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Abstract

A general algorithm for the direct inversion of data to yield unknown functions

was recently developed by Caudill, Rabitz and Askar. We apply the technique

to non-linear, coupled kinetics models to simulate the experimental inversion of

kinetics parameters and to analyze the stability of the algorithm. This paper is a

preliminary report on our findings.

$0$ . Introduction

This paper presents results from the implementation of an algorithm developed by

Caudill, Rabitz and Askar [2] to solve inverse problems in the field of chemical kinetics.

In section 1 we describe the class of chemical inverse problems which are considered.

The algorithm and applications are given in section 2. We discuss specific examples and

results from computer experiments in the final section.

1. Problem Formulation

Chemical kinetics systems are often described by evolution-type equations of the form:

$\frac{\partial u}{\partial t}$ $=$ $T(V, u(V))$

$u$ $=$ $u_{0}$

for $t>0$ , (1)

for $t=0$ , (2)

where $u$ is a vector representing the concentration of chemical species and $V$ describes

other parameters, e.g. diffusion and kinetics rate constants [1]. The standard textbook

or forward problem consists’ of determining $u$ for a choice of $V$ . In actual $\mathrm{i}\mathrm{a}$boratory

situations some of the $V_{i}$ may not be measurable, even though we would like accurate

approximations of their values under various conditions, e.g. temperature, pressure. This

quandary may be formulated as a mathematical inverse problem; determine $V$ , given a

set of data measurements $d=\{d_{j}\}$ , which are related to $V$ through equations of the

form:

$L_{j}(u, V)=fj(dj, u)$ ; $j=1,2,$ $\ldots,$
$m$ , (3)
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where each $L_{j}(u, V)$ is a, possibly non-linear, operator acting on $u$ and $V$ . An algorithm
for determining a numerical solution to this problem is given in the next section.

2. Algorithm and Examples

The algorithm proposed by Caudill, Rabitz and Askar in [2] consists of three steps:

(i) Formally invert the system (3) to express the unknown $V$ in terms of the
data $d$ and the (unknown) forward solution $u$ :

$V=\nu[d, u]$ . (4)

(ii) Input (4) into equation (1) and solve the resulting system for $u$ .

(iii) Substitute the solution $u$ obtained in step (ii) into the $\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}- \mathrm{h}\mathrm{a}\mathrm{n}\mathrm{d}-_{\mathrm{S}\mathrm{i}\mathrm{d}}\mathrm{e}$ of
(4) to determine $V$ explicitly in terms of the data $d$ .

The algorithm is attractive as it is based on system identities. Through implementation
studies, we seek to determine its ability to reconstruct desired parameters from ideal as
well as $\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}\mathrm{I}\mathrm{e}\mathrm{t}\mathrm{e}$ or noisy laboratory data.

In particular, we implement the algorithm to recover parameters, such as rate con-
stants or species concentrations, in a chemical kinetics system (1) $-(3)$ . The set of data,
given by equation (3), are typically sets of measurements of several species under various
conditions. We consider the problem of recovering one or a few of the rate constants
and some of the chemical species concentrations. Follow step (i) of the algorithm, and
use the data measurements (3) in discretized versions of the rate equations from (1) to
derive expressions of the form (4) for unknown rate constants. As step (ii), use (4) in
place of the rate constants to solve system (1) for $u$ . Finally, this computed solution for
$u$ is substituted back into (4) to recover unknown rate constants. Quite often, the system
of $M$ differential equations is coupled and very stiff. Solution of the forward problem
requires use of techniques such as the backward Euler.

Finally, we remark that this algorithm can be used to solve a variety of inverse
problems, which can be mathematically modeled by equations of the form (1) $-(2)$ with
measurable laboratory data (3). Three other types of applications: heat conduction,
age-structured population dynamics and molecular dynamics are discussed in [2].
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3. Numerical Experiments

In this section we describe results from the implementation of the algorithm from

the previous section to solve the inverse problem for recovery of kinetics rate constants

for two chemical systems. In our first set of experiments, a simple explosive reaction

model is investigated. The model is based on the assumption that an infinite reservoir

of the principal reagent is available, and no or negligible back reactions take place. The

analytic solution to the forward problem was first derived by Rigos and Deutsch [4].

We examine the associated inverse problem. A more sophisticated non-linear, highly

coupled 28-step reaction mechanism for the oxidation of carbon mon$\mathit{0}$xide in the presence

of hydrogen proposed by Yetter, Dryer and Rabitz [5] is studied in our second set of

numerical experiments. We use real laboratory data whenever it is available in our

simulations.

$3\mathrm{a}$. An explosive kinetics model

Consider the simple explosive reaction model:

$A+2X$ $=arrow$ $3X$ $($

$X$ $-arrow$ $B$

( propagation )

( termination ),

where the forward and backward rate constants for the propagation and termination

reactions are $k_{1},$ $k_{2},$ $k_{3}$ , and $k_{4}$ respectively. The rate equations for the system are:

$\frac{\partial[X]}{\partial t}$ $=$ $k_{1}[A][x]2-k2[X]^{3}-k3[x]+k_{4}[B]$

$\frac{\partial[A]}{\partial t}$ $=$ $-k_{1}[A][x]^{2}+k2[x]3$

$\frac{\partial[B]}{\partial t}$ $=$ $k_{3}[X]-k_{4}[B]$

For propagation to occur at a reasonable rate, we must have $[A]\gg[X]>0$ for $t>0$

and $k_{1}\gg k_{2}$ . Termination occurs if $k_{3}\gg k_{4}$ . All of our numerical experiments consist
of 4 steps:

1. Given all rate constants and initial concentrations of all reagents, solve
the forward problem, i.e. determine concentrations of all reagents for

finite times $t:0\leq t<\infty$ .
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2. Select data for concentrations of reagents at various times
$0=t_{0}<t_{1}<\ldots<t_{n}$ .

3. Formulate the inverse problem and apply the algorithm from section 2.
4. Compare the computed algorithm from step 3 with the actual solution

from step 1.

To solve the forward problem, we use a simple forward Euler, finite difference scheme to
compute the concentrations of $X,$ $A$ and $B$ :

$X_{i+1}$ $=$ $\{[(-k_{2}X_{i}+k_{1}A_{i})X_{i} - k_{3}]\triangle t+1\}X_{i}+k_{4}\triangle tB_{i}$ ,
$A_{i+1}$ – $(k_{2}X_{i} - k_{1}A_{i})\triangle tX_{i}^{2}+A_{i}$ ,

$B_{i+1}$ $=$ $(k_{3}X_{i} - k_{4}B_{i})\triangle t+B_{i}$ ,

where $X_{i},$ $A_{i}$ and $B_{i}$ denote the concentrations of the chemical species at the $i^{th}$ time
step. A subset of the data generated from the forward solver will be used to solve an
inverse problem. We consider the following inverse problem, which can be ”solved” using
the algorithm described in the previous section: Given the rate constants $k_{1},$ $k_{2},$ $k_{4}$ and
the concentrations of $A$ and $B$ , determine the concentration of $X$ and the rate constant
$k_{3}$ . First determine $X$ , numerically, from:

$\frac{\partial[X]}{\partial t}=-\frac{\partial[B]}{\partial t}+k_{1}[A][x]^{2}-k_{2}[X]^{3}$ ,

i.e.

$\frac{x_{i+1}-x_{i}}{\triangle t}$ $=$ $\frac{-B_{i+1}+B_{i}}{\triangle t}+k_{1}A_{i}X_{i}^{2}-k_{2}X_{i}^{3}$

${\rm Re}$-arranging terms yields:

$X_{i+1}$ $=$ $+X_{i}-B_{i+1}+B_{i}+k_{1}\triangle tA_{i}X_{i}^{2}$ – $k_{2}\triangle tX_{i}^{3}$

The rate equation for $k_{3}$ :

$k_{3}= \frac{1}{[X]}(\frac{\partial[B]}{\partial t}+k_{4}[B])$

is discretized using the simple difference scheme:

$k_{3}$ $=$ $\frac{1}{X_{i}}(\frac{B_{i+1}-B_{i}}{\triangle t}+k_{4}B_{i})$

The values for $X_{i}$ computed above are used to evaluate $k_{3}$ .

We simulated an infinite reservoir system by taking $[B]=0,$ $[X]=0.1,$ $k_{1}=2$ ,
$k_{3}=1,$ $k_{2}=k_{4}=0$ at time $t=0$ , the concentration of $A$ to be constant at $[A]=500$ ,

4
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and $dt=0$ .00001. As A and X react, the concentration of X and, consequently, $\mathrm{D}$ , take
off. We consider the associated inverse problem and implement the algorithm described
above to recover the concentration of $X$ for $0<t<0.005$ and the rate constant $k_{3}$ . Not
surprisingly, recovery of [X] and $k_{3}$ is near perfect when $k_{1},$ $k_{2},$ $k_{4}$ and $[A]$ are known
and all of the data generated in the forward solver for $[B]$ is used. We next consider the
inverse recovery problem using partial data. Results from experiments using all points
for $[B]$ , every other point, every fourth point and every eighth point are denoted by $X1$ ,
$X2,$ $X4,$ $X8$ , respectively in figure 1, and k3–1, k3–2, k3–4, k3–8 in figure 2.
The figures show that the recovery of [X] is excellent, i.e. less than 10% relative error
for $t<$ 0.004, before the explosion begins to take off. For times $0.00\mathit{4}\leq t<0.005$ , the
relative error remains below 100%. A more sophisticated scheme or finer mesh would
decrease the error associated with a linear discretization of the derivative terms.

$3\mathrm{b}$ . A 28-step $\mathrm{c}\mathrm{o}-\mathrm{h}\mathrm{y}\mathrm{d}_{\Gamma}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{n}$ -oxygen reaction mechanism

In our second set of numerical experiments, we examine a 28-step CO-Hydrogen-
Oxygen reaction mechanism proposed by Yetter, Dryer and Rabitz [5] (given below).
Although the mechanism has been validated for a wide range of conditions, the regions
of calibration may differ quite a bit from step to step. The motivation for our work is to
recover unmeasurable kinetics data, e.g. rate constants and reagent concentrations for a
given set of experimental conditions.
$H_{2},$ $O_{2}$ Chain Reactions

1. $H+O_{2}=arrow O+OH$

2. $O+H_{2}-arrow H+OH$

3. $OH+H_{2}-arrow H+H_{2}O$

4. $OH+OH-arrow O+H_{2}O$

$H_{2},$ $O_{2}$ Dissociation-Recombination Reactions
$5\mathrm{a}$ . $H_{2}+M-arrow H+H+M(N_{2})$
$5\mathrm{b}$ . $H_{2}+M_{-}^{arrow}H+H+M(Ar)$

$6\mathrm{a}$ . $O+O+M-arrow O_{2}+M(N_{2})$

$6\mathrm{b}$ . $O+O+M-arrow O_{2}+M(Ar)$

7. $O+H+M=OH+M$
$8\mathrm{a}$ . $H+OH+M-arrow H_{2}O+M(N_{2})$

$8\mathrm{b}$ . $H+OH+M–H_{2}O+M(Ar)$
Formation and Consumption of $HO_{2}$

$9\mathrm{a}$ . $H+O_{2}+M=arrow HO_{2}+M(N_{2})$

$9\mathrm{b}$ . $H+O_{2}+M-arrow HO_{2}+M(Ar)$

10. $HO_{2}+H_{-}^{\wedge}H_{2}+O_{2}$

5
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11. $HO_{2}+H-arrow OH+OH$

12. $HO_{2}+O-arrow OH+O_{2}$

13. $HO_{2}+OH-arrow H_{2}O+O_{2}$

Formation and Consumption of $H_{2}O_{2}$

14. $HO_{2}+HO_{2}-arrow H_{2}O_{2}+O_{2}$

$15\mathrm{a}$ . $H_{2}O_{2}+M-arrow OH+OH+M(N_{2})$

$15\mathrm{b}$ . $H_{2}O_{2}+M-arrow OH+OH+M(Ar)$

16. $H_{2}O_{2}+H-arrow H_{2}O+OH$

17. $H_{2}O_{2}+H--H_{2}+HO_{2}$

18. $H_{2}O_{2}+O-arrow OH+HO_{2}$

19. $H_{2}O_{2}+OH-arrow H_{2}O+HO_{2}$

Oxidation of $CO$

$20\mathrm{a}$ . $CO+O+M=arrow CO_{2}+M(N_{2})$

$20\mathrm{b}$ . $CO+O+M-arrow CO_{2}+M(Ar)$

21. $CO+\mathit{0}_{2}-arrow CO_{2}+O$

22. $CO+OH-arrow CO_{2}+H$

23. $CO+HO_{2}=arrow CO_{2}+OH$

Formation and Consumption of $HCO$

$24\mathrm{c}$ . $HCO+M-arrow H+CO+M(N_{2})$

$24\mathrm{b}$ . $HCO+M-arrow H+CO+M(Ar)$
25. $HCO+O_{2}-arrow CO+HO_{2}$

26. $HCO+H-arrow CO+H_{2}$

27. $HCO+O-arrow CO+OH$

28. $HCO+OH–CO+H_{2}$Ou

Forward rate constants for the reaction were computed at the seven temperatures:
298.15, 300, 500, 800, 1000, 1500, and 2000 degrees Kelvin using data from Table III in [5]
and the Arrhenius rate formula $k=AT^{n}\exp(-E_{a}/RT)$ , where $A$ is the pre-exponential

factor (which is independent of temperature, or nearly so), $T$ is the temperature, $n$

is a power index, $E_{a}$ the activation energy, and $R$ the gas constant. For reactions 4
and 22, we used the formulae $k_{4}=5.46\cross 10^{11}\exp(\mathrm{o}.\mathrm{o}\mathrm{o}149\cross T)$ and $k_{22}=6.75\cross$

$10^{10_{\mathrm{e}}}\mathrm{x}\mathrm{p}(0.000907\cross T)$ given in the table in lieu of the values for $A,$ $n$ and $E_{a}$ . Note that
the seven temperatures selected for study do not necessarily fall within the calibration
range given in the table, however, we use them as a best estimate. Backward rate
constants for the reactions were computed at the same seven temperatures using the
thermodynamic equations:
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$\triangle H(T)$ $=$ $\triangle H(298.15)+\int_{298.15}^{T}C(p\mathcal{T})d_{\mathcal{T}}$ ,

$\approx$ $\triangle H(\mathit{2}98.15)+\sum_{i=1}^{6}c(P\tau_{i+1})\cdot(\tau i+1-\tau_{i})$ ,

$\triangle S(T)$ $=$ $\triangle S(298.15)+\int_{298.1}^{T}5\frac{c_{p}(\tau)}{\tau}d\tau$ ,

$\approx$ $\triangle S(298.15)+\sum_{i=1}^{6}\frac{c_{p}(\tau_{i+}1)}{\tau_{i+1}}\cdot(\tau i+1-\mathcal{T}_{i})$ ,

$\triangle G(T)$ $=$ $\triangle H(T)-T\triangle S(T)$ ,

$k_{r}$ $=$ $k_{f}\exp(-\triangle G/RT)$ ,

forward rate constants, enthalphy, entropy and specific heat data given in Table II of

[5]. We are using the LSODE package [H] to simulate the forward 28-step reaction.

LSODE solves systems of stiff equations, such as the ones which appear in chemical

kinetics problems. The sensitivities of various parameters in the 28-step reaction have

been studied [5]. We plan to use subsets of the data generated from the simulations to

solve associated inverse problems.
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