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Summary

Many sufficient conditions for inequalities about the mean, median,

mode and skewness have been obtained. Runnenburg gives a result and

$\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{G}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{V}\mathrm{r}\mathrm{a}\mathrm{y}$ tries to improve it, but unfortunately, there is a mistake in it.

We get a corrected and improved theorem, consider the cases of Pearson

distributions, and give some counter-examples.
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1. Introduction

Let $P$ be a probability distribution on R. Then we denote a ran-

dom variable distributed as $P$ by $X$ , and the mean, median and mode by

$\mu,$ $m,$ $M$ , respectively, and $\mu_{n}:=E[(X-\mu)^{n}]$ and $\mu_{n}’:=E(X^{n})$ , if each

of them exists. Assume that $P$ is asymmetric and has the density $f$ . Many

sufficient conditions for inequalities about the values above have been ob-

tained. Van Zwet (1979) gets that if $f(\mu+x)-f(\mu-x)$ changes sign once

and from negative to positive values in $x>0$ , then $\mu_{3}>0$ . (He does not
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say in this way. See the note below Theorem 2.1. ) This is an improvement
of Runnenburg (1978). $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{G}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{V}\mathrm{r}\mathrm{a}\mathrm{y}$ (1981) says that this assumption also
implies $M<\mu$ for a unimodal density, and $m<\mu$ . (We can take by his
paper that “$f(\mu+x)-f(\mu-x)$ changes once and from negative to posi-
tive values” is equivalent to “$\mu>M$ ” for a unimodal density. However, he
seems to mean that under the condition that $f(\mu+x)-f(\mu-X)$ changes
sign once, “from negative to positive values” is equivalent to “$\mu>M$” for
a unimodal density. It is because he says that this is not necessarily so for
a general unimodal density though he does not give a counter-example. )
He obtains the result by using knowledge of total positivity. It is true that
this assumption implies that $\mu_{3}>0$ and $m<\mu$ , and we get that it can
be extended to cases when a density does not exist, without knowledge of
total positivity. However, it is not true that, for a unimodal density, the
assumptions imply $\mu>M$ , since $\mu=M$ can hold. Groneveld &Meeden
(1977) also obtains sufficient conditions for $M<m$ and $m<\mu$ , and van
Zwet (1979) improves them. We shall give a corrected and improved theo-
rem in Section 2, consider the cases of Pearson distributions in Section 3,
and give some counter-examples in Section 4.

Generally, there are delicate problems to define the median $m$ and the
mode $M$ . Here we adopt the following definitions:

Let $F$ be the distribution function, that is, $F(x)=P(X\leq x)$ , and
denote $F(x-)=P(X<x)$ . We define the median if and only if there is
the unique $m$ such that $F(m-)\leq 1/2\leq F(m)$ , and such $m$ is called the
median. We define the mode if and only if there is the density $f$ (with
respect to the Lebesgue measure) which has the unique $M$ such that $f$

(weakly) increases in $(-\infty, M]$ , decreases in $[M, \infty)$ , and $f$ is either right
continuous or left continuous at $M$ . Then such $M$ is called the mode and
such $f$ is said to be unimodal. We allow $f(M)$ to be $\infty$ .
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We define

$\sigma$ $:=\sqrt{\mu_{2}}$

Skew $X$ $:=\mu \mathrm{s}/\sigma^{\frac{3}{2}}$ (the usual measure of skewness)

$\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}^{*}X$ $:=(\mu-M)/\sigma$ (the Pearson measure of skewness)

if each of them exists (see Pearson, 1895, 1901, and Kendall et al., 1994,

pp. 108-109). Note that Pearson himself does not seem to have pay atten-

tion to their sign but considered $\beta_{1}=$ $($ Skew $X)^{2}$ and $|\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}^{*}X|$ . Also note

that by definition, we get Skew $(aX+b)=$ sgn $a$ Skew $X$ and $\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}^{*}(aX+$

$b)=$ sgn $a$ $\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}^{*}X$ where $a(\neq 0)$ and $b$ are constants.

2. Corrected and Improved Theorem

The following theorem gives sufficient conditions for $\mu_{3}>0$ (i.e.,

Skew $X>0$ ), $M\leq\mu$ (i.e., $\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}^{*}X\geq 0$), $M<m,$ $m\leq\mu$ and so on.

(I) is a corrected and improved one of $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{G}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{v}\mathrm{r}\mathrm{a}\mathrm{y}$ (1981). (II) and (III)

are partially obtained by Groneveld & Meeden (1977) and Runnenburg

(1978), and improved by van Zwet (1979).

Theorem 2.1. Let $P$ be an asymmetric probability $dis$ tribution on R.

Then the following $\mathrm{a}ss$ertions hold.

(I) [The $\mu$-method]. Assume that $E(|X|)<\infty$ an$d$ ther$\mathrm{e}$ exists $t>0$ such

that for all $Bo\mathrm{r}el$ sets $A\subset \mathrm{R}$ ,

$A\subset(0, t)$ implies $P(\mu+A)\leq P(\mu-A)$ ,
(2.1)

$A\subset(t, \infty)$ implies $P(\mu+A)\geq P(\mu-A)$ ,

where $\mu+A$ $:=\{\mu+a : a\in A\}$ and $\mu-A:=\{\mu-a : a\in A\}$ . Then the
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following assertions hold.

$0<\mu_{3}\leq\infty$ if $\mu_{3}$ is defined, (2.2)

$P(X<\mu)>P(X>\mu)$ , (2.3)

$m\leq\mu$ if $m$ is defined, (2.4)

$m<\mu$ if $m$ is defined and $F$ is $con$tinuous, (2.5)

$\mu-t\leq M\leq\mu$ if $P$ has a unimodal densi $\mathrm{t}y$. (2.6)

(II) [The $m$-method]. Assume that $m$ is defined, $F$ is colltinuous, and
there exis$\mathrm{t}st>0$ such that for all $Bor\mathrm{e}l$ sets $A\subset \mathrm{R}$ ,

$A\subset(0, t)$ implies $P(m+A)\leq P(m-A)$ ,

$A\subseteq(t, \infty)$ implies $P(m+A)\geq P(m-A)$ ,

where $m+A:=\{m+a:a\in A\}$ and $m-A:=\{m-a:a\in A\}$ . Then the
following assertions hold.

$m<\mu$ if $\mu$ is defined,

$m-t\leq M\leq\mu$ if $P$ has a unimodal densi $\mathrm{t}y$.

(III) [The $M$-method]. Assume that $Ph$as a unimodal densi $\mathrm{t}yf$ such that
$f(M-x)\leq f(M+x)$ for $x>0$ . Then the following assertions hold.

$M<m$ ,

$M<\mu$ if $\mu$ is defined.
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Proof. First, for an odd function $\varphi$ such that $E[\varphi(X)]$ is defined, we have

$E[ \varphi(X)]=\int_{(-\infty,\infty)}\varphi(x)P(d_{X)}$

$= \int_{(-\infty},0)\cup(0,\infty)(\varphi(x)Pdx)$

$= \int_{(-\infty,0)}\varphi(_{X)(}Pdx)+\int_{(0,)}\varphi(_{X)}P(\infty dX)$

$=- \int_{(0,\infty)}\varphi(y)Q(dy)+\int_{(0,\infty)}\varphi(_{X})P(dX)$

[where $y=-X$ and $Q(A):=P(-A)$ ]

$= \int_{(0,)}\varphi(X)(P\infty Q-)(dx)$

$= \int_{(0,1)}\varphi(x)(P-Q)(dX)+\varphi(1)[P(\{1\})-Q(\{1\})]$

$+ \int_{(1,\infty)}\varphi(_{X})(P-Q)(dx)$ .

We shall show (I). We may assume that $\mu=0$ and $\mathrm{t}=1$ because we may

consider $(X-\mu)/t$ . From the above, we have

$\mu_{3}=\int_{(-\infty,\infty)}XP3(dx)$

$=- \int_{(0,1)}x^{3}\lambda(dX)+P(\{1\})-Q(\{1\})+\int_{(1,\infty)}x\nu(dX)3$

[where $\lambda=Q-P$ and $\nu=P-Q$ , which are nonnegative on

$(0,1)$ and $(1, \infty)$ , respectively]

$\geq-I_{(0,1)}X\lambda(dx)+P(\{1\})-Q(\{1\})+\int_{(1,\propto 3)}$ xlノ $(dx)$

$= \int_{(-\infty,\infty)}xP(dx)$

$=E(X)=\mu=0$ ,
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and if $\mu_{3}=0$ , then $\lambda((0,1))=\nu((1, \infty))=0$ , so $P(|X|=1)=1$ , and since
$\mu=0$ , we have $P(X=1)=P(X=-1)=1/2$ , hence $P$ is symmetric.
This is a contradiction. Therefore, we get (2.2). Next, we have

$0= \mu=-\int_{(0,1)}X\lambda(dx)+P(\{1\})-Q(\{1\})+\int_{(1,\infty)}X\nu(dx)$

$\geq-\int_{(0,1)}\lambda(dX)+P(\{1\})-Q(\{1\})+\int_{(1,\infty)}\nu(dX)$

$= \int_{(-\infty,\infty)}$ sgn $xP(dx)$

$=P(X>0)-P(X<0)$ ,

and we get the strict inequality by a similar way to the above, hence we have
(2.3). We can easily get (2.4) and (2.5) from (2.3). We shall prove (2.6).
We may only show $-1\leq M\leq 0$ . Assume that $M(=:-N)<-1$ . Since $f$

decreases in $[-N, \infty)$ , we have $P(-N\leq X\leq-1)\geq P(1\leq X\leq N)$ , and
the reversed inequality holds by assumption, we get $P(-N\leq X\leq-1)=$

$P(1\leq X\leq N)$ . Hence $f$ is constant on $(-N, N)$ . It contradicts the
assumption that $M$ is unique. Next, assume that $M\geq 1$ . Then, by a
similar way to the above, we get that $f$ is constant on $(-1,1)$ , hence $\lambda=0$

on $(0,1)$ . Therefore, $0= \mu=\int_{1}^{\infty}x\nu(dX)$ , hence $\nu=0$ on $(1, \infty)$ . Therefore,
$P$ is symmetric. This is a contradiction. Next, we assume that $0<M<1$ .
If $f$ is left continuous at $M$ , then, by a similar way to the above, we get that
$f$ is constant on $(-M, M]$ and have a contradiction. Therefore, $f$ is not
left continuous at $M$ , hence right continuous at $M$ and $f(-M)<f(M)$ .
So, for a sufficiently small $\epsilon>0$ , when $-M-\epsilon<x<-M$ and $M<y<$
$M+\epsilon$ , we have $f(y)\leq f(-M)<f(x)$ , hence $P(-M-\epsilon<X<-M)<$
$P(M<X<M+\epsilon)$ , which contradicts (2.1). Hence we get (2.6). We can
similarly prove (II) and (III) by assuming $m=0$ and $M=0$ , respectively.

$\square$
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Note that we can use Theorem 2.1 to get a reversed inequality. For

example, if the reversed inequalities hold in (2.1), then, by $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}-x$ ,

we get, $-\infty\leq\mu_{3}<0$ if $\mu_{3}$ is defined, instead of (2.2).

It is often difficult to obtain the exact value of $m$ , but we usually

need not get $m$ concretely to use the $m$-method, and it is similar for the

$\mu$-method.

Van Zwet (1979) also obtains that under regularity conditions $F(m+$

$x)+F(m-x)\leq 1$ for all $x$ implies similar results to those of the $\mu$-method,

but it is difficult to use because in applications, we usually cannot get $F$

concretely. More abstract methods are also given in van Zwet $(1964, 1979)$ .

Further, it is written in Comment of $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{G}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{v}\mathrm{r}\mathrm{a}\mathrm{y}$ (1981) that one change of

sign of 1-F$(\mu+x)-F(\mu-x)$ in $x>0$ (say Condition A if it is from negative

to positive value) is sufficient to fix the sign of $\mu_{3}$ . This seems to be true,

but he does not give its proof and states that, unfortunately, as noted by

van Zwet, these (i.e., the above and other facts) are more difficult to verify.

In van Zwet $(1964, 1979)$ , which $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{G}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{v}\mathrm{r}\mathrm{a}\mathrm{y}$ (1981) refers, however, this

is not written.

The following table shows what are implied by each assumption while

what are not, for a unimodal asymmetric density such that $E(|X|)<\infty$ and

$\mu_{3}$ is defined. A function without $\leq$ means that the function is an example

in Section 4 satisfying $>$ , and a function with $\leq$ means that the function is

an example in Section 4 satisfying equality, where $\epsilon$ is a sufficiently small

positive number.
TABLE

M&m
The $\mu$-method $f_{\sqrt{5}-1}$

The $m$-method $\leq_{f\mathrm{s}}$

The M-method $<$

Condition A $f_{\epsilon}$

$m\ \mu<$
M&\mu

$0\ \mu_{3}<$

$\leq_{f_{\sqrt{5}-1}}<$

$g_{\epsilon}$$<$

$h_{\epsilon}<$
$f_{\epsilon}<$

$<?h_{\epsilon}$
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Also note that $f_{\sqrt{5}}-1$ is a case that we can use the $\mu$-method to
show$m<\mu$ while we cannot use the $m$-method, and $g_{\epsilon}$ is a contrary case.

3. The Cases of Pearson Distributions

We shall consider the cases of Pearson distributions Type I to XII
(Pearson, 1895, 1901, 1916). The following theorem asserts that the usually

believed inequalities hold for Pearson distributions.

Theorem 3.1. For a unimod$\mathrm{a}l$ asymmetric Pearson $d\mathrm{i}s$tribution such
that $E(|X|)<\infty$ , the mean, median, mode inequality ($i.e.,$ $M<m<\mu$ or
$M>m>\mu)$ holds. Further if $\mu_{3}$ is defined, then $M<m<\mu$ is equivalen $\mathrm{t}$

to $\mu_{3}>0$ and $M>m>\mu i_{\mathit{8}}$ equivalent to $\mu_{3}<0$ .
Remark. From this theorem, the signs of Skew $X$ and $\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}^{*}X$ coincide
for Pearson distributions. Formal calculations in Kendall et al. (1994,

p. 108 and pp. 215-218) seem to give a counter-example, but it is not a
true counter-example. Also note that when we check Pearson’s original

papers, we should carefully check them because the domain of variables

was not often written. For example, in Pearson (1901, pp. 446-448), if we
let $3<p<4$ , we seem to get a counter-example, but $\mu_{3}$ is finite if and only

if $p>4$ , hence it is not a counter-example.

Proof. We shall consider Type $\mathrm{I}_{\mathrm{L}}$ , that is, a density

$f(x)=C(1+ \frac{x}{\alpha_{1}})^{\nu\alpha_{1}}(1-\frac{x}{\alpha_{2}})^{\nu\alpha_{2}}$ $(-\alpha_{1}<x<\alpha_{2})$

where $\nu,$ $\alpha_{1},$ $\alpha_{2}$ and $C=C_{\alpha_{1},\alpha_{2}}$ are positive and independent of $x$ . The

case $\alpha_{1}=\alpha_{2}$ is excluded since it is symmetric. We may assume $\alpha_{1}<\alpha_{2}$

because for the reversed case we can reduce the proof to the case $\alpha_{1}<\alpha_{2}$
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by considering -X. We have

$L(x):= \log f(X)=\log c+\nu\alpha_{1}\log(1+\frac{x}{\alpha_{1}})+\nu\alpha_{2}\log(1-\frac{x}{\alpha_{2}})$ ,

$L’(_{X)}= \nu(^{\frac{1}{1+\frac{x}{\alpha_{1}}}-}(\frac{1}{1-\frac{x}{\alpha_{2}}}))$

where they exist, hence it is unimodal and $M=0$ . Therefore, for a given
$\theta$ , we have

$g(x)$ $:= \frac{d}{dx}\{\log f(\theta+x)-\log f(\theta-X)\}$

$=L’(\theta+x)+L^{J}(\theta-x)$

$= \nu\int_{(}(1+(\frac{\theta+x1}{\alpha_{1}}+1+\frac{\theta-X1}{\alpha_{1}}))$

$-(1+( \frac{-\theta-x1}{\alpha_{2}}+1+\frac{-\theta+x1}{\alpha_{2}}))\}$

$=2 \nu\int_{(}\frac{1+\frac{\theta}{\alpha_{1}}}{(1+\frac{\theta}{\alpha_{1}})^{2}-(\frac{x}{\alpha_{1}})2}-\frac{1-\frac{\theta}{\alpha_{2}}}{(1-\frac{\theta}{\alpha_{2}})^{2}-(\frac{x}{\alpha_{2}})^{2}}|)$ ,

and the sign of $g(x)$ coincides with that of

$\frac{(1-\frac{\theta}{\alpha_{2}})^{2}-(\frac{x}{\alpha_{2}})2}{1-\frac{\theta}{\alpha_{2}}}-\frac{(1+\frac{\theta}{\alpha_{1}})^{2}-(_{\frac{x}{\alpha_{1}}})^{2}}{1+\frac{\theta}{\alpha_{1}}}=Ax^{2}+B$ (say),

where
$A=\underline{1}-\underline{1}$

$\alpha_{1}(\alpha_{1}+\theta)$ $\alpha_{2}(\alpha_{2}-\theta)$
’

$B=- \theta(\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}})$
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Let $\theta=M(=0)$ . Then we have $A>0$ and $B=0$ , hence $L(x)-L(-X)>0$
(i.e., $f(x)>f(-x)$ ) for $0<x<\alpha_{1}$ . For $x\geq\alpha_{1}$ , we get $f(x)\geq f(-x)$

directly. Therefore, we have obtained $f(x)\geq f(-x)$ for all $x>0$ , so we
can use the $M$-method. Hence we get $M<m$ and $M<\mu$ . Next, let
$\theta=\mu$ . Since $\mu>M=0$ from the above, we have $B<0$ . If $A\leq 0$ ,
then we have $f(\mu+x)\leq f(\mu-x)$ for all $x>0$ , but it is a contradiction
because $\mu$ is the mean. Hence $A>0$ . Therefore, there exists $h$ such that
$Ax^{2}+B<0$ for $0<x<h$ , and $Ax^{2}+B>0$ for $x>h$ . Further we
directly get that $f(\mu+x)-f(\mu-X)$ is continuous and nonnegative. Hence
there exist $t\in(h, \alpha_{1}-\mu)$ such that $f(\mu+x)<f(\mu-x)$ for $0<x<t$ and
$f(\mu+x)>f(\mu-x)$ for $x>t$ . Therefore, we can use the $\mu$-method, so
$m<\mu$ and $\mu_{3}>0$ . Hence we have obtained that the assertions hold for a
Pearson distribution Type $\mathrm{I}_{\mathrm{L}}$ . (Note that we can also use the m-method.)

For any other distribution satisfying the assumptions, by a similar way
to the above, we can use all of the $\mu-,$ m-, and $M$-methods without getting
$\mu$ or $m$ concretely, and the assertions follow. $\square$

4. Examples

We shall give some counter-examples in this section.

Let $0<\epsilon\leq 3$ and consider a density

$f_{\epsilon}(x)$ $:=$$(0<x\leq 1)$ ,
$($

$Cx^{-5}$ $(1 <X)$ ,

where $C=C_{\epsilon}$ is independent of $x$ . Then, apparently $f_{\epsilon}$ is continuous,
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unimodal, and $M=1$ . For $n=0,1,2,3$ , we have

$\mu_{n}’=\int_{0}^{\infty}x^{n}P(dx)$

$=C( \int_{0}^{1}Xn+\epsilon_{d_{X+}}\int_{1}^{\infty}x^{n-}d5)x$

$=C( \frac{1}{1+n+\epsilon}+\frac{1}{4-n})$

$=C \frac{5+\epsilon}{(1+n+\epsilon)(4-n)}$ .

By letting $n=0$ , we get
$C= \frac{4(1+\epsilon)}{5+\epsilon}$ ,

hence
$\mu_{n}’=\frac{4(1+\in)}{(1+n+\epsilon)(4-n)}$ .

We have

$F(x)= \int^{c\int_{0}^{x}y^{\epsilon_{dc}}}y=\frac{x^{1+\in}}{1+\epsilon}=\frac{4X^{1+6}}{5+\epsilon}$

$(0\leq x\leq 1)$ ,

$(1- \int_{x}^{\infty}y^{-5}dy=1-\frac{C}{4}x^{-4}=1-\frac{1+\epsilon}{5+\in}x^{-4}$ $(1 <x)$ .

Therefore, by solving $F(x)=1/2$ , we get

$m=1+\sqrt[\epsilon]{\frac{5+\in}{8}}$,

hence

$m<M$ for $0<\epsilon<3$ .

By letting $\epsilon\downarrow 0$ , we have

$\mu_{n}’arrow\frac{4}{(1+n)(4-n)}$ .
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Hence

$\mu=\mu_{1}’arrow\frac{2}{3}(=0.666\cdots)$ , $\mu_{2}’arrow\frac{2}{3}$ $\mu_{3}’arrow 1$ , $m arrow\frac{5}{8}(=0.625)$ ,

$\mu_{3}=\mu_{3^{-}}’3\mu\mu 2+2’\mu^{3}arrow\frac{7}{27}(=0.259\cdots)>0$ .

Therefore, for a sufficiently small $\epsilon>0$ , we have obtained that $m<\mu<M$ ,

so $\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}^{*}X<0$ , but $\mu_{3}>0$ that is, Skew $X>0$ . This is also a counter-
example to the mean, median, mode inequality (see Theorem 3.1). Here,
by calculations, for a sufficiently small $\epsilon>0$ , we get

1–F$(\mu+x)-F(\mu-x)$

$= \int_{[}$

$1- \frac{4}{5+\epsilon}\{(\mu+x)^{11\epsilon}+\epsilon(\mu-X)+\}+$ $(0<X\leq 1-\mu)$ ,

$\frac{1}{5+\epsilon}\{(1+\epsilon)(\mu+x)-4-4(\mu-x)1+\in\}$ $(1-\mu<X\leq\mu)$ ,

1–F$(\mu+x)$ $(\mu<X)$ .

Since this is negative for $0<x\leq$ 1 $-\mu$ , positive for $\mu\leq x$ , and
$\log(1+\epsilon)(\mu+x)^{-4}-\log 4(\mu-X)^{1\epsilon}+$ strictly increases for 1 $-\mu\leq x\leq\mu$ ,

we obtain that there exists $\mathrm{t}\in(1-\mu, \mu)$ such that

1–F$(\mu+x)-F(\mu-x)\{$
$<0$ $(0<x<t)$ ,
$>0$ $(t<x)$ .

Therefore, Condition A is satisfied, but $M>m$ and $M>\mu$ as are an-
nounced in Table.

Next, let $\epsilon=\sqrt{5}-1(=1.236\cdots)$ . Here we can use the $\mu$-method.
We can get it by considering increase and decrease of $\log f_{\sqrt{5}-1}(1+x)-$

$\log f_{\sqrt{5}-1}(1-x)$ . So we have $m<\mu,$ $M\leq\mu$ , and $\mu_{3}>0$ . By direct
calculations, we have

$\mu_{n}’=\frac{4\sqrt{5}}{(n+\sqrt{5})(5-\sqrt{5})}=\frac{4}{(\sqrt{5}+n)(\sqrt{5}-1)}$ for $n=0,1,2,3$ ,
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hence

$\mu=\mu_{1}’=1$ , $\mu_{2}’=3-\sqrt{5}$, $\mu_{3}’=\frac{\sqrt{5}-1}{2}$ ,

$m=\sqrt{5}\sqrt{\frac{4+\sqrt{5}}{8}}(=0.8945\cdots)$ , $\mu_{3}=\frac{7\sqrt{5}-15}{2}(=0.3262\cdots)>0$ .

Therefore, $m<M=\mu$ as is announced in Table.

Next, let $\epsilon=3$ . Here we can use the $m$-method by a similar way to

above. So we have $M\leq m<\mu$ , and $\mu_{3}>0$ . By direct calculations, we

have

$\mu_{n}’=\frac{16}{16-n^{2}}$ for $n=0,1,2,3$ ,

hence

$\mu=\mu_{1}’=\frac{16}{15}$ $\mu_{2}’=\frac{4}{3}$ $\mu_{3}’=\frac{16}{7}$ , $m=1$ ,

$\mu_{3}=\frac{10544}{23625}(=0.4463\cdots)>0$ .

Therefore, $M=m<\mu$ as is announced in Table.

Next, let $p$ be a unimodal density such that $M\neq m,$ $E(|X|^{\mathrm{s}})<\infty$ ,

and we can use the $m$-method. We may assume that $M=-1$ and $m=0$ .
Let

$q(x)= \int_{(_{0}}\frac\frac{32-x1}{3}$

’ $r:’.\acute{\mathrm{j}}^{\tau}$.

$(|x|\leq 1)$ ,

$(1 <|x|\leq 2)$ ,

(otherwise).

This is also a density. For $0<\epsilon<1$ , consider a density

$g_{\epsilon}(x)=(1-\in)p(_{X})+\epsilon q(2\epsilon X)$ .
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Here $E(|X|^{3})<\infty,$ $M=-1,$ $m=0$ , and we can use the $m$-method. So we
have $M<m<\mu$ . By letting $\epsilon\downarrow 0$ , we get

$\mu=(1-\in)\int_{-\infty}^{\infty}xp(X)d_{X}arrow\int_{-\infty}^{\infty}xp(x)dx\in(0, \infty)$ ,

$\mu_{3}’=(1-\epsilon)\int_{-\infty}^{\infty}x^{3}p(x)dxarrow\int_{-\infty}^{\infty}X^{3}p(x)dx\in(-\infty, \infty)$ ,

$\mu_{2}’\geq\epsilon^{2}\int_{-\infty}^{\infty}x^{2}q(\epsilon X)dx=\frac{1}{\epsilon}\int_{-\infty}^{\infty}x2q(x)dxarrow\infty$ ,

hence
$\mu_{3}=\mu_{\mathrm{s}\mu}’-3\mu_{2^{+}}2/3\muarrow-\infty$ .

Therefore, for a sufficiently small $\epsilon>0$ , we have $\mu_{3}<0$ as is announced
in Table. This example also shows that even $M<m<\mu$ does not imply
$\mu_{3}>0$ .

Next, for $0<\epsilon<1$ , consider a density

$h_{\epsilon}(x)=$
$(0<x\leq 1)$ ,

(otherwise).

Here we have $M=1$ , and we can use the $M$ -method. So we have $M<$

$m$ and $M<\mu$ . However, by using the $\mu$-method (and the note below
Theorem 2.1) to the case $\epsilon=0$ , which is not unimodal in our definition, we
have $m>\mu$ and $\mu_{3}<0$ for a sufficiently small $\epsilon>0$ as are announced in

Table.

Also note that $\mu_{n}=0$ for all odd $n$ does not generally imply that $P$ is
symmetric (Ord, 1968).
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