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概要

Possibilities of testing two means through nonparametric bootstrap
approaches are discussed. The naive bootstrap by resampling the ob-
served empirical distributions is useless in estimating null distributions.
In simple random sampling, limited numerical investigations suggest re-
samples should be drawn from the original samples mixed, with or with-
out proper transformations. In stratified sampling, the effects of location
transformation on both size and power are also investigated through
Monte Carlo simulations. Application is made to the historical two-
sample problem of Darwin on crossed- and self-fertilized plant data.

Key Words: Alternative hypothesis; Location-aligned bootstrap; Mixed boot-
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1 Introduction

The main task of testing statistical hypotheses is to find null distributions of
test statistics. For testing $H_{0}$ : $\mu_{1}=\mu_{2}$ , the equality of two means, based upon, for
instance, the statistic

$T= \frac{\overline{X}-\overline{Y}}{\sqrt{s_{x}^{2}/m+s^{2}\mathrm{Y}/n}}$ , (1)

requires finding $H_{0}(t)$ , the distribution of $T$ , when $\mu_{1}=\mu_{2}=\mu_{0}$ is assumed to be
true. In (1), $\overline{X},\overline{Y},$ $s_{X}^{2}$ and $S_{Y}^{2}$ are sample means and variances of the i.i.d. ran-
dom variables $X_{1},$ $\cdots,X_{m}$ from distribution $F(\mu_{1})$ and $Y_{1},$ $\cdots,Y_{m}$ from distribution
$G(\mu_{2})$ , respectively.

If $F$ and $G$ both are normal with common variances, then the null distribution of
$T$ is $t_{m+n-2},$ $t$-distribution with degrees of freedom $m+n-2$. The trouble is that if
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$T$ is to be used and observations $x_{1},$ $\cdots,$ $x_{m}$ and $y_{1},$ $\cdots$ , $y_{n}$ display nonnormality how
we should approximate the null distribution of $T$ . The problem does not have an
exact solution even in the normal case with heterogenous variances, which is refered
to as the Behrens-Fisher problem in the literature. Bootstarp is a natural candidate
in this kind of situations.

The naive bootstrap suggests estimating $H_{0}(t)$ by $\overline{H}_{0}(t)$ , the distribution of

$T^{*}= \frac{\overline{X}-\overline{Y}^{*}}{\sqrt{S_{X}^{*2}/m+S_{Y}*2/n}}$ , (2)

where $\overline{X}^{*},\overline{Y},$ $S_{x^{2}}*$ and $S_{Y}^{*2}$ are sample means and variances of the empirical dis-
tributions $F_{m}(x)$ and $G_{n}(y)$ , based on the observations $x_{1},$ $\cdots,$ $x_{m}$ and $y_{1},$ $\cdots,$ $y_{n}$ ,
respectively. This algorithm failes catastrophically even in the simplest normal cases,
see next section.

Section 2 starts the investigations from this simple normal cases: $F$ and $G$ are
normal with possibly different variances. We propose the mixed bootstrap tests
that resample the pooled original data with and without transformations. Section
3 applies the mixed bootstrap tests to historical two-sample problem of Darwin,
yielding conclusions similar to those of classic analyses that the crossed plan may be
superior to the self-fertilized. Section 4 considers more complicated situations when
$F$ and $G$ are normal mixtures and samples are drawn from each subpopulation.
Only location-aligned bootstrap is investigated in this case.

2 Mixed bootstrap tests
The failure of the naive $\mathrm{b}_{\mathrm{o}\mathrm{O}}\mathrm{t}_{\mathrm{S}\mathrm{t}\mathrm{a}}\mathrm{r}\mathrm{p}(\mathrm{S}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}1)$ lies in the obvious fact that the

bootstrap estimate $\overline{H}_{0}(t)$ does not reflect the mechanism that $H_{0}(t)$ is produced un-
der the constraint $\mu_{1}=\mu_{2}$ . One way of achieving this is to redefine the $\overline{X},$ $\overline{Y}^{*},$ $S_{x^{2}}^{*}$

and $S_{Y}^{*2}$ in (2) to be the sample means and variances of respective empirical distribu-
tions $\hat{F}_{m}(x)$ and $\hat{G}_{n}(y)$ , putting mass $1/m$ and $1/n$ on $x_{1’ m}^{*}\ldots,$$x*$ and $Y_{1}^{*},$

$\cdots,$ $Y_{n}^{*}$ ,
which are randomly drawn with replacement from

$\{\mathcal{Z}_{1}, \cdots, Z_{m}+n\}=\{_{X\cdots,x_{m};}1,y_{1}, \cdots, y_{n}\}$ . (3)

Let $X$ and $Y$ come from the null $F=N(\mu_{0}, \sigma^{2}),$ $G=N(\mu_{0}, \sigma^{2})$ . Let $m=n=5$ .
Then $H_{0}(t)=t_{8}$ The first row of Table 1 shows the relative errors of the mixed
bootstrap in approximating the lower and upper quantiles of $t_{8}$ . As a comparision,
the fourth row corresponding to the naive bootstrap test is also displyed.

The idea of mixing is not entirely new. Boos, Janssen and Veraverbeke(1989) dis-
cusses the pooled bootstrap tests for testing homogeneity of scales, which essentially
uses the idea of mixing. An alternative way of forcing the two empiricals to have
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the same mean is by location transformation. Efron and Tibshirani( $1993$ , pp.224)

suggests that the bootstrap samples be drawn from $\{x_{1}’’, \cdots, x_{m}\}$ and $\{y_{1}’, \cdots, y_{n}’\}$ ,

where the $x’\mathrm{s}$ and $y’\mathrm{s}$ are location adjusted. They are defined as $x_{i}’=x_{i}-\overline{x}+\overline{z}$

and $y_{i}’=y_{i}-\overline{y}+\overline{z},$ where $\overline{x}$ and $\overline{y}$ are the respective sample means and $\overline{z}$ is the
pooled mean. The fivth row of Thable 1 shows that this does not work well enough.
The location-scale transformation, by redefining the $x’\mathrm{s}$ and $y’\mathrm{s}$ as $x_{i}’=(x_{i}-\overline{x})/S_{x}$

and $y_{i}’=(yi^{-\overline{y})}/S_{x}$ , where $S_{x}$ and $S_{y}$ are the sample standard errors, improves the

location transformation, but only mildly, see the last row of Table 1. The second
and the third row of Table 1 compare the mixed bootstrap tests when location or

location-scale transformation is applied before mixing, with simple mixed bootstrap

test(first row). The results are essentially the same, with moderate improvements

by including transformations.

Table 1 Errors in approximating the tails of the null distribtion by six bootstrap

tests. The null distribtion of $T$ under nomality with homogeneous scales, is $t_{5+5-2}=$

$t_{8}$ . The bootstrap tests use data from a “local alternative”, $N(1,1),$ $N(\mathrm{O}, 0.9^{2})$ .

1% 2% 3% 4% 5% 95% 96% 97% 98% 99%

methods
mixing .09 .04 .03 .03
1-mixing .09 .02 .03 .03

$l\mathrm{s}$-mixing .10 .04 .03 .03

.03 .01 .01 .02 .03 .05

.03 .02 .02 .01 .01 .03

.03 .00 .00 .00 .01 .01

naive .71 .87 .97 1.04 1.12 1.66 1.66 1.64 1.61 1.61
location .31 .17 .12 .10 .10 .14 .17 .19 .23. .28

$\underline{loc\mathrm{a}}$tion-scale.25.15.10.09.08.03.05.07.10.15

Notes: $(l)The$ figu$\mathrm{r}es$ are $rel$ative errors defined by $|(w-\hat{w})/w|,$ $w$ and $\hat{w}$ stands
for th$e$ true value and approximate value respectively; (2)$mixi\mathrm{n}g,$ $\mathit{1}$-mixing and ls-

mixin$g$ stand for th$e$ mixed bootstrap, mixed bootstrap after location and location-
scale transformation, respectively; naive, location and location-scale stand for th$e$

$\mathrm{n}$onmixed bootstrap, nonmixed bootstrap with location and location-scale $t$rans-
formation, respectivelyj (3) $Th\mathrm{e}$ bootstrap values are averages during 100 repeated
$s$ampling, with each bootstrapped 200 times.

Similar features are observed from Table 2, where the null distribution of $T$ based
on $F=N(\mu_{0}, \sigma_{1}^{2})$ and $F=N(\mu 0, \sigma_{2}^{2}),$ $\mu 0=1,$ $\sigma_{1}^{2}=1,$ $\sigma_{2}^{2}=4$ are approximated by

5,000 Monte Carlo trials$(m=n=5)$ .
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Table 2 Errors in approximating the tails of the null distribtion by six bootstrap
tests. The null distribtion of $T$ is defined by assuming $X\sim N(1,1)$ and $Y\sim$

$N(1,2^{2})$ , sample sizes $m=n=5$ . The bootstrap tests use data from a “local
alternative”, $N(1,1),$ $N(2,2^{2})$ .

1% 2% 3% 4%
me$th_{\mathit{0}}\mathrm{d}_{S}$

mixing .08 .08 .05 .02
1-mixing .09 .08 .04 .03

$ls$-mixing .03 .07 .04 .01

5% 95% 96% 97% 98% 99%

.03 .06 .06 .07 .06 .06

.02 .06 .06 .06 .06 .08

.02 .05 .04 .04 .03 .02

naive 1.64 1.38 1.38 1.40 1.40 .79 .74 .67 .62 .46
location .34 .19 .18 .18 .17 .23 .25 .28 .32 .48

$\underline{loc\mathrm{a}}$tion-scale.11.03.04.05.03.02.01.03.07.13
Notes: $(l)The$ figures are relative errors defined by $|(w-\hat{w})/w|,$ $w$ and $\hat{w}$ stands
for the $tr\mathrm{u}e$ value and approximate $\mathrm{r}^{\gamma}\mathrm{a}lue$ respecti $\iota^{\gamma}\mathrm{e}ly,\cdot(\mathit{2})\mathrm{m}ix\mathrm{j}ng,$ $\mathit{1}$-mixing and ls-
mixing stand for the mixed bootstrap, mixed bootstrap after location and location-
scale transformation, respecti $\mathrm{r}^{r}\mathrm{e}ly,\cdot$ naive, location and location-scale stand for th $\mathrm{e}$

nonmixed bootstrap, nonmixed bootstrap with location and location-scale trans-
formation, resp$\mathrm{e}cti\gamma \mathrm{e}ly,\cdot(\mathit{3})Th\mathrm{e}$ bootstrap values are averages during 100 repeated
sam.pling, with $e\mathrm{a}ch$ bootstrapped 200 times; (4) $Then\mathrm{u}\mathit{1}\mathit{1}$ distribution is approxi-
mated by 5,000 Monte Carlo trials.

3 Bootstrap Tests of Darwin’s Zea Data
Table 3 shows data obtained by Darwin(1876), who investigated whether there

exists superiority of the crossed plants over the self-fertilized. The data shown here
concerns only $\mathrm{z}\mathrm{e}\mathrm{a}$, one out of the seven plants experimented by Darwin. The problem
is to test the null hypothese $H_{0}$ : $\mu_{X}=\mu_{Y}$ against the alternative $H_{1}$ : $\mu_{X}>\mu_{Y}$ ,
where $\mu_{X}$ and $\mu_{Y}$ represent the mean height of the crossed and the self-fertilized
$\mathrm{z}\mathrm{e}\mathrm{a}$, respectively.

While the nonmixed bootstrap with location transformation applied to the zea
data gives one-sided achieved significance level $(\mathrm{a}.\mathrm{S}.1.)$ 0.043, the simple mixed boot-
strap has a.s.l. 0.012, providing much stronger evidence against the null hypothesis
that there is no difference between the crossed and self-fertilized $\mathrm{z}\mathrm{e}\mathrm{a}$ . In mixing
is done after location transformation, the a.s.l. decreases to 0.006, indicating even
more discrepancy between the two kinds of $\mathrm{z}\mathrm{e}\mathrm{a}$ . Location-scale transformation does
not have much effect in the mixing case(with a.s.l. 0.011), but reduces the a.s.l. to
0.015 in the nonmixing case. All these a.s.l.’s are obtained using the same 2,000
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bootstrap samples in the mixed and nonmixed cases, respectively. For compari-
sion, the two-sided a.s.l.’s of some conventional nonparametric tests, namely the

median, Wilcoxson and permutation test are 0.001, 0.003 and 0.024, respectively,

see Takeuchi and Ohasi(1981) for details.

Table 3 Darwin’s observations on-the grouth rates of the crossed and

self-fertilized $\mathrm{z}\mathrm{e}\mathrm{a}$ . Numbers are expressed in eighths of an inch.

$NO\acute{T}ES$ : The data can be found in Fisher($\mathit{1}\mathit{9}\mathit{6}\mathit{0}$ , pp.30), which are divided into bloks

of sizes (3,3,5,4), corresponding to each pot. For exampl$\mathrm{e},$

$(\mathit{1}\mathit{8}\mathit{8},\mathit{9}\mathit{6},\mathit{1}\mathit{6}\mathit{8})$ and (139,
163, 160) are from pot 1, and (168, 177,184, 96) and (144, 102, 124, 144) are from

pot 4, etc.

4 Stratified Sampling

In this section, we treat general stratified problems, assuming $F(x)= \sum_{l=1}LF_{l}(w_{l}x)$

and $G(y)=\Sigma_{h=1}^{H}p_{h}G_{h}(y)$ . Here each $F_{l}(x)(l=1, \cdots , L)$ and $G_{h}(y)(h=1, \cdot*\cdot , H)$

represent the l- and h-th stratum distribution functions and $w_{l}(l=1, \cdots, L)$ and
$p_{h}$

$(h=1, \cdots , H)$ are the corresponding stratum weights, subject to $\Sigma_{l=1}^{L}w_{l}=$

$\sum_{h=1}^{H}p_{h}=1$ . We only consider the location-aligned bootstrap test.

4.1 The model

Suppose data $\{X_{l1}, \cdots,x_{l}ml\}(l=1, \cdots, L)$ and $\{y_{h1}, \cdots, y_{hn_{h}}\}(h=1, \cdots, H)$ ,

are observed from each stratum $F_{l}$ and $G_{h}$ , respectively. Let $\sum m_{l}=m,$ $\sum n_{h}=n$ .
The sample means $\overline{x}_{l}=\sum x_{li}/m_{l}$ and $\overline{y}_{h}=\sum y_{hi}/n_{h}$ are unbiased estimates for each
stratum mean $\mu_{lX}$ and $\mu_{hY}$ , which, combined together, form unbiased $\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}\overline{x}^{s}=$

$\sum w_{l^{\overline{X}}lX}$ and $\overline{y}^{s}=\sum p_{h\overline{y}_{hY}}$ for the total mean $\mu_{X}$ and $\mu_{Y}$ respectively. Hereafter we
only consider proportional allocation, i.e. $ml=wlm\dot{\mathrm{a}}\mathrm{n}\mathrm{d}nh=phn$ .

Let $\hat{\sigma}_{lX}^{2}$ be the usual unbiased version of sample variances of each stratum vari-
ance $\sigma_{lX}^{2}$ . Wakimoto(1971) proved that

$st \hat{\sigma}_{X}^{2}=\sum_{l=1}^{L}w_{l}\hat{\sigma}^{2}l..x+\sum^{L}wl(_{\overline{X}_{l}}l=1-\overline{X}^{S})^{2}-\sum_{=l1}w\iota L(1-wl)\hat{\sigma}_{l}^{2}X/m_{l}$

is unbiased for the total variance $\sigma_{X}^{2}$ . The unbiased estimator $st\hat{\sigma}_{Y}^{2}$ for $\sigma_{Y}^{2}$ is similarly
defined.
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The stratified version of the usual $t$-statistic becomes

$T_{st}= \frac{\overline{X}^{S}-\overline{Y}s}{\sqrt{st\hat{\sigma}_{x}^{2}/m+st\hat{\sigma}/2Yn}}$ , (4)

based on which we are to test $H_{0}$ : $\mu_{X}=\mu_{Y}$ against the alternative $H_{1}$ : $\mu_{X}>\mu_{Y}$ .
To perform a test $\mathrm{b}\mathrm{a}s$ed on $T_{st}$ , is to find, or to make a good approximation of

$Q(F_{N}, G_{N})=Prob(T_{s}t\leq t)$ , the null distribution function. To emphasize, we have
deliberately changed our notation using $F_{N}$ and $G_{N}$ in place of $F$ and $G$ to represent
the two distributions under null hypothesis, i.e. $\mu_{X}=\mu_{Y}$ .

Let $\hat{F}_{l}$ be the empirical distribution function of the l-th stratum of $F$ putting
mass $1/m_{l}$ on each atom $x_{li}(i=1, \cdot \mathrm{v}\cdot, m_{l})$ , and $\hat{G}_{h}$ similarly defined. Define $\hat{F}=$

$\Sigma_{l=1}^{L}w_{l}\hat{F}_{l}$ and $\hat{G}=\sum_{h=1}^{H}p_{h}\hat{G}_{h}$ . The naive bootstrap draws i.i.d. stratified samples
with replacement from $\hat{F}$ and $\hat{G}$ , exactly in the same way as the original stratified
samples are drawn from $F$ and $G$ , which is as useless as in the simple random case.

4.2 Location-aligned bootstrap test
The location-aligned bootstrap test constitutes the following steps.
(1) Let $\overline{z}=(m\overline{x}^{S}+n\overline{y}^{s})/(m+n)$ . Define the pseudo-observations for $l=$

$1,$ $\cdots,$
$L$ and $h=1,$ $\cdots,$

$H$ by :

$x_{li}^{+}$ $=x_{li}-\overline{x}l+\overline{Z}/Lw_{l}$ $(i=1, \cdots, m_{l})$ ,
$y_{hi}^{+}$ $=y_{hi^{-}}\overline{y}h+\overline{Z}/Hp_{h}$ $(i=1, \cdots, n_{h})$ .

(2) Define pseudo-empirical distribution functions

$\hat{F}_{N}$ $=\Sigma_{l=1}^{L}w_{l}\hat{F}\iota N$ ,
$\hat{G}_{N}$ $=\Sigma_{h=1}^{H}ph\hat{G}_{hN}$ ,

where $\hat{F}_{lN}$ is the empirical distribution function $\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{i}\acute{\mathrm{n}}\mathrm{g}$ mass $1/m_{l}$ on each atom
$x_{li}^{+}(i=1, \cdots, m_{l})$ , and $\hat{G}_{hN}$ is similar.

(3) Define the bootstrap estimate of $Q(F_{N}, G_{N})$ by $Q(\hat{F}_{N},\hat{G}_{N})$ , which is fur-
ther approximated by Monte Carlo means

$\frac{1}{B}\#\{T_{st}^{b*}\leq t\}$ ,

where $T_{st}^{b*}$ is the version of $T_{st}$ , based on the b-th stratified samples from $\hat{F}_{N}$ and
$\hat{G}_{N},$

$\#$ stands for the number of the event within $\{\}$ being true and $B$ is the number
of the whole procedure replicated. Several remarks are pertinent.

Remark 1 To reflect the null hypothesis, namely two distributions sharing the
same mean, one has no apparent reason for adjusting the scales. However, if the
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null hypothesis does pose some restictions on the second order moments, as in the
case of approximating the $t$-distribition discussed in Section 2, proper adjustments

upto that order may to be prefered. Empirical variances may be adjusted in the

stratified case as following

$x_{li}^{o}$ $=[(x_{li^{-}}\overline{x}_{l})/S_{lx}](1/L\sqrt{w_{l}})+1/w_{l}L\sqrt{m}$ $(i=1, \cdots, m\iota)$ ,

$y_{hi}^{o}$ $=[(y_{hi}-\overline{y}_{h})/s_{hy}](1/H\sqrt{p_{h}})+1/p_{h}H\sqrt{n}$ $(i=1, \cdots, n_{h})$ .

This transformation is exact when $(m+1)/(n+1)=H/L$ , which is satisfied, for ex-
ample, when $m=n$ and $L=H$ . We will not consider location-scale transformation
in our Monte Carlo studies.

Remark 2 Confidence intervals based on asymptotically pivotal quantities tend
to be long-shaped. A 95% bootstrap-t confidence interval for the difference be-
tween the crossed and self-fertilized zea in Example 1 is (1.8, 32.3), compared with
the so-called nonparametric ABC interval(Efron and Tibshirani 1993), (5.5, 29.4).

Welch’s solution gives (3.1, 44.5), Fisher’s fiducial interval is (2.7, 39.1), compared
with $(13, 39)$ which is based on Wilcoxson test( $\mathrm{T}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{i}$ and Ohasi 1981, $\mathrm{p}\mathrm{p}.51^{-}89$).

One consequence of this is that $‘(t$-type” tests may tend to have lower power.

5 Monte Carlo Studies

Assume that the data do come from distributions satifying the null hypothesis
and $t_{0}$ is the observed value of the stratified $t$-statistic. The achieved significance
level, or $p$-value, Prob$(\tau_{St}>t_{0})$ under null hypothesis depends solely on $t_{0}$ , which has
the uniform distribution on $(0,1)$ if $t_{0}$ is randomly observed from the null hypothesis.
We shall evaluate our bootstrap tests by checking the size, power and testing the
uniformity of the p-values.

Now the hypothesis $H_{0}$ : $\mu_{X}=\mu_{Y}$ is to be tested against the alternative $H_{1}$ :
$\mu_{X}>\mu_{Y}$ , based on the location-aligned bootstrap test described in the previous
section. For simplicity, we assume $F$ and $G$ in the following simulations to be
mixtures of two normal populations, and $w_{l}=p_{l}(l=1,2)$ . With no loss of generality,
we fix $\mu_{Y}=1$ and varify the following quantities: coefficient of variations, $C_{X}=$

$\sigma_{X}/\mu_{X},$ $C_{Y}=\sigma_{Y}/\mu_{Y}$ ; ratio of (sub-)variances, $S_{X}=\sigma_{2X}^{2}/\sigma_{1}^{2}\mathrm{x}’ S_{\mathrm{Y}}=\sigma_{2Y}^{2}/\sigma_{1Y}^{2}$ ;
and the effect of stratifications, $\rho_{X}^{2}=\Sigma_{l=1}^{2}(\mu_{1}X -\mu_{2X})^{2}/\sigma_{X}^{2},$ $\rho_{Y}^{2}=\sum_{l=1}^{2}(\mu_{1}Y$ -

$\mu_{2Y})^{2}/\sigma_{Y}^{2}$ . To fully specify $F$ and $G$ we need one more condition, which is designed
so that the test is supposed to have approximate power (0.2, 0.4, 0.6, 0.8). This
constraint is derived by approximating the bootstrap distribution of $T_{st}^{*}$ by the limit

$N(0,\sigma^{2}(1-\rho Y)^{)N(}2A\sigma^{2}Y\mathrm{o}\mathrm{f}/n]\tau_{s/(}t\mathrm{u}_{2}\mathrm{n}\sigma_{X}\mathrm{d}/\mathrm{e}\mathrm{r}Hm+\sigma_{Y}^{2}0\mathrm{a}\mathrm{n}/n),$$\mathrm{a}\mathrm{n}\mathrm{d}\delta=(\mu X^{-}\mu_{Y}\mathrm{d}\delta,$$\sigma_{A}^{2})\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}H1,)/\mathrm{W}\mathrm{h}\mathrm{e}_{2}\mathrm{r}\mathrm{e}\sigma\infty\sigma_{x}/m+\sigma_{Y}/2n2=(1.-\rho X)2\sigma_{x}/2m+$

Table 4 shows relative good behaviour of the locatio-aligned bootstrap test, when
$m=n=10$ , and the effects of stratification$(\rho_{x}2=\rho_{Y}^{2}=0.3)$ is relatively small.
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The lower half of this table displays the results of the same bootstrap test when the
stratified samples are treated as simple random samples, losses of power in the later
case are observed.

Table 4 10%-1evel location-aligned bootstrap tests applied to normal mixtures.
The sample sizes are $m=n=10$, effects of stratification, $\rho_{X}^{2}=\rho_{Y}^{2}=0.3$ . The
bootstrap tests approximately achieve the norminal level(O.l), and have reasonable
power. Lower half of the table corresponds to the stratified samples misused as
simple random samples.

$\overline{\mathrm{t}Veight(w_{1})}$case $null(p)$ $alt_{1}$ $alt_{2}$ $alt_{3}$ $alt_{4}$

0.3 $I$ .086(13.1) .164 .384 .524 .758
II .118(13.5) .150 .354 .512 .718

0.5 $I$ .080(6.4) .146 .312 .486 .722
II .094(4.8) .162 .278 .460 .682

0.7 $I$ .090(9.1) .138 .368 .540 .768
II .086(12.0) .186 .322 .520 .714

0.3 $I$ .070(13.0) .134 .322 .458 .710
II .078(8.7) .096 .276 .464 .630

0.5 $I$ .072(14.7) .130 .290 .496 .712
II .054(17.8) .132 .240 .414 .612

0.7 $I$ .060(22.4) .104 .312 .494 .736
II .044(24.8) .096 .202 .370 .598

NOTES: (1) Case I and II correspond to the parameter layou$tS_{X}=S_{Y}=0.5,$ $C_{X}=$

$C_{Y}=0.3$ and $S_{X}=S_{Y}=1,$ $C_{X}=0.3,$ $C_{Y}=0.8,$ $\mathrm{r}\mathrm{e}sp\mathrm{e}cti_{Ve}ly,\cdot(\mathit{2})$ values in $()$

are $p$-values of $\chi_{9}^{2}$ to test the uniformity of the a.s.l. in approximating th $\mathrm{e}$ null
distributions, (90%, 95%)-percentiles of $\chi_{9}^{2}$ being (14.7, 16.9); (3) The simulations
are based on 500 repeated sampling, each bootstrapped 500 times.

Location-aligned bootstrap tests are however quite sensitive to the effects of
stratification $(\rho_{X}^{2}, \rho_{Y}^{2})$ , and to the balance of samples, as can be seen from Table 5.
To improve, ideas like mixing may be incorporated, we leave the experiments as our
future task.
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Table 5 10%-level location-aligned bootstrap tests applied to two normal mix-
tures. Lower half of the table corresponds to the stratified samples misused as simple

random samples.

$\overline{\rho_{X}^{2}=\rho_{Y}^{2}\iota \mathrm{v}e\mathrm{j}ght(w1)null(p)alt_{1}alt2alt_{3}alt4}$

0.3 0.3 .026(34.0) .068 .168 .278 .504
0.5 .026(32.4) .064 .138 .288 .494
0.7 .028(32.8) .060 .204 .312 .538

0.8 0.3 .000(55.6) .000 .002 .026 .042
0.5 .000(55.6) .000 .000 .006 .030
0.7 .000(55.6) .000 .004 .012 .038

0.3 0.3 .036(26.3) .084 .234 .370 .570
0.5 .042(20.8) .082 .174 .332 .554
0.7 .022(36.0) .078 .202 .332 .570

0.8 0.3 .000(55.6) .000 .002 .028 .068
0.5 .000(55.6) .000 .002 .010 .048
0.7 .000(55.6) .000 .002 .008 .030

NOTES: (1) Sample sizes $m=20,$ $n=10,$ $oth$er parameters: $S_{X}^{2}=s_{Y}^{2}=0.\mathit{5},$ $C_{X}=$

$C_{Y}=0.3;(\mathit{2})$ values in $()$ are $p$-values of $\chi_{9}^{2}$ to test the uniformity of the a.s.l.
in approximating the $m\mathrm{z}\mathit{1}\mathit{1}$ distributions, (99%, 99.5%)-percentiles of $\chi_{9}^{2}$ are (21.7,
23.6); (3) The simulations are based on 500 repeated sampling, each bootstrapped
500 times.

5.1 Darwin’s example revisited

Darwin planted his plants in different pots. He was carful to make the conditions
in each pot as near as possible. But we still hope the information on pot can be
utilized in the inference. We put data in Pot 1 and 2 in stratum 1 and the rest as
stratum 2, since the mixed pots having near means. The results are summerized in
Table 6, which are quite consistant with traditional tests. Stratification does seem
to provide more information.
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Table 6. Bootstrap tests of the difference on growth rates between the crossed-
and self-fertilized $\mathrm{z}\mathrm{e}\mathrm{a}$. The figures are two-sided achieved significance levels, obtained
from 200 bootstrap samples. Other classical parametric and nonparametric tests are
also shown(Takeuchi and Ohasi, 1981). Among these tests, the median test has least
a.s.l., the corresponding 95% confidence interval is $(1\mathit{9}, 45)$ , which is “significantly”
short. See Remark 2 od Section 4.2.

Method Type of Transformation asl
no transformation .505

stratiBed sampling location .000(.005)
location-scale .015(.005)

simple no transformation .545
randon location .025(.010)

$\frac{s\mathrm{a}mplingl_{\mathit{0}}C\mathrm{a}tion-_{8Ca}le.\mathit{0}\mathit{0}\mathit{5}(.\mathit{0}\mathit{0}5)}{N(\mu_{x},\sigma^{2}),N(\mu_{y},\sigma^{2}).\mathit{0}\mathit{2}}$

one-sample $t(d.f.=n- \mathit{1})$ .05
Wilcoxson .003

permutation .024
median .0014

NOTES: $(l)s_{tr}at\mathrm{a}$ are formed bymixing Pot 1 and 2, and Pot 2 and $\mathit{3};(\mathit{2})N(\mu_{x}, \sigma^{2}),$ $N(\mu_{y}, \sigma^{2})$

stands for the method based the normal assumptions with homogeneous variancesj
one-sample $t(d.f.=n- l)$ for Fisher’s one-sample $t$ -test byproperly pairing th $\mathrm{e}d\mathrm{a}t\mathrm{a}(See$

Fisher, 1960); Wilcoxson for Wilcoxson test; $p$ermutation for $p$ermutation test; and
median for median test; (3)$Figu\mathrm{r}es$ in brackets are obtained from mixin$g$ the trans-
formed data in simple random sampling, but only mixing the transformed data
within $e\mathrm{a}ch$ population in stratifi$ed$ situations.

6 Discussions
Bootstrap tests are statistical procedures for seeking information about models

in one class(the null class), conditional on information about a different class( $\mathrm{t}\mathrm{h}\mathrm{e}$ al-
ternative class). In a strict sense, we never have direct information of the first class,
but always observe instead information of the latter class. “Validity” of the trans-
formations of the $ma\Gamma \mathrm{l}\mathrm{n}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ into the information we want, obviously depends
upon the structural relationship between the two classes.
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