
Protocol Synthesis from Service Specifications
Described by

Graph Rewriting Rules

Akira Takura Takafumi Sera Tadashi Ohta

ATR Communication Systems Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Abstract

A protocol synthesis method is proposed to derive
communications software from service specifications of
distributed systems. A communications service speci-
fication can be described as a set of graph rewriting
rules. Each rule specifies a global state transition of
multiple terminals associated with an event occurring
at one of the terminals. The communications system
is regarded as a black box in this description. A rule
is represented by a pair of labeled directed graphs. The
state of all the terminals in a communications sys-
$tem$ is also represented as a labeled directed graph.
In this graph representation, a communications ser-
vice specification describes a set of rules to find the
appropriate graph representing the condition part of a
rule; its resultant is substituted for an isomorphic sub-
graph in a graph representing a communications $sy_{S-}$

$tem$ . The isomorphic subgraph detection is known to
be $NP$-complete. The derived distributed programs op-
erate within a time practical for application because of
the limited number of terminals usually associated with
a communications service. Accordingly, the proposed
software specification generation method can be used
to develop communications soflware. The proposed
software generation method can be applied to many
kinds of distributed system based on state transition
systems.

1 Introduction

Communications software generation from service
specifications is a promising way to reduce the cost
of developing reliable communications software. This

paper proposes a communications software genera-
tion method from service specifications that can be
described without detailed knowledge of communica-
tions systems or communications service implementa-
tion methods.

Many specification languages including SDL [1] and
LOTOS [2] have been proposed for specifying com-
munications software or protocols $[3, 4]$ . When these
languages are used to develop communications soft-
ware, stepwise refinement of specifications is needed
[5, 6, 7]. Cameron et al. [5] uses rule-based language
L.O for implementing a real-life protocol. Tsai et al. [6]
uses frame-and-rule oriented requirement specification
language FRORL. In these methods, specifications are
incrementally refined to obtain protocol specifications;
however, they could not synthesize protocol specifica-
tions from service specifications.

Bochmann and Gotzhein $[8, 9]$ , Chu and Liu [10],
Saleh and Probert [11], and Kakuda et al. [12] pro-
poses protocol synthesis methods from service specifi-
cations. In these methods, all actions at service access
points and their execution orders are described. In this
paper, a specification description language STR (State
Transition Rule) [13] is used for describing communi-
cations service specifications. In STR communications
service specifications can be described by specifying
terminal behavior which can be recognized from out-
side of a communications system. With this method,
we can describe specifications without detailed knowl-
edge of the target communications system. A service is
defined as a set of production rules. Consequently, we
do not have to describe the execution order of events
at service access points.

STR assumes that a communications system con-
sists of homogeneous processes that correspond to ter-

数理解析研究所講究録
918巻 1995年 72-84 72



minals. Processes sharing a relationship form a global
state. Each STR rule specifies a global state transi-
tion of terminals for an input event that has occurred
at a terminal. In this service specification description,
terminals are defined as service access points in a com-
munications system. Since communications systems
are geographically distributed systems, we generate a
communications protocol that can operate using local
state of terminals when global state transitions are
given.

The state of a terminal connected to a communica-
tions system is represented by a subgraph of a labeled
directed graph that represents the state of all the ter-
minals. Using this graph representation, an STR rule
can be regarded as a graph rewriting rule consisting of
an initial graph and a next graph. Kawata et al. [14]
proposes a protocol synthesis method with a restric-
tion: in the initial graph of an STR rule, there is a path
going through all labeled vertices. This restriction is
imposed for the sake of reducing the number of com-
munications between processes. The synthesized pro-
tocol makes $\mathrm{t}_{\mathrm{O}-}\mathrm{a}\mathrm{n}\mathrm{d}$ -fro communication among vertices
in an initial graph. This paper presents a new method
that obtains local state transition systems from ser-
vice specifications described by global state transition
rules. The synthesized protocol makes $\mathrm{t}_{0-}\mathrm{a}\mathrm{n}\mathrm{d}$-fro com-
munication among vertices in an initial graph; how-
ever, there is no restriction imposed on initial graphs.

The proposed protocol synthesis method from ser-
vice specifications takes a step toward automated soft-
ware generation. Communications software can be ob-
tained from synthesized protocol specifications by us-
ing a stepwise refinement method [15].

Section 2 defines communications service specifica-
tions and protocol synthesis. Section 3 briefly reviews
STR. .In section 4 we define a problem to be solved.
Section 5 proposes a protocol synthesis method. Fi-
nally we show an example of the proposed protocol
synthesis method.

2 Service Specifications and
Protocol Synthesis

2.1 Communications Software Model

Protocol synthesis generates error-free protocols
from service specifications. Most protocol synthesis
methods assume alayered architecture as in Fig. 1. A
communications system provides communications ser-
vices for users who access the system through service

access points SAPI, $\cdots$ , SAP $\mathrm{n}$ . Within the communi-
cations system, protocol entities cooperate to provide
services by exchanging messages. This communication
between protocol entities is provided by the service
provider of lower layers. In communications services
including telephone services terminals correspond to
SAP in Fig. 1.

User 1 User 2 User $\mathrm{n}$

Figure 1: Layered architecture model

2.2 Service and Protocol Specifications

Bochmann, Gotzhein $[8, 9]$ , Chu et al. [10], and
Saleh et al. [11] propose protocol synthesis methods
assuming the relation between services and protocols
illustrated in Fig. 1. Kakuda et al. [12] propose a
protocol synthesis method that includes simultaneous
occurrence of multiple events at different SAPs. A
communications system provides users with commu-
nications services through SAPs. In this modeling,
service specifications and protocol specifications are
defined as follows [16]:. The service specification describes what services

the protocol entities of the lower protocol layer
provide for users in the upper protocol layer. The
services provided by the lower protocol layer are
based on a set of service primitives that describe
the operations at service access points through
which the services are provided.. The protocol specification describes interactions
among protocol entities of the lower protocol
layer. Interactions are defined in terms of
services provided to the upper protocol layer
and services available from the communication
medium.

73



Hereafter, a protocol entity is called a process.

3 Service Specification Lan-
guage

3.1 STR

A service is defined as a set of STR rules. An STR
rule has the form:

initial state event: next state.

The “initial state” and the “next state” represent
global states of terminals. A global state is repre-
sented by a set of local states. A local state is rep-
resented by a set of state primitives. A state prim-
itive may have two arguments to express terminals.
The first argument represents the terminal having the
state primitive. If the second argument is specified,
the terminal designated by the first argument holds a
relation of the primitive to the terminal specified by
the second argument. Therefore, the local state of a
terminal is defined as the set of state primitives whose
first argument designates the terminal. A state prim-
itive represents a terminal state which is recognizable
from outside of a communications system.

The (
$‘ \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}$

” may also have two arguments to ex-
press terminals. It represents a logical input to the
terminal designated by the first argument. If the sec-
ond argument is described in an event, it represents a
terminal identifier given by the event.

3.2 Graph Representation

We use graph representation of an STR rule to gen-
erate communications protocol from service specifica-
tions described with STR. An STR rule can be repre-
sented by two graphs. The initial graph corresponds
to the initial state and an event; the next graph cor-
responding to the next state. Both an initial and a
next graphs are called rule graphs. Figure 3 shows the
graph representation of the rule described in Fig. 2.

A rule graph consists of a set of vertices and di-
rected edges. Each vertex has its own name and some
vertices have labels. A vertex is denoted by a circle.
The name of a vertex is written in a circle, and the
label of a vertex is written near the circle. Each edge
has labels that are written near it. An initial graph
has a label that shows an event. A vertex designated
by the first argument of this label is called an event
vertex.

A vertex that has a label or an edge incident from
it is called labeled. Other vertices are called unlabeled.
For each vertex in an initial graph, there must be a
path from the vertex where an event occurred.

dial-tone(A), idle(B)
dial(A,B):
ring-back(A,B), ringing(B,A).

Figure 2: An example of an STR rule

transition
$[eggA][eggB]\underline{\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{l}}$ – $\overline{\mapsto}\mathrm{A}\mathrm{O}^{\mathrm{B}}\underline{\mathrm{n}\mathrm{n}\mathrm{g}\mathrm{b}\mathrm{a}\mathrm{C}\mathrm{k}}$

rmgingdial-tone idle

Figure 3: Graph representation of an STR rule

A global state for all the processes in a commu-
nications system is called a system state; the graph
denoting the system state is called a system graph.

3.3 Application of STR Rules

According to an STR rule, in a system graph a
subgraph that is isomorphic to the initial graph of
the rule should be replaced by the next graph of the
rule. Figure 4 illustrates how an STR rule is applied.
If there are two rules $r1$ and $r2$ such that the initial
graph of $r1$ is isomorphic to a subgraph of the initial
graph of $r2$ , then $r2$ is superior to $r1$ . We denote $r1$

$<r2$ iff $r2$ is superior to $r1$ . This is not total-order.
Thus, there still exists the possibility that multiple
rules may be applied. When multiple rules can be
applied, a rule may be arbitrarily selected.

4 Problem

Let $g=(V, E, v^{0})$ be a rooted labeled directed
graph $g$ that has a set of vertices $V$ , a set of directed
edges $E$ and a root vertex $v^{0}$ . For each vertex of a
rooted directed graph, there is a path from $v^{0}$ to the
vertex. The set of vertices of $g$ is denoted by $V(g)$ .
The set of edges of $g$ is denoted by $E(g)$ . The root of
$g$ is denoted by root$(g)$ . A labeled directed graph $g$ is
denoted by $g=(V, E)$ with a set of vertices $V$ and a
set of directed edges $E$ .

74



3. If $(u, v)$ is an edge of $sp(g)$ , then every vertex
between root$(g)$ and $u$ as well as between $\mathrm{r}oot(g)$

and $v$ appears before $u$ in $sp(g)$ .

Figure 4: Application of STR rules

Definition 1 (Subgraph isomorphism)
Let $g=(V, E)$ be a labeled directed graph and $\dot{g}_{1}=$

$(V_{1}, E_{1,1}v)0$ be a rooted labeled directed graph. The
graph $g$ contains a subgraph $g’=(V’, E’, v^{0})$ isomor-
$ph.ic$ to $g_{1}$ if and only if there exist sub.s. $et_{S}V’\subset V$ and
$E’\subset E$ such that $v^{0}\in V’,$ $|V’|=|V_{1}|,$ $|E’|=|E_{1}|$ ,
and there is $a$ one to one mapping $f$ : $V_{1}arrow V’$ that
satisfies the following conditions.

$f(v)1v_{1}(x, y)\in E00=.\Rightarrow(f(x), f(y))\in E’$

.. $(f(x), f(y))\in E’\Rightarrow(x, y)\in E_{1}$

$\alpha(x)\subset\alpha(f(x))$

$\beta((_{X}, y))\mathrm{c}\beta((f(X), f(y)))$

where $\alpha$ is a function to get a set of labels attached
on a vertex and $\beta$ is a function to get a set of labels
attached on an edge.

If $g$ has a subgraph isomorphic to $g_{1}$ , then we write
$g_{1}\subset g$ .

Definition 2 (Spanning path)
For a rooted labeled directed graph $g$ , a spanning path
$sp(g)$ is defined as a path that satisfies the following
conditions.

1. The vertices of $sp(g)$ is the set of labeled vertices
in $g$ .

2. The root of $sp(g)$ is root$(g)$ .

The problem to be solved is formally defined as fol-
lows.

Definition 3 (Problem)
Let $R=\{r_{1}, \ldots, r_{n}\}$ be a set of $STR$ rules. Let $G=$

$\{g_{1}, \ldots, g_{n}\}$ be a set of initial graphs of R. Let $G’=$

$\{g_{1}’’, \ldots, g_{n}\}$ be a set of next graphs of R. Let $g=(V, E)$

be a system graph.
Find a pair of graphs $(sg(v^{0}, g),$ $g_{i})$ such that

$sg(v^{0}, g)$ is isomorphic to $g_{i}\in G$ , and there is no
graph isomorphic to $g_{k}\in G$ such that $g_{i}$ is isomor-
phic to a subgraph of $g_{k}$ . Then change $sg(v^{0}, g)$ to be
isomorphic to $g_{i}’\in G’$ .

The following lemma is satisfied for subgraph iso-
morphism. We use this lemma to construct a dis-
tributed algorithm.

Lemma
Let $g=$ $(V, E)$ be a labeled directed graph and
$g_{1}=(V_{1}, E_{1,1}v)0$ be a rooted labeled directed graph.
Let $p$ be a spanning path of $g_{1}$ with the set of edges
{ $(u_{1},$ $u_{2}),$ $\cdots,$ $(u_{m-1},$ um)} where $u_{1}=v_{1}^{0}$ , and $V_{1}=$

$\{u_{1}, \cdots, u_{m}, u_{m+1}, \cdots, u_{n}\}$ . The graph $g$ contains
a subgraph $g’=(V’, E’, v^{0})$ isomorphic to $g_{1}$ if and
only if $|V’|=|V_{1}|,$ $|E’|=|E_{1}|$ , and there is a mapping
$f$ : $V_{1}arrow V’$ that satisfies the following conditions.
For any labeled vertices $u_{i},$ $u_{j}$ in $V_{1}$ and unlabeled
verices $u_{k},$ $u_{l}$ in $V_{1}$ ,

$f(u_{1}^{0})=v^{0}$ ,
$u_{i}\neq u_{j}\Rightarrow f(u_{i})\neq f(u_{j})$ ,
$f(u_{i})\neq f(u_{k})$ ,
$u_{k}\neq u\iota\Rightarrow f(u_{k})\neq f(u_{l})$ ,
$(u_{i}, u_{j})\in E_{1}\Leftrightarrow(f(u_{i}), f(uj))\in E’$ ,
$\alpha(u_{i})\subset\alpha(f(u_{i}))$

$\beta((u_{i}, u_{j}))\subset\beta((f(u_{i}), f(uj)))$

$\beta((u_{i}, u_{k}))\subset\beta((f(u_{i}), f(uk)))$

This lemma implies that we can determine applica-
bility of a rule by traversing along its spanning path.

5 Definitions

Protocol synthesis is to generate a distributed al-
gorithm to find an isomorphic subgraph in a system
graph. Each protocol entity holds a local state of a
terminal. Then protocol synthesis is defined to de-
rive protocol entity specifications with local states

75



from communications service specifications described
by global state transition rules.

When a protocol entity receives an input from a
terminal or some other protocol entity, it determines
a rule to be applied or sends another protocol entity
a request to inquire a surrounding global state deter-
mining an applicable rule. This communication for
state inquiry is perfomed sequentially. Finally a rule
is determined. The rule is informed the protocol enti-
ties that are inquired their states. Then each protocol
entity changes its state according to the rule.

A spanning path is determined for each rule. The
communication for state inquiry goes along a span-
ning path. If there are isomorphic subgraphs in mul-
tiple initial graphs, it is determined at the same time
whether a system graph contains a subgraph isomor-
phic to the subgraphs. This reduces communication
between protocol entities. For this purpose, we uti-
lize a spanning path of a tree generated by overlap-
ping spanning trees of the initial graphs of an event.
This spanning path is called a provisional communica-
tion path. A synthesized protocol communicates along
provisional communication paths. We give these def-
initions. Note that sometimes a vertex and a process
are used for the same meaning.

Let $\mathrm{C}(e)$ denote a set of initial graphs with an event
$e$ .

Rule inclusion graph Let $s$ be a connected sub-
graph that has an event vertex and is isomorphic
to subgraphs of more than one element in $\mathrm{C}(e)$ .
Let $\mathrm{D}(s)$ denote the set of elements of $\mathrm{C}(e)$ that
have $s$ as their subgraphs. An ordered pair $<$

$s,$ $\mathrm{D}(s)>\mathrm{i}\mathrm{s}$ a vertex of the rule inclusion graph
of $\mathrm{C}(e)$ if a graph $s’$ generated from $s$ by adding
an edge is a subgraph of an element of $\mathrm{C}(e)$ , and
$\mathrm{D}(s)\neq \mathrm{D}(s’)$ . An ordered pair $<r,$ $\mathrm{D}(r)>$ is
also a vertex of the rule inclusion graph of $\mathrm{C}(e)$

if $r\in \mathrm{C}(e)$ . There is an edge from $<s,$ $\mathrm{D}(s)>$

to $<t,$ $\mathrm{D}(t)>$ iff (1) $s\subset t$ , and (2) there is no
other element $<u,$ $\mathrm{D}(u)>\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that $s\subset u$ and
$u\subset t$ .

Rule inclusion graphs are used for determining or-
ders of inquiring rule applicability. If there is an edge
from $<s,$ $\mathrm{D}(s)>$ to $<t,$ $\mathrm{D}(t)>$ in a rule inclu-
sion graph, then graph $s$ is examined before graph
$t$ whether they are included in a system graph.

Figure 5 represents initial graph examples. Figure
6 shows the rule inclusion graph for the set of initial
graphs in Fig. 5. The rule graph $r1$ is the maximum
subgraph common to the rule graphs $r2$ and $r3$ , and
the maximum subgraph of the rule graph $r4$ is the rule

graph $r2$ . Consequently, there are four vertices $<r1$ ,
$\{r1, r2, r3, r4\}>,$ $<r2,$ $\{r2, r4\}>,$ $<r3,$ $\{r3\}>$

and $<r4,$ $\{r4\}>\mathrm{i}\mathrm{n}$ this rule inclusion graph.

$rl)$

$r\mathit{2})$

$r\mathit{3})$

$r\mathit{4})$ $\mathrm{u}$ : event

Figure 5: Example of initial graphs

Figure 6: Example of a rule inclusion graph

Rule covering tree Let $g_{r}=(v_{r}, e_{r}, v^{0})$ be the ini-
tial graph of a rule $r$ . Let $t_{r}=(w_{r}, f_{r}, v^{0})$ be
a spanning tree of $g_{r}$ . A rule covering tree $\mathrm{c}_{r}$ is
defined as follows:

The set of vertices of $\mathrm{c}_{r}$ is $\mathrm{v}_{r}$ , and root$(c_{r})=v^{0}$ .
The edges from the same vertex are arranged
clockwise by lexicographic order of edge labels.
The set of edges of $\mathrm{c}_{r}$ is the union of $\mathrm{e}_{r}$ and the
edges satisfying the following two conditions:

76



1. If a leaf vertex of $\mathrm{t}_{r}$ has a label, there exists
an edge whose initial vertex is the leaf vertex of
$\mathrm{t}_{r}$ .

2. An edge $ab$ of $\mathrm{c}_{r}$ has a label of an ordered
pair. The first element of the label is the label
of $a$ in $\mathrm{v}_{r}$ , and the second element is the label of
$ab$ in $\mathrm{e}_{r}$ .

A rule covering tree is uniquely determined for a
spanning tree of an initial rule graph. A rule cover-
ing tree must satisfy the following two conditions for
defining a rule overlapping tree. Let $s$ be a spanning
tree of the initial graph for rule $r$ , and $t$ a rule covering
tree generated from $s$ .

(1) $s$ is an unlabeled subgraph of the initial graph
for rule $r$ .

(2) Let $u$ be a vertex of $s$ . Assume $g\subset h$ for the two
vertices $g$ and $h$ in the rule inclusion graph that has a
vertex whose first element is $r$ . If $u$ is a vertex of $h$ ,
and $u$ is not a vertex of $g$ , then an edge from one of
the vertices in $g$ to $u$ is included.

Figure 7 shows rule covering trees for the initial
graphs in Fig. 5.

Figure 7: Example of rule covering trees

Rule overlapping tree A rule overlapping tree for
$\mathrm{C}(e)$ is generated by overlapping graphs in $\mathrm{C}(e)$ .
The tree satisfies the following conditions.

1. All the roots of the initial graphs in $\mathrm{C}(e)$ is
overlapped.

2. For each element $g$ in $\mathrm{C}(e)$ , there is a subgraph
isomorphic to $g$ .
3. If vertices $u$ and $v$ in rule covering trees $s$

and $t$ , respectively, are overlapped, then every
vertex $u’$ between root$(S)$ and $u$ is overlapped to
the vertex $v’$ in $t$ satisfying that its depth is the
same as that of $u’$ and $v’$ is a vertex between
root$(t)$ and $v$ .
4. If deges $e$ and $f$ are overlapped, then the la-
bels of $e$ and $f$ are the same or the one is included
in the other.

5. The overlapping is performed in the lexico-
graphic order of the labels of edges with the same
initial vertex.

A rule overlapping tree is used for examining at the
same time whether the common subgraphs in multiple
rule graphs are included in a system graph.

Provisional communication path A provisional
communication path for $\mathrm{C}(e)$ is defined as a path
whose vertices is the vertices in the rule overlap-
ping tree of $\mathrm{C}(e)$ such that:

1. The initial vertex is the event vertex.

2. Let $g$ and $h$ be two graphs constituting the
first elements of two vertices in the rule inclusion
graph for $\mathrm{C}(e)$ . If $g\subset h,$ $u$ is a vertex in both $g$

and $h$ ; if $v$ is not a vertex of $g$ but a vertex of $h$ ,
then $u$ appears before $v$ .

3. Let $h$ be a graph corresponding to a vertex
in the rule overlapping graph for $\mathrm{C}(e)$ . For any
graph $g$ corresponding to a vertex in the rule
inclusion graph for $\mathrm{C}(e)$ such that $g\subset h$ , assume
that $u$ and $v$ are vertices in $h$ , but not in $g$ . In $h$ ,
if $u$ is a vertex in the path from the event vertex
to $v$ , or there is a vertex $w$ in the path from the
event vertex to $u$ such that $w$ is in the path from
the event vertex to $v$ and $w$ is not a vertex in $g$ ,
then $u$ appears before $v$ .

4. A unique label is attached to each edge.

We note that the vertex sequence of the provisional
communication path for $\mathrm{C}(e)$ includes the sequence of
a spanning path for each element of $\mathrm{C}(e)$ as a subse-
quence. It implies that state inquiry along a provi-
sional communication path may determine a rule to
be applied.

Inquiry message An inquiry message is a unique
message for each edge between adjacent vertices

77



in a provisional communication path. In the syn-
thesized protocol, an inquiry message has the
following information in addition to its message
name.

Actual communication path An actual com-
munication path is a provisional communication
path whose vertices are actual process identifiers
to be inquired. Each process decides which pro-
cess to send an inquiry message by using this
information.

Temporary decided rule The rule with the
highest priority in the rules satisfying their rule
application conditions, i.e. their initial graphs
are included in the system graph.

Rule candidates The remaining rules to be
checked for applicability. When a process re-
ceives an inquiry message it screens rule candi-
dates included in a received inquiry message by
checking its local state.

Connection information Process information
necessary for connection tests.

Visited processes A sequence of visited pro-
cesses after an event occurred.

Temporary process sequence A process se-
quence for the current temporary decided rule.

Branches A branch consists of a process identi-
fier and an inquiry message. When a process re-
ceives an inquiry message, the process compares
its state with a subgraph of the rule overlapping
tree corresponding to the inquiry message for ob-
taining a new inquiry message and branches (i.e.
actual communication paths). This subgraph
is the intersection of the rule overlapping tree
and rule covering trees corresponding to rules
contained in the rule candidates of the inquiry
message. If plural actual communication paths
to be inquired are obtained, the remaining ac-
tual communication paths except arbitrary one
are stored as elements of inquiry messages in
branches. Process identifiers are determined as
the processes to which the obtained inquiry mes-
sages are sent.

A provisional communication path indicates in-
quiry messages used for examining whether rule
graphs are included in a system graph, and their com-
munication paths. An inquiry message usually implies
multiple rules to be checked whether they are included
in a system graph.

Figure 8 shows the rule overlapping tree for the
initial graphs in Fig. 5 and its provisional communi-
cation path.

Provisional communication path

$[egg1]\underline{\mathrm{m}1}\underline{\mathrm{m}}[egg2] 2\mathrm{r}^{\mathrm{m}}34arrow \mathrm{O}\underline{\mathrm{m}}5[egg6] 34\underline{\mathrm{m}5}$

Figure 8: Example of a rule overlapping tree

Response message A message denoting whether to
apply a rule or nothing at all. When a rule is
indicated, it contains information which process
the received message corresponds to.

Figures 9 and 10 show actual communication paths
when the graphs are included in a system graph. The
dotted arrows represent communication between pro-
cesses and the inquiry messages attached to them.

In the example of Fig. 9, inquiry messages are com-
municated along a provisional communication path.
Process A sends $\mathrm{B}$ a message ml $(r1, r2, r3, r4)$ that
implies rules $r1,$ $r2,$ $r3$ and $r4$ are rule candidates.
When $\mathrm{B}$ receives it, $\mathrm{B}$ determines rule $r1$ is included
in the system graph, and rules $r2,$ $r3$ , and $r4$ are to
be checked for their applicability. Then $\mathrm{B}$ sends $\mathrm{C}$ a
message $\mathrm{m}2(r2, r3, r4)$ . When $\mathrm{C}$ receives the message
$\mathrm{m}2(r2, r3, r4))\mathrm{C}$ sends $\mathrm{m}3(r2, r3, r4)$ to $\mathrm{D}$ that is
included in the received message as an actual commu-
nication path. In the end $\mathrm{E}$ receives a meesage $\mathrm{m}4(r3$ ,
$r4)$ and determines that rule $r4$ is included in the sys-
tem graph. Since $r4$ is not included in any other initial
graph, $\mathrm{E}$ detemines that rule $r4$ is to be applied. Then
$\mathrm{E}$ sends processes $\mathrm{A},$ $\mathrm{B},$

$\mathrm{C}$ and $\mathrm{D}$ a response message
indicating that each process changes its state accord-
ing to rule $r4$ . $\mathrm{E}$ also changes its state.

In the example of Fig. 10, inquiry message are com-
municated along a provisional communication path
but some intermediate processes are skipped. When
$\mathrm{B}$ receives a message $\mathrm{m}1(r1, r2, r3, r4),$ $\mathrm{B}$ determines

78



Figure 9: Example of communication along a provi-
sional communication path

that rule $r1$ is a temoporary determined rule, rules
$r2$ and $r4$ are not included in the system graph, and
rule $r3$ is to be checked its applicability. In the end $\mathrm{F}$

determines rule $r3$ is the rule to be applied.

Figure 10: Example of communication skipping inter-
mediate processes

Figure 11 shows an example of non-tree initial
graphs. Figure 12 shows the rule overlapping tree
and its provisional communication path for non-tree
initial graphs in Fig. 11. Figure 13 illustrates provi-
sional communication paths and inquiry messages for
the rules in Fig. 11.

State transition segment One or two state tran-
sition segments are generated for each labeled
vertex in the initial graph of a rule.

. When a vertex is the last vertex in a pro-
visional communication path, a state tran-
sition segment is generated such that it
receives a predetermined inquiry message
in the provisional communication path; it
sends a response message and changes to
the next state determined by a rule.. When a vertex is not the last vertex in a
provisional communication path, two sep-

Figure 11: Example of non-tree initial graphs

arate state transition segments are gener-
ated. One segment receives a predeter-
mined inquiry message in the provisional
communication path, sends another in-
quiry message along the provisional com-
munication path, and then changes to the
next state. The other segment receives
a response message that includes a deter-
mined rule $\mathrm{a}\ldots \mathrm{n}\mathrm{d}$ changes to the next state.

Connection test A connection test is used to iden-
tify graphs that include plural vertices in a pro-
visional communication path. Let $\dot{i}$ and $j$ be two
vertices in a provisional communication path,
and $\dot{i}$ is nearer to the event vertex than $j$ . A con-
nection test decides if the edges from $\dot{i}$ excluding
the edge in the provisional communication path
are connected to vertices $j$ or vertices connected
by edges from $j$ .

Figure 14 shows state transition segments of a ver-
tex with the label $\mathrm{B}$ obtained from messages in the
provisional communication path. Connection tests are
omitted in this figure.

Figure 15 shows two initial graphs that need a con-
nection test to distinguish them. The provisional com-
munication path in these two initial graphs is the path
1,2,3. Figure 16 shows subgraphs that can be identi-
fied by processes 1 and 3. The two initial graphs in
Fig. 15 are distinguished when process 3 receives a
message that edge $\mathrm{b}$ is connected to process 4.

79



$rl$ .

Provisional communication path

$[egg1]\underline{\mathrm{m}1}\mapsto 2\mathrm{m}2\mathrm{m}3\mathrm{m}\mathrm{o}3\mathrm{R}4\mathrm{r}54$

Figure 12: Example of a rule overlapping tree for com-
plicated rules

6 Protocol Synthesis

The protocol synthesis algorithm consists of the fol-
lowing six steps.

(1) Classification of rule graphs
Rules are classified into sets of rules for the same

event. Let $\mathrm{C}(e)$ be the set of a rule graph with an
event $e$ . For each rule graph set we initially apply
steps 2 to 5, finally, step 6 is applied.

(2) Generation of rule inclusion graph
Generate a rule inclusion graph for each rule graph

set.
(3) Generation of rule overlapping tree
Generate a rule overlapping tree.
(4) Determination of provisional communi-

cation path and inquiry messages
Determine a provisional communication path and

inquiry messages from a rule overlapping tree.
(5) Generation of state transition segments
Generate state transition segments for each vertex

of a rule covering tree corresponding to each rule $r$ .
The initial state of a state transition segment is the
first element of the label attached to an edge incident
from the vertex in the rule covering tree.

(6) Synthesis of process specification
Synthesize a state transition segment from the ini-

tial state until no new state is generated. Assume
a new state $s$ is generated. Collect all state transi-
tion segments whose initial state is included in $s$ as a
subgraph. The collected state transition segments are
synthesized as follows.. If two kinds of state transition segments corre-

$r2.\cdot$

$\underline{\mathrm{m}1\backslash r_{J}‘}-$ $\underline{\mathrm{m}\angle 1^{\Gamma\angle})}arrow$ $\underline{\mathrm{m}s(r\mathit{4}|}arrow$

$r\mathit{3}$:

$\underline{\mathrm{m}1(r\mathrm{J}J}arrow$ $\underline{\mathrm{m}\angle(\prime \mathit{5})}arrow$ $\underline{\mathrm{m}\mathrm{J}(\Gamma \mathrm{J}J}arrow$

$r\mathit{4}.\cdot$

$\underline{\mathrm{m}1(r\mathit{4})}-$ $\underline{\mathrm{m}\angle(r4\mathrm{I}}arrow$ $\underline{\mathrm{m}\mathrm{J}(r*)}arrow$

Figure 13: Communication for identifying rules in Fig.
11

spond to the final vertex of an initial graph in the
provisional communication path, a middle vertex
is included, and their received messages are the
same, the following synthesis occurs.

The next states of these state transition segments
are changed to the same states as their initial
states. In the synthesized process specification,
the rule candidates of the inquiry message to be
sent are the intersection of the rule candidates of
the received inquiry message and the set of rules
whose state transition segments are synthesized.
Other information is obtained as described in the
above preliminaries.

-When the resulting rule candidate set is
not empty, the synthesized process sends
the obtained inquiry message to the near-
est process in the provisional communica-
tion path following the rules contained in
the inquiry message.

-When the resulting rule candidate set is
empty and the branches in the received

80



$4^{1}\mathrm{b}\mapsto^{\mathrm{a}}\mathrm{O}$ $\mathrm{d}2^{3}$

$\subset\supset \mathrm{K}.\cdot.\cdot\iota \mathrm{w}\epsilon \mathrm{s}\mathrm{t}\mathrm{a}5\mathrm{e}_{\mathrm{i}_{\mathrm{V}\epsilon}}$

$\square$ : send

Figure 14: State transition segments

Figure 15: Two graphs requiring a connection test for
identification

message are empty, two possible conditions
exist: if the temporary decided rule is con-
tained in the received inquiry message, the
rule should be applied; if the temporary
decided rule is not contained, a special re-
sponse message is sent to all the visited
processes.

-When the resulting rule candidate set is
empty but the branches in the received
message is not empty, the process sends
an inquiry message to find a more superior
rule than the temporary decided rule.. If the above does not occur, the following hap-

pens.

The collected state transition segments are syn-

Figure 16: Subgraphs identifiable with local states

thesized as they are. Each state transition seg-
ment is synthesized as described above. Figure
17 illustrates how collected state transition seg-
ments are synthesized into a process specifica-
tion.

Figure 17: Synthesis of state transition segments

In the synthesized protocol specification, the rule
candidates are screened as communication progresses,
and then a rule to be applied is determined. Once
a rule is determined to be applied at a process, the
process sends response messages indicating the deter-
mined rule to the visited processes. There are two
types of response messages: a message indicating a
rule and no rule to be applied. A process that receives
a response message changes to the state designated by
the state transition segment corresponding to the de-
termined rule. A process that receives a no rule mes-
sage returns to the state prior to receiving the inquiry
message.

The above protocol synthesis algorithm is imple-
mented as a communications software generation sys-

81



$\mathrm{t}\mathrm{e}\mathrm{m}$. We have implemented some services on a PBX
by using automatic generated software.

$\mathrm{r}1)$

$[eggA]\underline{\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}}[eggB]$

idle idle

7 Example

We explain an example of process specification gen-
eration. Figure 18 expresses a service specification. In
this service we need two terminals “data sender termi-
nal” and “data receiver terminal”. Data sender termi-
nal starts data transmission by an event “start” when
both the sender and the receiver which is specified by
“start” are in the state “idle”. The sender can always
stop sending data by an event “stop”. The receiver
can always request the sender to pause sending data
by an event pause and to resume to sending data by
an event “resume”. Figure 19 shows a global state
transition diagram for this data sending protocol with
pause function.

rule 1) idle (A) , idle (B) start $(\mathrm{A},\mathrm{B})$ :
sending $(\mathrm{A},\mathrm{B})$ , receiving $(\mathrm{B},\mathrm{A})$ .

rule 2) sending $(\mathrm{A},\mathrm{B})$ , receiving $(\mathrm{B},\mathrm{A})$ stop (A):

idle (A) , idle (B).

rule 3) receiving $(\mathrm{A},\mathrm{B})$ , sending $(\mathrm{B},\mathrm{A})$ pause (A):
$\mathrm{r}$-wait $(\mathrm{A},\mathrm{B})$ , $\mathrm{s}$ -wait $(\mathrm{B},\mathrm{A})$ .

rule 4) $\mathrm{r}$-wait $(\mathrm{A},\mathrm{B})$ , $\mathrm{s}-\mathrm{w}\dot{\mathrm{a}}$it $(\mathrm{B},\mathrm{A})$ resume (A):

receiving $(\mathrm{A},\mathrm{B})$ , sending $(\mathrm{B},\mathrm{A})$ .

Figure 18: STR description for data sending protocol

Figure 19: Global state transition diagram for data
sending protocol with pause function

We show the graph representation for the service
specification in Fig. 18.

$\mathrm{r}2)$

$[eggB] \mathrm{i}\mathrm{d}\mathrm{l}\mathrm{e}$

$\mathrm{r}3)$

Figure 20: Graph representation of STR description
for data sending protocol

In this example each rule makes a rule overlapping
tree. Using this graph representation and the rule
overlapping trees, we can get state transition segments
which are parts of the objective protocol entity spec-
ification. Figure 21 shows state transition segments
for the STR rules in Fig. 18. The messages used in
inter-process communication are generated from the
provisional communication paths.

Figure 22 shows a protocol entity specification syn-
thesized from state transition segments in Fig. 21. In
Fig. 22 the messages “

$\mathrm{m}1$”, “
$\mathrm{m}2$”, “

$\mathrm{m}3$ ”, “
$\mathrm{m}4$

” repre-
sent request message, the messages “

$\mathrm{r}1$ ”, “
$\mathrm{r}2$”, “

$\mathrm{r}3$”,
“

$\mathrm{r}4$
” response message. In this specification actions to

send or receive”norule” are omitted. “Norule” is a spe-
cial response message to indicate there is no rule to be
applied. In the generated protocol entity specification,
when the protocol entity receives an unexpected re-
quest message, the protocol entity is assumed to send
the message “norule” to the sender of the request mes-
sage.

8 Conclusion

A protocol synthesis method is proposed by rep-
resenting communications service specifications by a
set of graph rewriting rules. The synthesized protocol
implements a distributed algorithm that finds and re-

82



Figure 21: State transition segments for data commu-
nication protocol

places a subgraph isomorphic to an initial rule graph
in a system graph with the next graph. Isomorphic
subgraph detection is known as one of NP-complete
problems [17]; however, the generated protocol oper-
ates within a time practical for application because
of the limited number of terminals usually associated
with a communications service.

The proposed protocol synthesis method can be
used to generate communications software from ser-
vice specifications. This enables those who are not-
specialists in communications systems to participate
in developing communications software.

Acknowledgments

We sincerely thank Dr. Kohei Habara, Chairman
of the Board of ATR Communication Systems Re-
search Laboratories, for his guidance and encourage-
ment in this research. In addition to Dr. Nobuyoshi
Terashima, President of ATR Telecommunication Sys-
tem Research Laboratories, we also wish to thank our
colleagues for their helpful discussions.

Figure 22: Protocol entity specification for data com-
munication protocol

References

[1] CCITT, revised Rec-
ommendation Z.100, “CCITT Specification and
Description Language (SDL),” May 1992.

[2] T. Bolognesi and E. Brinksma, “Introduction to
the ISO Specification Language LOTOS,” $C_{om}-$

put. Networks ISDN Syst., vol. 14, pp. 25-59,
1987.

[3] M. Faci, L. Logrippo, and B. Stepien, “Formal
Specification of Telephone Systems in LOTOS:
the Constraint-Oriented Style Approach,” $C_{om}-$

put. Networks ISDN Syst., vol. 21, pp. 53-67,
1991.

[4] L. Drayton, A. Chetwynd, and G. Blair, “Intro-
duction to LOTOS through a worked example,”
Comput. Commun., vol. 15, no. 2, pp. 70-85,
Mar. 1992.

[5] E. J. Cameron, D. M. Cohen, T. M. Guithner,
W. M. Keese Jr., L. A. Ness, C. Norman, and H.
N. Srinidhi, “The L.O Language and Environment
for Protocol Simulation and Prototyping,” IEEE

83



Trans. on Comput., vol. 40, no. 4, pp. 562-571,
Apr. 1991.

[6] J. J. P. Tsai, T. Weigert, and H.-C. Jang, “A Hy-
brid Knowledge Representation as a Basis of Re-
quirement Specification and Specification Analy-
sis,” IEEE Trans. on Software Eng., vol. 18, no.
12, pp. 1076- 1100, Dec. 1992.

[7] C. Dendorfer and R. Weber, “From Service Spec-
ification to Protocol Entity Implementation-An
Exercise in Formal Protocol Development,” Proc.
IFIP Twelfth Int. Symp. Protocol Specification,
Testing, Verification, pp. 163-177, 1992.

[8] G. v. Bochmann and R. Gotzhein, “Deriving
Protocol Specifications from Service Specifica-
tions,” Communications, Architectures $\xi j$ Pro-
tocols, Proc. ACM SIGCOMM ’

$\mathit{8}\theta$ (Vermont,
USA), pp. 136-145, Aug. 1986.

[9] R. Gotzhein and G. v. Bochmann, “Deriving
Protocol Specifications from Service Specifica-
tions Including Parameters,” ACM Rans. $C_{om}-$

put. Systems, vol. 8, no. 4, pp. 255-283, Nov.
1990.

[10] P. M. Chu and M. T. Liu, “Synthesizing Pro-
tocol Specifications from Service Specification in
the FSM Model,” in Proc. Comput. Networking
Symp., pp. 505-512, Apr. 1988.

[11] K. Saleh and R. L. Probert, “A Service-Based
Method for the Synthesis of Communications
Protocols,” Int. J. Mini and Microcomput. Spe-
cial Issue on Distributed Systems, vol. 12, no. 3,
pp. 197-103, 1990.

[12] Y. Kakuda, M. Nakamura, and T. Kikuno,
“Automated Synthesis of Protocol Specifications
from Service Specifications with Parallelly Exe-
cutable Multiple Primitives,” IEICE Trans. Fun-
damentals, vol. E77-A, no. 10, Oct. 1994.

[13] Y. Hirakawa and T. Takenaka, “Telecommunica-
tion Service Description Using State Transition
Rules,” Proc. Sixth Int. Workshop on Software
Specification and Design (Como, Italy), pp. 140-
147, Oct. 1991.

[14] K. Kawata, A. Takura, and T. Ohta, “On a Com-
munication Software Generation Method from
Communication Service Specifications Described

by a Declarative Language,” Proc. Fifth Interna-
tional Conference on Computing and Information
(Sudbury, Canada), pp. 116-122, May 1993.

[15] A. Takura, K. Kawata, T. Ohta, and N.
Terashima, “Communication Software Genera-
tion Based on Two-Layered Specifications and
Execution Environment,” IEEE GLOBECOM’93
(Houston, Texas), pp. 362-368, Dec. 1993.

[16] M. T. Liu, “Protocol Engineering,” Advances in
Computers, vol. 29, Academic Press, 1989.

[17] M. R. Garey and D. S. Johnson, Computers
and Intractability, A Guide to the Theory of
$NP$-Completeness. NY: W. H. Freeman and Co.,
1979.

84


