambda)-\frac{1}{B_{3}(\Lambda)-}..$

.
(II) There exists $\Lambda_{0}\in \mathbb{R}_{+}such$ that the nontrivial sequence $\{d_{m}(\Lambda_{0}\}m\epsilon \mathrm{Z}\in\ell^{2}$ satisfies
the recurrence formula (4.5), if and only if there exists $\Lambda_{0}\in \mathbb{R}_{+}such$ that $\{D_{m}(\Lambda 0)\}_{m\epsilon \mathrm{z}}$

satisfies condition,

(4.7) $D_{0}(\Lambda_{0})=2Re\mathfrak{D}(\Lambda 0)$ ,

where
1

$\mathfrak{D}(\Lambda)=$

1
$D_{1}(\Lambda)-$

$D_{2}( \Lambda)-\frac{1}{D_{3}(\Lambda)-}.$

.
To prove Proposition 3.2, we may only show that there exist $\Lambda_{i}\in \mathbb{R}_{+}(i=1,2,3)$

which satisfy the equality (4.6) or (4.7) and correspond to the eigenvalues of $T$ with
simple multiplicity. To do that, we make use of the following Worpitzky’s Theorem [1]
concerning the continued fractions.
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Theorem $\mathrm{B}$ (Worpitzky’s Theorem). Let $S$ be a family of the formal continued
fractions:

$\mathfrak{F}=\{C=1+1+\frac{a_{O_{3}}}{1+}a_{1}2..$

.

; $a_{k}\in \mathbb{C}$, $|a_{k}| \leq\frac{1}{4}$ for any $k\in \mathrm{N}\}$

Let $w_{n}(C)$ and $w(C)$ respectively denote the n-th approximant and the $\mathrm{v}\mathrm{a}l\mathrm{u}e$ of a
convergent contin$\mathrm{u}ed$ fraction C. Then a family $S$ is uniformly convergent, that is,

$\lim\sup|w_{n}(C)-w(C)|=0$ .
$narrow\infty c\epsilon s$

fbrthermore, it holds that $|w(C)| \leq\frac{1}{2}$ , for any $C\in \mathfrak{F}$ .

Now, let us define the constants $\{\tilde{\Lambda}_{*}\}_{i=}^{5}\mathrm{o}(0<\tilde{\Lambda}_{0}<\tilde{\Lambda}_{1}<\tilde{\Lambda}_{2}<\tilde{\Lambda}_{3}<\tilde{\Lambda}_{4}<\tilde{\Lambda}_{5})$by

$\tilde{\Lambda}_{0}=\frac{8(4\pi^{2}-\kappa)}{21}$ , $\tilde{\Lambda}_{1}=\frac{2(4\pi^{2}-\kappa)}{3}$, $\tilde{\Lambda}_{2}=\frac{4(4\pi^{2}-\kappa)}{3}$ ,

$\tilde{\Lambda}_{3}=\frac{4(16\pi^{2}-\kappa)}{9}$ , $\tilde{\Lambda}_{4}=\frac{2(16\pi-2\kappa)}{3}$ , $\tilde{\Lambda}_{5}=\frac{4(36\pi^{2}-\kappa)}{9}$ .

According to Theorem $\mathrm{B}$ and the Intermediate Value Theorem, we can show that there
exist constants $\{\Lambda_{i}\}_{\dot{*}=1},2(\Lambda_{i}\in (\tilde{\Lambda}_{i-1} , \tilde{\Lambda}_{i}))$ such that $\{B_{m}(\Lambda_{*})\}_{m\epsilon \mathrm{z}}$ satisfies

(4.8) $|B_{0}(\Lambda:)-\mathfrak{B}(\Lambda i)|=1$ ,

and there exists a constant $\Lambda_{3}\in$ $(\tilde{\Lambda}_{3} , \tilde{\Lambda}_{4})$ such that $\{D_{m}(\Lambda_{3})\}m\epsilon \mathrm{Z}$ satisfies

(4.9) $D_{0}(\Lambda)=2Re\mathfrak{D}(\Lambda)$ .

And if $\Lambda\in(0 , \tilde{\Lambda}_{3}]$ , then it holds that $D_{0}(\Lambda)\neq 2Re\mathfrak{D}(\Lambda)$, and if $\Lambda\in[\tilde{\Lambda}_{2} , \tilde{\Lambda}_{5}]$ , then
it holds that $|B_{0}(\Lambda)-\mathfrak{B}(\Lambda)|\neq 1$ . Moreover, it holds that $\{b_{m}(\Lambda)\}m\in \mathrm{Z}$ satisfying the
equality (4.4) and $\{d_{m}(\Lambda)\}_{m\in}\mathrm{Z}$ satisfying the equality (4.5) are uniquely determined
except for constant factor. Therefore $\Lambda_{i}^{-1}(i=1,2,3)$ are eigenvalues with simple
multiplicity. This completes the proof of Proposition 3.2.

5. NUMERICAL COMPUTATIONS

Results of the numerical computations agree well with our theorem. They are found
in [3] with some graphics.
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