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Abstract

This paper introduces an extension of $\mathrm{N}\mathrm{V}$-sequentiality defined by Oyamaguchi
in [6]. We call the extension NVNF-sequentiality. It is showed that the class of
NVNF-sequential systems properly includes the class of $\mathrm{N}\mathrm{V}$-sequential systems, and
a indices with respect to NVNF-sequentiality are computed for a given term when a
term rewriting system is NVNF-sequential.

1 introduction

Term rewriting systems can be regarded as a model for computation in which terms are
reduced using a set of directed equations, called rewrite rules. Term rewriting systems
play an important role in various fields of computer science such as abstract data type
specifications, implementations of functional programming languages and automated de-
duction.

In a term rewriting system, there are possibilities that a term having normal forms has
infinite reduction sequences starting with it. We require some strategies telling us which
redex to contract in order to get the desired result. Therefore, it is important to have
a normalizing strategy which is guaranteed to find the normal form of terms whenever
their normal forms exist. Huet and L\’evy [2] showed that the needed reduction strategy
is normalizing for every orthogonal (i.e., left-linear and non-overlapping) term rewriting
system. The needed reduction strategy always rewrites one of needed redexes which have
to be rewritten in order to reach a normal form. Unfortunately, it is undecidable in
general whether a redex is needed or not. However, they show that for strong sequential
orthogonal term rewriting systems at least one of the needed redexes in a term not in
normal form can be efficiently computed. The work of Huet and L\’evy was extended to
several kinds of systems. Toyama [8] extended the notion of strong sequentiality to left-
linear term rewriting systems. Decidability of strong sequentiality was showed for left-
linear systems by Jouannaud and Sadfi [3]. Oyamaguchi [6] introduced NV-sequentiality
which is also decidable.

In this paper, we introduce an extension of $\mathrm{N}\mathrm{V}$-sequentiality. This sequentiality is
called NVNF-sequentiality [5]. Like $\mathrm{N}\mathrm{V}$-sequentiality, NVNF-sequentiality is based on
the analysis of left-hand sides and the non-variable parts of the right-hand side of rewrite
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rules. However, the reachability to the normal form is considered in NVNF-sequentiality.
We first show that the class of NVNF-sequential systems properly includes the class of
$\mathrm{N}\mathrm{V}$-sequential systems. Next we prove that, for a given term $t$ , it is decidable whether
an occurrence $u$ in $t$ is an index with respect to NVNF-sequentiality. This problem can
be reduced to the problem to decide whether a term has a normal form for left-linear
and right-ground term rewriting systems. When a term rewriting system is left-linear
and right-ground, there exists an upper bound of the least hight of normal forms which
a term $t$ can reduce to if $t$ has a normal form. The reachability problem for left-linear
and right-ground term rewriting systems has been shown to be decidable in $[1, 7]$ . Hence
an index with respect to NVNF-sequentiality can be computed.

2 Definition

We mainly follow the notation of $[2, 4]$ . Let $\mathcal{F}$ be a finite set of function symbols and
let $\mathcal{V}$ be a countably infinite set of variables where $\mathcal{F}\cap \mathcal{V}=\phi$ . The set of all terms built
from $F$ and $\mathcal{V}$ is denoted $\mathcal{T}(F, \mathcal{V})$ . The set $\mathcal{T}(\mathcal{F}, \mathcal{V})$ is sometimes denoted by $\mathcal{T}$ . Terms
not containing variables are called ground terms. Identity of terms is denoted by $\equiv$ .

For any term $t$ , we define the set $O(t)$ of occurrences as follow:

$O(t)=\{$
$\{\epsilon\}$ if $t\in \mathcal{V}$ ,
$\{\epsilon\}\cup\{i.u|1\leq i\leq n, u\in O(t_{i})\}$ if $t\equiv F(t_{1}, \ldots, t_{n})$ .

If $u\in O(t)$ then the subterm $t/u$ of $t$ at $u$ is defined by

$t/u\equiv\{$
$t$ if $u=\epsilon$ ,
$t_{i}/v$ if $t\equiv F(t_{1}, \ldots,t_{n})$ and $u=i.v$ .

If $s$ is a subterm of $t$ then we write $s\subseteq t$ . If $u\in O(t)$ then the term $t[uarrow s]$ obtained
by replacing $t/u$ with $s$ is defined as follow:

$t[uarrow s]\equiv\{$
$s$ if $u=\epsilon$ ,
$p(t_{1}, \ldots,t_{i[v}arrow s], \ldots,t_{n})$ if $t\equiv F(t_{1}, \ldots,t_{n})$ and $u=i.v$ .

Occurrences are partially ordered by the prefix ordering $\leq$ , i.e. $u\leq v$ if there exists $w$

such that $u.w=v$ . In this case we define $v/u$ as $w$ . If $u\not\leq v$ and $v\not\leq u$ then we say
that $u$ and $v$ are disjoint, and write $u\perp v$ . If $u_{1},$ $\ldots$ , $u_{n}$ are pairwise disjoint, we use
$t[u_{i}arrow s_{i}|1\leq i\leq n]$ to denote $t[u_{1}arrow s_{1}]\cdots[u_{n}arrow s_{n}]$ .

A substitution $\theta$ is a mapping from $\mathcal{V}$ into $\mathcal{T}(\mathcal{F}, \mathcal{V})$ . Substitutions are extended into
homomorphisms from $\mathcal{T}(\mathcal{F}, \mathcal{V})$ into $\mathcal{T}(F, \mathcal{V})$ . In following we write $t\theta$ instead of $\theta(t)$ .

A term rewriting system is a pair $(F,\mathcal{R})$ consisting of a set $\mathcal{F}$ of function symbols
and a finite set $\mathcal{R}$ of rewrite rules. A rewrite rule is a pair $\langle l,r\rangle$ of terms such that $l\not\in \mathcal{V}$

and any variable in $r$ also occurs in $l$ . We write $larrow r$ for $\langle l,r\rangle$ . An instance of a left-hand
side of a rewrite rule is a redex. The rewrite rules of a term rewriting system $(\mathcal{F},\mathcal{R})$

define a reduction relation $arrow n$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ as follow: $tarrow ns$ if there exist a rewrite
rule $larrow r\in \mathcal{R}$ , a occurrence $u\in O(t)$ and a substitution $\theta$ such that $t/u\equiv l\theta$ and
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$s\equiv t[uarrow s]$ . The transitive-reflexive closure of $arrow n$ is denoted $\mathrm{b}\mathrm{y}arrow^{*}R$ . $-_{R}^{+}$ denotes the
transitive closure $\mathrm{o}\mathrm{f}-R\mathrm{a}\mathrm{n}\mathrm{d}arrow\overline{\overline{\overline{R}}}$ denotes the reflexive closure $\mathrm{o}\mathrm{f}\sim_{R}$ . A normal form
is a term without redexes. We say $t$ has a normal form if $t\sim_{R^{S}}^{*}$ for some normal form
$s$ . The set of normal forms of a term rewriting system $\mathcal{R}$ is denoted by $\mathrm{N}\mathrm{F}_{R}$ . When no
confusion can arise, we omit the subscript $\mathcal{R}$ .

A term rewriting system $\mathcal{R}$ is left-linear if for any $larrow r\in \mathcal{R}$ , every variable in $l$ occurs
only once. In this paper we restrict ourselves to the class of left-linear term rewriting
systems.

3 NVNF-sequentiality

In this section we will explain NVNF-sequentiality. In order to define this concept, we
need some preliminaries.

Let $\Omega$ be a new constant symbol representing an unknown part of a term. The set
$\mathcal{T}(\mathcal{F}\cup\{\Omega\}, \mathcal{V})$ is abbreviated to $\mathcal{T}_{\Omega}$ . Elements of $\mathcal{T}_{\Omega}$ are called $\Omega$-terms. An $\Omega$-normal
form is an $\Omega$-term without redexes, and the set of all $\Omega$-normal forms is denoted by $\mathrm{N}\mathrm{F}_{\Omega}$ .
Only terms containing neither redexs nor $\Omega’ \mathrm{s}$ are said to be normal form. $t_{\Omega}$ denotes
the $\Omega$-term obtained from $t$ by replacing all variables in $t$ by $\Omega$ , and $t_{l}$ denotes the term
obtained from $t$ by replacing all $\Omega$ by $x$ . $O_{\Omega}(t)$ denotes the set of $\Omega$-occurrences of $t$ , i.e.
$O_{\Omega}(t)=\{u\in O(t)|t/u\equiv\Omega\}$ . The prefix ordering $\leq \mathrm{o}\mathrm{n}\mathcal{T}_{\Omega}$ is defined as follows:

(i) $\Omega\leq t$ for all $t\in T_{\Omega}$ ,
(ii) $F(s_{1,\ldots,n}s)\leq F(t_{1}, \ldots, t_{n})$ if $s_{i}\leq t_{i}(1\leq i\leq n)$ ,
(iii) $x\leq x$ for all $x\in \mathcal{V}$ .

Two $\Omega$-terms $t$ and $s$ are compatible, written $t\uparrow s$ , if there exists an $\Omega$-term $r$ such
that $t\leq r$ and $s\leq r$ . In this case the least upper bound of $t$ and $s$ is denoted by $t\mathrm{U}s$ .

Definition 3.1 ( $[2]\rangle$ Let $P$ be a predicate on $\mathcal{T}_{\Omega}$ . An $\Omega$ -occurrence $u$ of $t$ is index with
respect to $P$ if for all $\Omega$ -term $s,$ $s\geq t$ and $P(s)$ imply $s/u\not\equiv\Omega$ .

The set of indices of $t$ with respect to $P$ is denoted by $I_{P}(t)$ . Intuitively, if $u$ is an
index with respect to $P$ in $t$ , then the term at $u$ has to been evaluated in order to make
the predicate $P$ true.

Definition 3.2 $([6]\rangle$

(1) The reduction relation is defined as follow: $t-_{nv}s$ iff there exists $larrow r\in \mathcal{R}$,
$u\in O(t)$ such that $t/u\geq l_{\Omega}$ and $s\equiv t[uarrow s’]$ for some $s’\geq r_{\Omega}$ .

(2) The predicate nvnf on $\mathcal{T}_{\Omega}$ as follow: nvnf $(t)$ holds iff $tarrow_{nv}^{*}s$ for some $s$ in
normal form.

Definition 3.3 A left-linear term rewriting system is NVNF-sequential if every $\Omega-$

normal form containing at least one occurrence of $\Omega$ has index with respect to nvnf.
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In definition of $\mathrm{N}\mathrm{V}$-sequentiality, a predicate term is used, where term$(t)$ holds iff
$tarrow_{nv}^{*}s$ for some $s\in \mathcal{T}$ . Note that $s$ may be a reducible term.

Example 3.4 Let

$\mathcal{R}=\{$

$F(A, B, x)arrow A$

$F(B, x, A)arrow B$

$F(x,A, B)arrow C$
$Carrow C$.

Consider the $\Omega$-term $t\equiv F(\Omega, \Omega, \Omega)$ . $I_{nvnf}(t)=\{1\}$ because there does not exist an
$\Omega$-term $s$ such that $s\geq t,$ $s/1\equiv\Omega$ and $s\sim_{nv}^{*}s’$ for some normal form $s’$ . Note that $\mathcal{R}$

is not $\mathrm{N}\mathrm{V}$-sequential since $F(\Omega, \Omega, \Omega)$ has no indices with respect to the predicate term.

Next we show that $\mathcal{R}$ in Example 3.4 is NVNF-sequential system. For this purpose
we need the following lemma.

Lemma 3.5 Let $t\in \mathcal{T}_{\Omega}$ . If $u\in I_{nvnf}(t),$ $t\leq s$ and $s/u\equiv\Omega$ then $u\in I_{nvnf^{()}}s$ .

Proof. If $u\not\in I_{nvnf}(S)$ then there exists $s’\geq s$ such that $s’/u\equiv\Omega$ and nvnf $(s’)$ is
true. Since $s’\geq t,$ $u\not\in I_{nvnf}(t)$ . $\square$

Lemma 3.6 72 of Example 3.4 is NVNF-sequential system.

Proof. We first prove the following claim: If $u\in I_{nvnf}(t)$ and $v\in I_{nvnf^{()}}s$ then
$u.v\in I_{nv}nf^{(}t[uarrow s])$ .

Proof of the claim. Suppose $u.v\not\in I_{nvnf^{(}}t[uarrow s])$ . Then there exists $t’\geq t[uarrow s]$

such that $t’/u.v\equiv\Omega$ and nvnf $(t’)$ is true. Hence there exists a reduction
$t’ \equiv t_{0}-u_{0}nvt_{1}\frac{u_{\mathrm{t}}}{},nv$ . ... . $u_{n-1 ’arrow nv}t_{n}\in \mathrm{N}\mathrm{F}$ .

We distinguish two case:
(1) $u_{i}\not\simeq u$ for all $i(0\leq i\leq n-1)$ . Because there exists no $u_{i}$ such that $u_{i}<u$ ,

we have $t’/uarrow^{*}nvt_{n}/u\in \mathrm{N}\mathrm{F}$. Hence nvnf $(t’/u)$ is true. Clearly $t’/u>s$ and
$t’/u.v\equiv\Omega$ . This contradicts the assumption $v\in I_{nvnf}(s)$ .

(2) $u_{i}<u$ for some $i$ . Let $j$ be the smallest number satisfying $u_{j}<v$ . Note that
$t’/uarrow^{*}nvt_{j}/u$ . $t_{j}/u_{j}$ is a redex but $t_{j}/u_{j}\not\equiv C$ . Moreover $t_{j}\not\equiv A$ and $t_{j}\not\equiv B$

because $t’/u\geq s,$ $t’/u.v\equiv\Omega$ and $v\in I_{nvnf}(s)$ . Thus $t_{j}[uarrow\Omega]-_{nv}u_{j}t_{j+1}$ . We can
obtain the following reduction: $t’[uarrow\Omega]arrow^{*}t_{j}[nvuarrow\Omega]arrow_{nv}t_{j+1}arrow^{*}nvt_{n}$ . Hence
$t’[uarrow\Omega]\geq t$ , nvnf $(t’[uarrow\Omega])$ is true. But this is contradictory to $u\in I_{nvnf}(t)$ .

Therefore the claim follows.
Let $t$ be an $\Omega$-normal form containing at least one occurrence of $\Omega$ . We prove, by

induction on size of $t$ that $t$ has an index with respect to nvnf. When $t\equiv\Omega$ , it is clear
that $t$ has an index. Induction step:

(1) $t\equiv F(t_{1}, t_{2,3}t)$ . If $t_{1}$ contains $\Omega$ then by induction hypothesis, $t_{1}$ has an index.
By $1\in I_{nvnf}(F(\Omega, \Omega, \Omega))$ and Lemma 3.5, $1\in I_{nvnf}(F(\Omega,t2, t\mathrm{s}))$ . Therefore, from
the claim it follows that $t$ has an index. Otherwise we distinguish three cases:
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(1-1) $t_{1}\equiv A$ . If $t_{2}$ contains $\Omega$ then by induction hypothesis, $t_{2}$ has an index.
By $2\in I_{nvnf}(F(A, \Omega, \Omega))$ and Lemma 3.5, $2\in I_{nvnf}(F(A, \Omega,t_{3}))$ . From the
claim, $t$ has an index. Otherwise $t_{3}$ contains $\Omega$ . By induction hypothesis, $t_{3}$

has an index. We can obtain $3\in I_{nvnf}(F(A,t_{2}, \Omega))$ . Therefor by the claim, $t$

has an index.
(1-2) $t_{1}\equiv B$ . Similar to (1-1).

(1-3) Otherwise we have $I_{nvnv}(F(t1, \Omega, \Omega))=\{2,3\}$ . By induction hypothesis,
$t_{2}$ or $t_{3}$ has an index. By Lemma 3.5 and the claim, $t$ has an index.

(2) $t\equiv G(t_{1}, \cdots,t_{n})(G\neq F)$ . Suppose $t_{i}$ contains $\Omega$ . Then by induction hypothesis,
$t_{i}$ has an index. Because $i\in I_{nvnf}(c(t1, \cdots,t_{i}-1, \Omega,ti+1, \cdots , t_{n})),$ $t$ has an index
from the claim. $\square$

By Example 3.4 and Lemma 3.6 we have the following theorem.

Theorem 3.7 The class of NVNF-sequential term rewriting systems properly includes
the class of $NV$-sequential systems.

Proof. $\mathrm{N}\mathrm{V}$-sequential system is NVNF-sequential because an index with respect to
term is also an index with respect to nvnf. $\mathcal{R}$ of Example 3.4 is NVNF-sequential but
not $\mathrm{N}\mathrm{V}$-sequential. Therefore the inclusion is proper. $\square$

4 Indices with respect to NVNF-sequentiality

In this section we show that for a given $t\in \mathcal{T}_{\Omega}$ , it is decidable whether $u\in O_{\Omega}(t)$ is an
index with respect to nvnf in $t$ . We introduce the $\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow\omega$ which is given in [6].

Definition 4.1 ([6]) The reduction $relat\dot{i}on\sim_{\omega}$ is defined as follows: $tarrow_{\omega}s$ iff there
exists $larrow r\in \mathcal{R},$ $u\in O(t)$ such that $t/u\uparrow l_{\Omega},$ $t/?\mathrm{A}\not\equiv\Omega$ and $s\equiv t[uarrow r_{\Omega}]$ .

We explain a relationship between this $\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}arrow \mathrm{a}\omega \mathrm{n}\mathrm{d}-\tau\iota v$

’ and show the condition
for ensuring that $\Omega$-occurrence is an index with respect to nvnf.

Lemma 4.2
(1) If $t-_{nv}^{*}s$ and $t’\leq t$ then $t’\sim_{\omega}^{*}s’$ for some $s’\leq s$ .
(2) If $tarrow^{*}s\omega$ then $t’arrow^{*}snv$ for some $t’\geq t$ .

Proof.
(1) We prove that if $tarrow nvs$ and $t’\leq t$ then $t’-_{\omega}^{\equiv}s’$ for some $s’\leq s$ . If $tarrow_{nv}s$

then there exist $larrow r\in \mathcal{R},$ $u\in O(t)$ such that $t/u\geq l_{\Omega}$ and $s\equiv t[uarrow s_{1}]$ for
some $s_{1}\geq r_{\Omega}$ . If $u\in O(t’),$ $t’/u\not\equiv\Omega$ then $t’/u\uparrow l_{\Omega}$ . Hence $t’-_{\omega}t’[uarrow r_{\Omega}]$ and
$t’[uarrow r_{\Omega}]\leq s$ . Otherwise it is clear that $t’\leq s$ . Using this fact, we can prove (1)
by induction on length of $tarrow^{*}snv$ .
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(2) This is proved by induction on length of $t-_{\omega}^{*}s$ . The case of zero is trivial.
Assume that $tarrow_{\omega}s_{1}arrow_{\omega}^{*}s$ where $t/u\uparrow l_{\Omega},$ $t/u\not\equiv\Omega$ and $s_{1}\equiv t[uarrow r_{\Omega}]$ for
some $larrow r\in \mathcal{R}$ and $u\in O(t)$ . Rom induction hypothesis, for some $s_{2}\geq s_{1}$ ,
$s_{2}arrow^{*}Snv$ . Let $t_{1}\equiv t/u\mathrm{u}l_{\Omega}$ . Define $t’\equiv s_{2}[uarrow t_{1}]$ . Because $s_{2}\geq s_{1}\equiv t[uarrow r_{\Omega}]$ ,
$t’\equiv s_{2}[uarrow t_{1}]\geq t$ . We have $t’\sim_{nv}s_{2}$ by $s_{2}/u\geq r_{\Omega}$ . Therefore $t’arrow_{nv}^{*}s$ . $\square$

Lemma 4.3 Let $t\in \mathcal{T}_{\Omega}$ and $u\in O_{\Omega}(t)$ . Let $\bullet$ be a fresh constant symbol. Then
$u\not\in I_{nvnf}(t)$ iff there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$ such that $t[uarrow\bullet]-_{\omega}^{*}s$ and $\bullet\not\subset s$ .

Proof. only-if part. If $u\not\in I_{nvnf}(t)$ then there exists $t’\geq t$ such that $t’/u\equiv\Omega$ and
nvnf $(d)$ is true. Thus $t/-_{nv}*s’$ for some normal from $s’$ . From $\Omega\not\subset s’$ and left-linearity,
we can obtain $t’[uarrow\bullet]arrow^{*}nvs’$ and $\bullet\not\subset s’$ . Using Lemma 4.2 (1), we obtain $s\leq s’$ such
that $t[uarrow\bullet]-_{nv}^{*}s$ . Because $s’$ is a normal form, $s$ is an $\Omega$-normal form and $\bullet\not\subset s$ .

if part. If $t[uarrow\bullet]\sim_{\omega}^{*}s\in \mathrm{N}\mathrm{F}_{\Omega}$ and $\bullet\not\subset s$ , then there exists $t’\geq t[uarrow\bullet]$ such that
$t’arrow^{*}Snv$ by Lemma 4.2 (2). Let $t”\equiv t_{x}’[uarrow\Omega],$ $s’\equiv s_{x}$ . We can transform the reduction
$t’-_{nv}^{*}s$ into $t^{N}-_{nv}^{*}s’$ . Because $s$ is an $\Omega$ normal from, $s$

’ is a normal form and hence
nvnf $(t\prime\prime)$ is true. Clearly $t”\geq t$ and $t”/u\equiv\Omega$ . Therefore $u\not\in I_{nvnf}(t)$ . $\square$

Next we show that for any $t\in \mathcal{T}_{\Omega}$ , there exists an upper bound of the least hight of
$\Omega$-normal form which $t$ can reduce $\mathrm{b}\mathrm{y}-_{\omega}$ when it exists.

For given a term rewriting system $\prime \mathcal{R},$ $Rh_{R}$ is defined with $Rh_{R}=\{r_{\Omega}|larrow r\in \mathcal{R}\}$ ,
and $Rhn_{R}$ is the smallest set such that $Rh_{R}\subseteq Rhn_{\mathcal{R}}$’ and if $t\in Rhn_{R},$ $u\in O(t)$ and
$r\in Rh_{R}$ then $t[uarrow r]\in Rhn_{R}$ . It is clear that if $r\in Rh_{R}$ and $r-_{\omega}^{\mathrm{s}}t$ then $t\in Rhn_{R}$ .
In the sequel we often omit the subscript $\mathcal{R}$ .

Lemma 4.4 If $tarrow+_{S}\omega$ then there exists $u_{1},$ $\ldots,$
$u_{n}\in O(t)$ which are $pair.wi_{S}e$ disjoint,

and the following conditions hold.
(i) $s\equiv t[u_{i}arrow s/u_{i}|1\leq i\leq n]$ ,
(ii) $t/u_{i}arrow_{\omega\omega^{S}}^{+*}r_{i}arrow/u_{i}$ for some $r_{i}\in Rh_{\mathcal{R}},$ $1\leq i\leq n$ .

Proof. By $t-_{\omega}+s$ , there exists a reduction

$t \equiv t_{0}arrow_{\omega}u_{0}t_{1}\frac{u_{1}}{}.\omega\ldots..arrow\omega u_{n-1}t_{n}\equiv s(n>0)$ .
Let $\{u_{i_{1}}, \ldots,u_{i_{k}}\}$ be the set of minimal redex occurrences of $\{u_{0}, u_{1}, \cdots,u_{n}-1\}$ . Then
$u_{i_{1}},$ $\ldots$ , $u_{i_{k}}\in O(t)$ are pairwise disjoint. By minimality of $u_{i_{1}},$ $\ldots,$ $u_{i_{k}},$

$(\mathrm{i}),$ $(\mathrm{i}\mathrm{i})$ hold. $\square$

We use $|u|$ for the length of the word $u$ . The height $|t|$ of an $\Omega$-term $t$ is defined by
$|t|= \max\{|u||u\in O(t)\}$ . The maximum hight of the left-hand sides and right-hand
sides of a given $\mathcal{R}$ is denote by $\rho_{R}$ . We write $\rho$ when confusion does not occur. $(t)_{\rho}$ is a
prefix term of $t$ whose hight is $\rho$ , i.e., $(t)_{\rho}\equiv t$ [ $uarrow\Omega|u\in O(t)$ A $|u|=\rho$ ].

Lemma 4.5 Let $r\in Rh_{R},$ $r\sim_{\omega}^{*}s$ where $|s|>\rho\cross n(n>0)$ . Then, there exists
$\epsilon<u_{0}<\cdots<u_{n-1}\in O(s)$ and for any $i(0\leq i\leq n-1)$ , the following condition holds:
$rarrow^{*}\omega S[u_{i}arrow r_{i}]$ and $r_{i}arrow^{*}s\omega/u_{i}$ for some $r_{i}\in Rh_{R}$ .
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Proof. The proof is by induction on $n$ . By $rarrow_{\omega}^{*}s$ , there exists a reduction
$r\equiv t_{0}arrow_{\omega}v_{0}t_{1}arrow_{\omega}$ . $.,$ .$.arrow_{\omega}v_{1}v_{m-1t_{m}\equiv}s$.

Because $|s|>\rho\cross n(n>0)$ , we can obtain $j<m$ such that $t_{j}\in Rh_{R}$ and $v_{i}\neq\epsilon$

for all $i(j\leq i\leq m-1)$ . When $n=1$ , using Lemma 4.4, we can easily show that
there exists $u\in O(s)$ such that $u\neq\epsilon$ and $t_{j}arrow_{\omega}^{*}s[uarrow r’],$ $r’arrow^{*}\omega s/u$ for some
$r’\in Rh_{\mathcal{R}},$ . By $r-^{\mathrm{s}}t_{j},$ $r-_{\omega}^{*}s[uarrow r’]$ . Suppose $n>1$ . Using Lemma 4.4, we can
obtain $u\neq\epsilon$ such that $t_{j}arrow_{\omega}^{*}s[uarrow r’],$ $r’\sim_{\omega}^{*}s/u$ and $|s/u|>\rho\cross(n-1)$ for some
$r’\in Rh_{R}$ By induction hypothesis, there exists $\epsilon<u_{1}’<\cdots<u_{n-1}’\in O(s)$ and for any
$i(1\leq i\leq n-1)$ , the following condition holds: $r’-_{\omega}^{*}(s/u)[u_{i}/arrow r_{i}]\equiv s[u.u_{i}’arrow r_{i}]/u$

and $r_{i}arrow_{\omega}^{*}(s/u)/u_{i}^{l}\equiv s/u.u_{i}’$ for some $r_{i}\in Rh_{R}$ . Let $u_{0}=u,$ $u_{i}=u.u_{i}’(1\leq i\leq n-1)$ .
Clearly $\epsilon<u_{0}<\cdots<u_{n-1}\in O(s)$ and $rarrow_{\omega}^{*}s[uarrow r’],$ $r’arrow_{\omega}^{*}s/u$ . For all
$i(1\leq i\leq n-1)$ , we have $t_{j}arrow^{*}\omega s[uarrow r’]arrow_{\omega}^{*}s[uarrow s[u.u_{i}^{l}arrow r_{i}]/u]\equiv s[u_{i}arrow r_{i}]$ and
$r_{i}-_{\omega}^{*}s/u_{i}$ . By $rarrow^{*}trarrow^{*}\omega j,\omega s[u_{i}arrow r_{i}]$ . Therefore the lemma holds. $\square$

Lemma 4.6 Let $t,$ $s\in \mathrm{N}\mathrm{F}_{\Omega}$ . If $(t/u)_{\rho}\equiv(s)_{\rho}$ then $t[uarrow s]\in \mathrm{N}\mathrm{F}_{\Omega}$ .

Proof. Nivial. $\square$

For given a term rewriting system $\mathcal{R}$ , let $\tau$ , $\sigma$ , and $k_{R}$ be constants defined as follow:
$\tau=||\{(t)_{\rho}|t\in Rhn_{R}\}||,$ $\sigma=||R||$ and $k_{R}=\rho_{R}\cross(\tau\cross\sigma+1)$ , where $||A||$ is the
cardinality of a set $A$ .

Lemma 4.7 Let $t\in \mathcal{T}_{\Omega}$ and $u\in O_{\Omega}(t)$ . Let $\bullet$ be a fresh constant symbol. Then
$u\not\in I_{nvnf}(t)\dot{i}ff$ there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$ such that $|s|\leq|t|+k_{R},$ $t[uarrow\cdot]-_{\omega}^{*}s$ and $\bullet\not\subset s$ .

Proof. if part. By Lemma 4.3.
only-if part. If $u\not\in I_{nvnf}(t)$ then by Lemma 4.3 there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$ such that

$t[uarrow\bullet]arrow^{*}\omega s$ and $\bullet\not\subset s$ . Let $s$ be an $\Omega$-normal form with the least size satisfying this
condition. Suppose $|s|>|t|+k_{R}$ . By Lemma 4.5 and the definition of $k_{R}$ , we can
show that there exists $r\in Rh,$ $u_{1},$ $u_{2}\in O(s)(u_{1}<u_{2})$ such that $(s/u_{1})_{\rho}\equiv(s/u_{2})_{\rho}$ ,
$t[uarrow\bullet]\sim_{\omega}^{*}s[u_{i}arrow r]$ and $r-_{\omega}^{*}s/u_{i}$ for $i=1,2$ , see Figure 4.1. Let $s’\equiv s[u_{1}arrow s/u_{2}]$ .
By Lemma 4.6, $s’\in \mathrm{N}\mathrm{F}_{\Omega}$ and $t[uarrow\bullet]-_{\omega}^{*}s’$ , $\bullet\not\subset s’$ . Because the size of $s’$ is smaller
than the size of $s$ , we obtain a contradiction. $\square$

By Lemma 4.7, in order to determine whether an $\Omega$-occurrence is an index w.r.t.
nvnf, we need to check the reachability to a finite number of $\Omega$-normal form. For a term
rewriting system 72, we define $\mathcal{R}^{\Omega}$ as follow [6]:

$\mathcal{R}^{\Omega}=\{larrow r_{\Omega}|larrow r\in \mathcal{R}\}\cup\{\Omegaarrow t|t\subseteq l_{\Omega}, larrow r\in \mathcal{R}\}$ .
We can prove that in the condition of Lemma $4.7-_{\omega}^{*}$ can be $\mathrm{r}\mathrm{e}_{\mathrm{P}^{\mathrm{l}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{d}}\Omega}\sim^{*}R$ which is the
transitive-reflexive closure of a usual reduction $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-n\Omega$ defined by $\mathcal{R}^{\Omega}$ .

Lemma 4.8 ([6])

(1) If $t-_{\omega}^{*}s$ then $t-_{R^{\Omega}}^{*}s$ .
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$\Rightarrow$

Figure 4.1

(2) If $t\sim_{R^{\Omega}}^{*}s$ and $t’\leq t$ then $t’-_{\omega}^{*}s’for$ some $s’\leq s$ .

Lemma 4.9 Let $t\in \mathcal{T}_{\Omega}$ and $u\in O_{\Omega}(t)$ . Then $u\not\in I_{nvnf}(t)\dot{i}ff$ there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$

such that $|s|\leq|t|+k_{\mathcal{R}},$ $t[uarrow\bullet]arrow^{*}R^{\Omega}s$ and $\bullet\not\subset s$ .

Proof. By Lemma 4.7 and Lemma 4.8 $\square$

We assume that 72 is left-linear, so $\mathcal{R}^{\Omega}$ is left-linear and right-ground (i.e. $r$ is ground
term for any $larrow r\in \mathcal{R}^{\Omega}$ ). It is show that the reachability problem is decidable for
left-linear and right-ground systems $[1, 7]$ . Thus we obtain the following theorem.

Theorem 4.10 It is decidable, for $t\in \mathcal{T}_{\Omega},$ $u\in O_{\Omega}(t)$ , whether $u$ is an index with
respect to nvnf in $t$ .
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